US3341670A - Current conductor rail system - Google Patents

Current conductor rail system Download PDF

Info

Publication number
US3341670A
US3341670A US596357A US59635766A US3341670A US 3341670 A US3341670 A US 3341670A US 596357 A US596357 A US 596357A US 59635766 A US59635766 A US 59635766A US 3341670 A US3341670 A US 3341670A
Authority
US
United States
Prior art keywords
insulator
rail
conductor rail
spaced
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US596357A
Inventor
Gerald E Martin
Donald G Sprigings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hk Porter Company Inc
HK Porter Co Inc
Original Assignee
HK Porter Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US350994A external-priority patent/US3341669A/en
Application filed by HK Porter Co Inc filed Critical HK Porter Co Inc
Priority to US596357A priority Critical patent/US3341670A/en
Application granted granted Critical
Publication of US3341670A publication Critical patent/US3341670A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/04Partially-enclosed installations, e.g. in ducts and adapted for sliding or rolling current collection

Definitions

  • Each insulator block is provided upon its front face with a pair of rail flange engaging tabs which are diagonally spaced apart a distance greater than the Width of the rail flange so that when the block is rotated relatively to the rail flange the flange engaging tabs of the block are free from engagement with the rail flange.
  • This invention relates generally to current conductor 350,994, filed Mar. 11, 1964.
  • This invention relates generally to current conductor rail systems, and more particularly relates to current conductor rail systems utilizing a plurality of conductor rails, rail mounting insulators, protective covers and structures for mounting the entire system to physical supports utilizing modular components which may be assembled to form any number of rail supporting sections.
  • the invention also contemplates and includes a a part thereof a novel composite construction of conductor rail consisting of an assembly of independently formed members, one of which serving as the current-carrying main body portion of the rail is in the form of a structural element typically made of aluminum, and the other of which, typically made of stainless steel alloy having the requisite qualities of surface hardness, high rate of thermal expansion, corrosion resistance and the ability to workharden on the surface from repeated abrasion and pounding of any current collection device riding thereagainst, serving as a cap member for the rail, is mechanically locked to the main body portion thereof.
  • aluminum and stainless steel are galvanically compatible, their conjoint use tends to retard interface corrosion between the interlocked parts of the composite rail.
  • the galvanic compatability of these materials may be further enhanced by the use of a conductive plastic material used as a combined seal and conductive bond therebetween, as, for example, a carbon or silverfilled epoxy resin which effectively also seals out moisture between and so prevents oxidation of the inner surfaces of the interlocked members of the rail.
  • a conductive plastic material used as a combined seal and conductive bond therebetween, as, for example, a carbon or silverfilled epoxy resin which effectively also seals out moisture between and so prevents oxidation of the inner surfaces of the interlocked members of the rail.
  • the insulator blocks which are directly engaged with the conductor rails are molded of a thermosetting plastic material designed for structural and electrical insulation strength and which are characterized by high are track and wet tracking resistance properties.
  • these insulators may be made of fiber glass reinforced polyesters, epoxy resin or reinforced diallyl phthalate.
  • the insulators are designed to be stacked one upon the other to support any number of parallel conductor rail sections, and various types of insulator mounts provide for a variety of stacking arrangements.
  • the insulators are provided with molded support tabs which support the conductor rail sections but provide free sliding of the rails through the insulators, the tabs being of suflicient mechanical strength to support the con- .ductor rails under normal and electrical short circuit conditions. These tabs are so positioned with respect to the body of the insulator supports that rotation of the individual insulator block to an angle of 45 degrees from its normal in-line position allows the insulator to be removed from engagement with the conductor rail.
  • this permits insulator replacement without removing the conductor rails or disturbing the splicing connections thereof.
  • the system also includes several arrangements of insulating plastic safety covers which run continuously throughout the length of the conductor rails and function to prevent foreign objects from falling across the conductor rails to thereby prevent short circuits.
  • these safety covers also serve as interphase insulation barriers when used in conjunction with multiphase conductor rail systems.
  • the conductor rail systems to be hereinafter described find typical application, for example, in high speed transit systems, in material handling systems, and in other movable utility systems requiring electrical current transfer. While the drawings illustrate three-rail systems, it will be understood that the structures shown and described may be utilized in systems employing any number of parallel conductor rails which may or may not be of the composite type to be described. Accordingly, it is a primary object of this invention to provide a novel current conductor rail system which includes a novel form of conductor rail and supporting insulator therefor, together with protective covers and mounting supports.
  • Another object of this invention is to provide a current conductor rail system including a novel construction of composite current conductor rail having a main current carrying structural member to which is permanently aflixed a physically hard, tough and corrosion resistant cap member.
  • Still another object of this invention is to provide a current conductor rail system including a novel composite current conductor rail formed as aforesaid wherein the main current carrying structural member and the cap member are formed of different metals which are galvanically compatible and which are sealed to one another at their interface by a conductive plastic material effective to seal out moisture and prevent surface oxidation.
  • a further object of this invention is to provide a current conductor rail system including a novel form of conductor rail supporting insulator block so formed and combined with other such blocks as to enable these insulators to be quickly and easily installed to and removed from the associated conductor rail.
  • FIGURE 1 illustrates in perspective form a portion of a three conductor rail system including a top protective cover, and in which the entire system is mounted to a wall;
  • FIGURE 2 is an exploded perspective view of a portion of one form of the novel conductor rail according to the invention.
  • FIGURE 3 is an enlarged perspective view of the cap member portion of a novel two part conductor rail illustrating one type of under surface serration thereof;
  • FIGURE 4 is a perspective showing of the cam portion of the novel conductor rail and differs from the showing of FIGURE 3 only with respect to the location of the serrations thereon;
  • FIGURE 5 is a sectional view through the cap member of FIGURE 4 as would be seen when viewed along the line 5-5 thereof;
  • FIGURE 6 is an enlarged cross sectional showing of the composite conductor rail structure shown in exploded form in FIGURE 2, and as would be seen when viewed along the line 6-6 of FIGURE 1;
  • FIGURE 6a is a showing similar to that of FIGURE 6 but illustrating a somewhat different form of the main current carrying portion of the composite conductor rail structure;
  • FIGURE 7 is a sectional view through the composite conductor rail of FIGURE 6 as would be seen when viewed along the line 7-7 thereof and illustrating the serration structure of a cap member of the type shown in FIGURE 3;
  • FIGURE 8 is a perspective view of one of the modular conductor rail supporting insulator blocks shown as an assembly in FIGURE 1;
  • FIGURE 9 is a vertical section through the composite condu-ctor rail system of FIGURE 1 as would be seen when viewed along the line 9-9 of FIGURE 1;
  • FIGURE 10 is a horizontal sectional view through the lower conductor rail, insulating block and other support structure of FIGURE 1 as would be'seen when viewed along the line 10-10 of FIGURE 9;
  • FIGURE 11 illustrates in perspective view one form of insulator block bracket suitable for holding three stacked insulator blocks in vertical alignment, with one of such insulators being shown in position;
  • FIGURE 12 is a vertical sectional view through the bracket and insulator block of FIGURE 11 as would be seen when viewed along the line 12-12 thereof;
  • FIGURE 13 illustrates another, and simpler, form of wall mounting insulator block supporting brackets
  • FIGURE 14 illustrates in side elevation another form of insulator block supporting structure suitable for wall or post mounting
  • FIGURE 15 illustrates in perspective form an insulator block supporting bracket similar to that shown in FIG- URE 11, but which is formed for securement to horizontal tie structures;
  • FIGURE 16 is a fragmentary perspective showing of a conductor rail system similar to that of FIGURE 1, but differing therefrom in that the system is post mounted, utilizes inter-rail insulating protective covers and a somewhat dilferent form of insulator block;
  • FIGURE 17 is an enlarged perspective view of one of the insulator blocks illustrated on a smaller scale in the showing of FIGURE 16;
  • FIGURE 18 is a vertical sectional view through the conductor rail system illustrated in perspective in the 4 showing of FIGURE 16 and as would be seen when viewed along the line 18-18 thereof;
  • FIGURE 19 is a horizontal sectional view through the conductor rail system of FIGURE 16 as would be seen when viewed along the line 19-19 of FIGURE 18;
  • FIGURE 20 is a front elevation of a conductor rail system of the type shown in FIGURE 16 but without the protective covers, illustrating an insulator block in position for detachment from or attachment to the upper one of the conductor rails of the system;
  • FIGURE 21 illustrates in perspective form a device for splicing together successive sections of the conductor rail structure
  • FIGURE 22 is a cross sectional view taken through the splicing structure of FIGURE 21 as would be seen when viewed along the line 22-22 thereof;
  • FIGURE 23 is a longitudinal sectional view through the splicing structure of FIGURE 21 as would be seen when viewed along the line 23-23 thereof;
  • FIGURE 24 is a perspective showing of a power takeoff device and its securement to a conductor rail according to the invention.
  • FIGURE 25 is an enlarged cross sectional view through the power take-off device illustrated in perspective in the showing of FIGURE 24 and as would be seen when viewed along the line 25-25 thereof.
  • the conductor rail system includes generally a plurality of conductor rail supporting insulating block assemblies 20, each of which includes a bracket 30 and a plurality of vertically stacked insulator blocks 31 secured to one another and to the bracket 30 by means of a vertically extending nut-secured bolt 32 projected through vertically aligned bores 33 in the insulator blocks and apertures 34-34 in the top and bottom flanges 35 of the supporting bracket, which flanges extend forward from the bracket rear wall 36.
  • the lower portion of the bracket rear wall 36 is formed with laterally extending apertured side ears 37 through which securement bolts or screws 38 are projected to fixedly secure the bracket to the wall 39.
  • the upper half of the bracket rear wall 36 is recessed forward to provide an opening into which may be projected the downwardly extending vertical rear flange 40 of the L-shaped insulating protective shield or cover 41, the horizontally forwardly extending top flange 42 projecting laterally outward beyond the conductor rails and also being apertured as at 43 to provide through the passage for the upper end of the bolt 32 an-d the nut securing the same.
  • FIGURES 11 through 15 illustrate other forms of bracket which might be used in various applications in place of the bracket 30 which has just been described.
  • the bracket 44 shown in FIGURES 11 and 12 is generally similar to the bracket 30, differing therefrom in that it does not have any equivalent of the apertured side ears 37 but instead is provided with top and bottom vertical extensions 45, each apertured as at 46, which function as mounting ears.
  • the bracket rear wall 47 is set forward of the rear face of the bracket vertical extensions 45 so that the insulators 31 carried by the bracket are set forward from the supporting member to which the brackets are secured.
  • bracket 48 illustrated in FIGURE 15 is similar to the bracket 44 illustrated in FIGURES 11 and 12, differing from the latter in that it is intended for bottom securement to the cross ties of a track structure rather than for flat securernent against a wall or post.
  • the lower end of the bracket 48 is therefore formed with the flaring depending side flanges 49 bridged transversely as at 50 by a web which seats flatwise down upon the upper surface of the tie 51, the side flanges 49 being apertured below the level of the bridging web 58 so that securing bolts or screws 52 may be projected therethrough into the tie 51.
  • FIGURE 13 illustrates a bracket 53 of C-shaped configuration apertured through the top and bottom flanges as at 54 to receive an insulator block securing bolt, and apertured on the rear wall as at 55 to provide means for securing the bracket to a supporting structure.
  • FIGURE 14 illustrates yet another form of bracket which includes top and bottom L-shaped angles 56 se cured to the wall 57 as by means of the screws 58 and being provided with vertically registering holes through the horizontal flanges of the angles 56 through which may be projected the insulator blocks securing bolt 59, securable as by means of the nut 60.
  • the backwall of the bracket is formed integrally with the horizontally projecting upper portion 61 which latter functions as a protective cover, the composite backwall and protective cover structure being provided with a bottom flange and suitable apertures through which the bolt 59 is projectable in the illustrated manner for securement purposes.
  • the supporting brackets for the railsupporting insulators are spaced lengthwise of the rails to provide each modular rail section with at least two longitudinally spaced supports therefor, which spacing may be from 8 to feet for modular lengths of rails running from to 30 feet to provide the same with adequate beam and column strength.
  • FIGURES 6 and 6a Two forms of composite conductor bar structure are illustrated in FIGURES 6 and 6a, thev showing of FIG- URE 6 illustrating a basically T-shaped member whereas the showing of FIGURE 6a illustrates a basically H- shaped structure.
  • the two part conductor rail of FIGURES 2 and 6 includes the main current carrying structural section designated generally as 62 and the utility current collector contacting cap portion section designated generally as 63.
  • the main section 62 is generally of T-shape in configuration, having a base portion 64 and a web portion 65, the end of the web 65 terminating in a generally C-shaped enlargement 66 having a pair of arms '67 and 68 respectively separated by a longitudinally extending wedge-shaped slot or groove 69 lying in a plane coincident with that of the web portion 65.
  • the opposite outer surfaces of the arms 67 and 68 of the C-shaped enlargements 66 are respectively r-abbeted along the full lengths thereof to provide the enlargement with shouldered end portions having oppositely tapered surfaces 70 and 71 which converge toward a point lying in the longitudinal median plane of the T-shaped main section of the conductor rail.
  • the tapered surfaces 70 and 71 operate in conjunction with the opposite flanges 72 of the generally E-shaped cap section 63 to form a mechanical interlock between the T-shaped main section 62 and the cap section 63.
  • the cap section 63 is medially provided along its full length with a wedge-shaped web portion 73 serrated along its side surfaces as at 74, which wedge-shaped web is complemental in shape to and is forcible downward into the wedge-shaped groove 68 of the C-shaped enlargement 66 formed on the end of the main section stem.
  • the surfaces of the wedge-shaped groove 69 may also be serrated to interlock with the serrations 74 of the cap member 63, or they may be free of serrations but so relatively spaced apart that the serrations 74 of the cap 63 cut into these surfaces as the cap is forced mechanically onto the main section 62.
  • These serrations serve effectively not only to provide maximum physical and electrical interengagement between the interlocked elements of the composite rail, but also insure against all possible longitudinal shifting movement of one element relatively to the other.
  • cap section 63 shown in detailed form in FIG- URES 4 and 5 is illustrated as being serrated on the side surfaces of its medial web 73, the serrations may alternatively be formed on the bottom of the web portion 73 and on the inner cap surfaces parallel thereto in the manner illustrated at 76 in the showing of FIGURE 3 illustrating a modified form of cap section 63'.
  • the serrations 74 and 76 may both be utilized.
  • the top and bottom flanges 72 of the cap 63 are forced inward toward one another and around the laterally spaced arms 67 and 68 of the C-shaped enlargement until the flanges engage the surfaces 70 and 71.
  • the mating surfaces are coated with a conductive plastic material 75, such as a carbon or silver-filled epoxy resin, which functions as a combined sealant and bond between the metal rails sections.
  • FIGURE 6a illustrates another form of composite conductor rail structure organized in exactly the same manner as that illustrated in FIGURE 6 in that it includes a main section 77 and a cap section 78 mechanically intersecured and bonded together by a conductive plastic material 79.
  • the cap section 78 is observed to be of the same E-shaped configuration as the cap sections 63 and 63 previously described, whereas the main section 77 differs from the main section 62 in that it is of H-shape rather than of T-shape.
  • the equivalent of the opposite side arms 67 and 68 of the C-shaped enlargement 66 of the structure shown in FIGURES 2 and 6 is present in the structure of FIGURE 6a as the laterally spaced arms 80 and 81 formed as extensions of the web portion of the H-shaped main section 77 which arms define therebetween a wedge-shaped groove and are longitudinally rabbetted or shouldered to provide the raked or angulated outer surfaces about and against which the opposite side flanges of the cap section 78 are turned inward.
  • conductor rail main sections have been illustrated in the showings of FIGURES 6 and 6a as being of T-shape or H-shape, other structural forms may as well be utilized so long as they provide the mechanical strength required for the particular application and sufficient cross-sectional area to prevent any substantial electrical voltage drop along the length of the conductor rail system.
  • each of the insulator blocks 31 is formed with forwardly projecting flat planar top and bottom flanges 82 and 83 respectively, opposite side walls 84 and a generally arcuate front wall 85 formed with a pair of laterally spaced forwardly projecting bosses 86.
  • each insulator block Extending forward from the upper edge of the left hand boss 86 of each insulator block is a second element 88 terminating in a downturned flange which element 88 overlies the rail supported by the element 87 and assists in holding the rail in its normal mounted position.
  • the insulator blocks 31 are so formed that they may be turned top-for-bottom with either of the elements 87 and 88 functioning as the actual load bearing device.
  • the elements 87 and 88 are so spaced relatively to one another and to the rail supported therebetween as to permit free longitudinal shifting of the rail relatively to the insulator blocks for such positional adjustment of the rail as may be necessary.
  • the insulator block 31 is of symmetrical configuration with reference to both its horizontal and its vertical median planes, in consequence of which it may be readily molded of two identical half-sections which are then suitably bonded together, as indicated by the line 31a to form a unitary assembly as shown.
  • the insulator block 31 may also be molded as a one-piece construction, in which case there would be no central joint such as is shown in the drawings.
  • the front wall 85 of the insulator block 31 is spaced forward of its rear surface so that the insulator block is basically in the shape of a hollow unit, thus saving on the cost of materials without in any way degrading the electrical insulation properties and capability of the insulator block.
  • the flat planar top and bottom flanges 82 and 83 permit the vertical stacking of a plurality of such insulator blocks in the manner most clearly shown in the illustrations of FIGURES 1 and 9, and the lateral offset of the rail support elements 87 and 88 affords the ability to rotate the individual insulator block through an angle of 45 degrees from its normal in-line positions, as shown in FIGURE 1, to allow the insulator to be installed to or removed from the conductor rail without necessitating the removal of the rail or disturbance of rail splice connections.
  • These insulator blocks are molded of electrical grade thermosetting plastic which might be typically fiber glass reinforced polyester, an epoxy resin or reinforced diallyl phthalate, all of which are designed for structural strength, high are track and Wet tracking resistance and adequate electrical creepage characteristics.
  • FIGURES 16, 18 and 19 correspond respectively to the showings of FIGURES l, 9 and 10, but with respect to a different arrangement of protective covers, support brackets and insulation blocks.
  • the support brackets are seen in the showings of FIGURES l6 and 18 to be of the type illustrated in the showing of FIG- URE 14 as including a pair of L-s'haped upper and lower angles 56 between which vertically extends the insulator block securing bolt 59 secured at its upper end by the nut 60.
  • the insulator block carrying brackets are secured to laterally spaced vertically extending posts 89 rather than to the previously illustrated walls.
  • the insulator blocks 90 are observed to be very similar to the previously described insulator blocks 31 as shown in detail and described in connection with FIGURES 8, 9 and 10.
  • the insulator blocks 90 differ, however, from the previously described insulator blocks 31 in that instead of merely being provided with top and bottom flanges 91 and 92 similar to those designated 82 and 83 in FIGURE 8, the insulator blocks 90 are additionaly provided with a pair of vertically spaced intermediate flanges 93 and 94 respectively disposed above and below the rail supporting section of the insulator block.
  • These intermediate flanges 93 and 94 increase the surface path length across which any electrical discharge must take place, and hence increase the surface insulation resistance of the insulator block.
  • the insulator blocks 90 also include a pair of opposite side walls 95, a front wall 96 carrying forwardly projecting bosses 97 disposed in side-by-side relationship from the top of one of which bosses forwardly extends a flanged support element 98 while a similar support element 99 extends forwardly from the bottom of the other boss.
  • Extending vertically through the flange carrying top and bottom walls 91 and 92 are the vertically aligned insulator block bores 100 through which the mounting bolt 59 is projected to secure the insulator blocks in proper position.
  • the conductor rail system of FIGURE 16 is provided with interphase insulating protective shields or covers of inverted L-shape designated generally as 101 with each including a generally horizontally disposed top wall 102 and a vertically disposed rear wall 103.
  • these shields or covers are formed of any suitable electrically-non-conductive material, such as fiber glass reinforced polyester, epoxy resin or the like.
  • the top wall 102 of the two lowermost protective shields or covers is disposed between the top and bottom flanges of the insulator blocks in the manner best seen in the showing of FIG- URE 18.
  • the insulating cover top walls 102 are of course suitably apertured for alignment with the insulator block holes so that the vertically extending bolt 59 may be passed therethrough.
  • the cover vertical rear Walls 103 are of somewhat greater length than the height of the insulator blocks 90 so that the bottom edge of the cover rear wall extends downward below the bottom flange 92 of the insulator block. This bottom extension overlaps the forwardly offset upper edge of the cover rear wall to provide an unbroken rear wall of cover insulation in the region between the posts 89 and thereby prevent access to the electrically energized conductor rails from the rear.
  • FIGURE 20 it is observed that in the event that it is desired to replace an insulator block 90 in a post carried system of the type shown, it is only necessary to release the vertically extending bolt 59 which holds the insulators in proper vertical position, drop the bolt until it clears the bottom of the insulator to be changed, which in the illustrated case is the upper such unit, slide the insulator block 90 laterally to clear the post 89 and rotate it through approximately 45 degrees to disengage the support tabs 98 and 99 from the conductor rail structure, and then rearwardly remove the insulator.
  • the new insulator is attached in exactly the reverse of the manner just described, namely, the insulator is engaged with the conductor rail by holding it in the position shown in FIGURE 20, then rotating the insulator block 90 through 45 degrees and sliding the same laterally into vertical alignment with the other insulator blocks.
  • the bolt 59 is then pushed upward through the insulator block apertures 100 and is secured to the upper end of the bracket.
  • the insulator blocks 31 shown in FIGURES 8, 9 and 10 are of course exchanged in exactly the manner just described for the insulating blocks 90.
  • FIGURES 21 through 23 illustrate the manner of splicing adjacent lengths of conductor rail together to form a continuous conductor rails of any desired length.
  • the splicing mechanism consists of a C-shaped sleeve member 104 which slips endwise about the top portion of the T-shaped conductor rail main section 62 or its equivalent in the I-l-shaped conductor rail 77, these latter being illustrated in FIGURES 6 and 6a, an arcuate bias plate 105 disposed between the top of the conductor rail main section and that portion of the C-shaped sleeve member which bridges between the opposed arms thereof, and a plurality of draw up bolts 106 threadly engaged through the C-shaped sleeve member bridging wall into abutment with the convex surface of the bias plate 105.
  • FIGURES 24 and 25 illustrate a device for transmitting electrical power to or withdrawing power from a conductor rail.
  • This device includes a C-shaped sleeve member 107 having its arms engaged with the head of the T-shaped main section of conductor rail in the same manner as just described for theconductor rail splicing device, and being clamped tightly thereto by means of the bolts threaded through the bridging wall of the C-shaped clamp 107 into bearing engagement with the upper surface of the top portion 64 of the conductor rail main section 62.
  • T-shaped element 110 Rigidly secured to the C-shaped clamp 107 by bolts 109 projected therethrough and into threaded engagement with the clamp is a T-shaped element 110 having an aperture 111 extending completely therethrough from top to bottom and into which may be projected an electrical conductor 12 secu'rable as by means of the clamping set screw 113.
  • each of said assemblies including (1) a bracket having upper and lower spaced apart horizontal flanges, means for detachably securing a plurality of vertically stacked insulator blocks to and between said flanges in fixed position, and means for securing said bracket to a supporting structure,
  • each of said insulator blocks being provided with a pair of laterally spaced support tabs extending forward from the front face of said insulator with a vertical spacing therebetween substantially equal to the vertical extent of said conductor rail base part, the upper and lower ones of said support tabs being turned respectively downward and upward at their forward ends with points of termination spaced vertically apart a distance substantially equal to the vertical extent of said conductor rail web and spaced forward from said front face by an amount substantially equal to the horizontal thickness of said rail base part, the lateral spacing of said support tabs being such that no part of the upper one directly overlies the lower one.
  • bracket for supporting said insulator blocks includes means for spacing the stacked insulator blocks substantially forward from the surface of the supporting structure upon which the bracket is mounted.
  • bracket for supporting the stacked insulator blocks is provided with an integral backing plate for said blocks extending vertically between the vertically spaced flanges of said bracket, the frontal surface of said backing plate being set forward from the rear mounting face of the bracket to an extent suflicient to permit an insulator block to be passed vertically between the bracket support structure and the base part of a conductor rail mounted upon and supported in position by one or more of the said insulator and bracket assemblies.
  • each of said rails having a substantially vertically disposed base part and a horizontally disposed web extending laterally from said base part, said web being of substantially less vertical depth than that of said base part and being disposed substantially midway between the upper and lower' edges of said base part, whereby said last-mentioned edges are respectively free to be embraced by the paired support tabs of a rail supporting insulating block.
  • insulating cover means of generally inverted L-shape in cross-section detachably engagable with said insulator block assemblies, said cover means having a vertical leg extending downward behind at least one of said insulator blocks and having a forwardly projecting substantially horizontal leg extending outward over said at least one insulator block and the conductor rail supported thereby.
  • An insulator for supporting a conductor rail of the type having a longitudinally extending current-carrying head portion and a longitudinally extending substantially flat base portion for mounting the rail in position, said insulator comprising a main body portion of molded electrical insulation material having fiat top and bottom surfaces disposed in parallel relation and a front face upon which are integrally formed a pair of rail engaging lugs which project forwardly of said front face and are each provided at its end with a lip lying in a plane spaced from and paralleling said front face, said lugs being respectively disposed adjacent the opposite vertically spaced ends of said insulator body portion in diagonally spaced relation and with the lips thereof respectively inturned to conjointly form with the front wall of the insulator a pair of opposed channels adapted to embrace opposite edges of the flat base portion of the rail to be supported by said insulator, the relative spacing of said lugs being such that upon rotation of the block through an angle of substantially 45 degrees relatively to the rail supported thereby said rail-embracing channels are freed of the rail whereby to permit the

Landscapes

  • Insulators (AREA)

Description

Sept. 12, 1967 G. E -rm ET AL CURRENT CONDUCTOR RAIL SYSTEM 4 Sheets-Sheet 1 Original Filed March 11, 1964 INVENTORS. Gf/PALD E MART/IV m BY DO/V ATTOR/Vf) Sept. 12, 1967 MART|N ETAL 3,341,670
CURRENT CONDUCTOR RAIL SYSTEM Original Filed March 11, 1964 4 Sheets-Sheet 2 F/G/Z INVENTOILSI GERALD E MART/N DONALD G. 5P/?/G//V6$ ATTORNEY Sept. 12, 1967 G E. MARTIN ETAL CURRENT CONDUCTOR RAIL SYSTEM 4 Sheets-Sheet 5 Original Filed March 11, 1964 INVENTORS. GE'RALD 5. MA RT/A/ DONALD 6. SP/vP/G/IVGS ATTORNEY Sept. 12, 1967 G. MART|N ETAL 3,341,670
CURRENT CONDUCTOR RAIL SYSTEM Original Filed March 11, 1964 4 Sheets-Sheet 4 INVENTORS.
GERALD E. MART/IV BY DONALD 6. SPR/G/A/GS ATTOR/V'y United States Patent 3,341,670 CURRENT CONDUCTOR RAIL SYSTEM Gerald E. Martin and Donald G. Sprigings, Lynchburg,
Va., assignors to H. K. Porter Company, Inc., Lynchburg, Va., a corporation of Delaware Original application Mar. 11, 1964, Ser. No. 350,994.
Divided and this application Aug. 15, 1966, Ser.
9 Claims. (Cl. 191-32) ABSTRACT OF THE DISCLOSURE A current conductor rail system in which a plurality of horizontally extending conductor rails are mounted in vertically spaced parallel relation by insulator blocks spaced lengthwise of the rails and arranged in vertically stacked groups thereof to provide relatively fixed supports for the several rails at each of several spaced points along their lengths. The several blocks of each group are so designed and held in their stacked relation as to be individually replaced without disturbing the established setting of the rails, it being only necessary for any such replacement to shift the block laterally of its stack along the rail which it supports and then rotate it relatively to its associated rail for rearward withdrawal of the block from the rail. Each insulator block is provided upon its front face with a pair of rail flange engaging tabs which are diagonally spaced apart a distance greater than the Width of the rail flange so that when the block is rotated relatively to the rail flange the flange engaging tabs of the block are free from engagement with the rail flange.
This invention relates generally to current conductor 350,994, filed Mar. 11, 1964.
This invention relates generally to current conductor rail systems, and more particularly relates to current conductor rail systems utilizing a plurality of conductor rails, rail mounting insulators, protective covers and structures for mounting the entire system to physical supports utilizing modular components which may be assembled to form any number of rail supporting sections.
In addition to the overall concept of the novel system, the invention also contemplates and includes a a part thereof a novel composite construction of conductor rail consisting of an assembly of independently formed members, one of which serving as the current-carrying main body portion of the rail is in the form of a structural element typically made of aluminum, and the other of which, typically made of stainless steel alloy having the requisite qualities of surface hardness, high rate of thermal expansion, corrosion resistance and the ability to workharden on the surface from repeated abrasion and pounding of any current collection device riding thereagainst, serving as a cap member for the rail, is mechanically locked to the main body portion thereof.
While materials other than aluminum and stainless steel may be employed, their combined use in the construction of current conducting rails affords many advantages. In the first place since aluminum and stainless steel are galvanically compatible, their conjoint use tends to retard interface corrosion between the interlocked parts of the composite rail. The galvanic compatability of these materials may be further enhanced by the use of a conductive plastic material used as a combined seal and conductive bond therebetween, as, for example, a carbon or silverfilled epoxy resin which effectively also seals out moisture between and so prevents oxidation of the inner surfaces of the interlocked members of the rail. By forming the main body portions of the conductor rail of high electrically conductive but relatively low cost aluminum,
3,341,670 Patented Sept. 12, 1967 while forming the rail cap section of the more expensive stainless steel alloy, a composite rail structure is realizable which embodies the best properties of both materials including those of relatively low cost, high conductivity, and excellent resistance to wear and weathering. Other materials could of course also be used depending upon the particular operating conditions of the system in which the rails are to be used so long as the requisite different properties of the main body portion and cap section are retained.
The insulator blocks which are directly engaged with the conductor rails are molded of a thermosetting plastic material designed for structural and electrical insulation strength and which are characterized by high are track and wet tracking resistance properties. Typically, these insulators may be made of fiber glass reinforced polyesters, epoxy resin or reinforced diallyl phthalate. The insulators are designed to be stacked one upon the other to support any number of parallel conductor rail sections, and various types of insulator mounts provide for a variety of stacking arrangements.
The insulators are provided with molded support tabs which support the conductor rail sections but provide free sliding of the rails through the insulators, the tabs being of suflicient mechanical strength to support the con- .ductor rails under normal and electrical short circuit conditions. These tabs are so positioned with respect to the body of the insulator supports that rotation of the individual insulator block to an angle of 45 degrees from its normal in-line position allows the insulator to be removed from engagement with the conductor rail. In
most instances, this permits insulator replacement without removing the conductor rails or disturbing the splicing connections thereof.
The system also includes several arrangements of insulating plastic safety covers which run continuously throughout the length of the conductor rails and function to prevent foreign objects from falling across the conductor rails to thereby prevent short circuits. In one form, these safety covers also serve as interphase insulation barriers when used in conjunction with multiphase conductor rail systems.
The conductor rail systems to be hereinafter described find typical application, for example, in high speed transit systems, in material handling systems, and in other movable utility systems requiring electrical current transfer. While the drawings illustrate three-rail systems, it will be understood that the structures shown and described may be utilized in systems employing any number of parallel conductor rails which may or may not be of the composite type to be described. Accordingly, it is a primary object of this invention to provide a novel current conductor rail system which includes a novel form of conductor rail and supporting insulator therefor, together with protective covers and mounting supports.
Another object of this invention is to provide a current conductor rail system including a novel construction of composite current conductor rail having a main current carrying structural member to which is permanently aflixed a physically hard, tough and corrosion resistant cap member.
Still another object of this invention is to provide a current conductor rail system including a novel composite current conductor rail formed as aforesaid wherein the main current carrying structural member and the cap member are formed of different metals which are galvanically compatible and which are sealed to one another at their interface by a conductive plastic material effective to seal out moisture and prevent surface oxidation.
. A further object of this invention is to provide a current conductor rail system including a novel form of conductor rail supporting insulator block so formed and combined with other such blocks as to enable these insulators to be quickly and easily installed to and removed from the associated conductor rail.
The foregoing and other objects of this invention will become clear from a reading of the following specification in conjunction with an examination of the appended drawings, wherein:
FIGURE 1 illustrates in perspective form a portion of a three conductor rail system including a top protective cover, and in which the entire system is mounted to a wall;
FIGURE 2 is an exploded perspective view of a portion of one form of the novel conductor rail according to the invention;
FIGURE 3 is an enlarged perspective view of the cap member portion of a novel two part conductor rail illustrating one type of under surface serration thereof;
FIGURE 4 is a perspective showing of the cam portion of the novel conductor rail and differs from the showing of FIGURE 3 only with respect to the location of the serrations thereon;
FIGURE 5 is a sectional view through the cap member of FIGURE 4 as would be seen when viewed along the line 5-5 thereof;
FIGURE 6 is an enlarged cross sectional showing of the composite conductor rail structure shown in exploded form in FIGURE 2, and as would be seen when viewed along the line 6-6 of FIGURE 1;
FIGURE 6a is a showing similar to that of FIGURE 6 but illustrating a somewhat different form of the main current carrying portion of the composite conductor rail structure;
FIGURE 7 is a sectional view through the composite conductor rail of FIGURE 6 as would be seen when viewed along the line 7-7 thereof and illustrating the serration structure of a cap member of the type shown in FIGURE 3;
FIGURE 8 is a perspective view of one of the modular conductor rail supporting insulator blocks shown as an assembly in FIGURE 1;
FIGURE 9 is a vertical section through the composite condu-ctor rail system of FIGURE 1 as would be seen when viewed along the line 9-9 of FIGURE 1;
FIGURE 10 is a horizontal sectional view through the lower conductor rail, insulating block and other support structure of FIGURE 1 as would be'seen when viewed along the line 10-10 of FIGURE 9;
FIGURE 11 illustrates in perspective view one form of insulator block bracket suitable for holding three stacked insulator blocks in vertical alignment, with one of such insulators being shown in position;
FIGURE 12 is a vertical sectional view through the bracket and insulator block of FIGURE 11 as would be seen when viewed along the line 12-12 thereof;
FIGURE 13 illustrates another, and simpler, form of wall mounting insulator block supporting brackets;
FIGURE 14 illustrates in side elevation another form of insulator block supporting structure suitable for wall or post mounting;
FIGURE 15 illustrates in perspective form an insulator block supporting bracket similar to that shown in FIG- URE 11, but which is formed for securement to horizontal tie structures;
FIGURE 16 is a fragmentary perspective showing of a conductor rail system similar to that of FIGURE 1, but differing therefrom in that the system is post mounted, utilizes inter-rail insulating protective covers and a somewhat dilferent form of insulator block;
FIGURE 17 is an enlarged perspective view of one of the insulator blocks illustrated on a smaller scale in the showing of FIGURE 16;
FIGURE 18 is a vertical sectional view through the conductor rail system illustrated in perspective in the 4 showing of FIGURE 16 and as would be seen when viewed along the line 18-18 thereof;
FIGURE 19 is a horizontal sectional view through the conductor rail system of FIGURE 16 as would be seen when viewed along the line 19-19 of FIGURE 18;
FIGURE 20 is a front elevation of a conductor rail system of the type shown in FIGURE 16 but without the protective covers, illustrating an insulator block in position for detachment from or attachment to the upper one of the conductor rails of the system;
FIGURE 21 illustrates in perspective form a device for splicing together successive sections of the conductor rail structure;
FIGURE 22 is a cross sectional view taken through the splicing structure of FIGURE 21 as would be seen when viewed along the line 22-22 thereof;
FIGURE 23 is a longitudinal sectional view through the splicing structure of FIGURE 21 as would be seen when viewed along the line 23-23 thereof;
FIGURE 24 is a perspective showing of a power takeoff device and its securement to a conductor rail according to the invention; and
FIGURE 25 is an enlarged cross sectional view through the power take-off device illustrated in perspective in the showing of FIGURE 24 and as would be seen when viewed along the line 25-25 thereof.
In the several figures of the drawings, like elements are denoted throughout by like reference characters.
Referring now to the drawings, it will be observed that the conductor rail system, as illustrated in FIGURE 1, includes generally a plurality of conductor rail supporting insulating block assemblies 20, each of which includes a bracket 30 and a plurality of vertically stacked insulator blocks 31 secured to one another and to the bracket 30 by means of a vertically extending nut-secured bolt 32 projected through vertically aligned bores 33 in the insulator blocks and apertures 34-34 in the top and bottom flanges 35 of the supporting bracket, which flanges extend forward from the bracket rear wall 36. The lower portion of the bracket rear wall 36 is formed with laterally extending apertured side ears 37 through which securement bolts or screws 38 are projected to fixedly secure the bracket to the wall 39. As best seen in the vertical sectional view of FIGURE 9, the upper half of the bracket rear wall 36 is recessed forward to provide an opening into which may be projected the downwardly extending vertical rear flange 40 of the L-shaped insulating protective shield or cover 41, the horizontally forwardly extending top flange 42 projecting laterally outward beyond the conductor rails and also being apertured as at 43 to provide through the passage for the upper end of the bolt 32 an-d the nut securing the same.
FIGURES 11 through 15 illustrate other forms of bracket which might be used in various applications in place of the bracket 30 which has just been described. The bracket 44 shown in FIGURES 11 and 12 is generally similar to the bracket 30, differing therefrom in that it does not have any equivalent of the apertured side ears 37 but instead is provided with top and bottom vertical extensions 45, each apertured as at 46, which function as mounting ears. As best seen in the showing of FIGURE 12, the bracket rear wall 47 is set forward of the rear face of the bracket vertical extensions 45 so that the insulators 31 carried by the bracket are set forward from the supporting member to which the brackets are secured. Such a forward offset of the insulator blocks 31 is also observed in the mounting arrangement of FIG- URE 9, this feature being necessary to permit installation and removal of the insulator blocks from the conductor system by rearward and forward shifting of the insulator block relative to the conductor rails, as will appear more clearly hereinafter. Therefore, when the conductor system is backed'by ,a wall, such as 39 shown in FIGURE 1, the ability to shift the insulator blocks rearward relative to the conductor rails is quite important The bracket 48 illustrated in FIGURE 15 is similar to the bracket 44 illustrated in FIGURES 11 and 12, differing from the latter in that it is intended for bottom securement to the cross ties of a track structure rather than for flat securernent against a wall or post. The lower end of the bracket 48 is therefore formed with the flaring depending side flanges 49 bridged transversely as at 50 by a web which seats flatwise down upon the upper surface of the tie 51, the side flanges 49 being apertured below the level of the bridging web 58 so that securing bolts or screws 52 may be projected therethrough into the tie 51.
FIGURE 13 illustrates a bracket 53 of C-shaped configuration apertured through the top and bottom flanges as at 54 to receive an insulator block securing bolt, and apertured on the rear wall as at 55 to provide means for securing the bracket to a supporting structure.
FIGURE 14 illustrates yet another form of bracket which includes top and bottom L-shaped angles 56 se cured to the wall 57 as by means of the screws 58 and being provided with vertically registering holes through the horizontal flanges of the angles 56 through which may be projected the insulator blocks securing bolt 59, securable as by means of the nut 60. The backwall of the bracket is formed integrally with the horizontally projecting upper portion 61 which latter functions as a protective cover, the composite backwall and protective cover structure being provided with a bottom flange and suitable apertures through which the bolt 59 is projectable in the illustrated manner for securement purposes.
In all instances, the supporting brackets for the railsupporting insulators are spaced lengthwise of the rails to provide each modular rail section with at least two longitudinally spaced supports therefor, which spacing may be from 8 to feet for modular lengths of rails running from to 30 feet to provide the same with adequate beam and column strength.
Two forms of composite conductor bar structure are illustrated in FIGURES 6 and 6a, thev showing of FIG- URE 6 illustrating a basically T-shaped member whereas the showing of FIGURE 6a illustrates a basically H- shaped structure. Considering first the conductor rail structure of FIGURE 6, reference should also be made to FIGURES 2 through 5 and 7. The two part conductor rail of FIGURES 2 and 6 includes the main current carrying structural section designated generally as 62 and the utility current collector contacting cap portion section designated generally as 63. The main section 62 is generally of T-shape in configuration, having a base portion 64 and a web portion 65, the end of the web 65 terminating in a generally C-shaped enlargement 66 having a pair of arms '67 and 68 respectively separated by a longitudinally extending wedge-shaped slot or groove 69 lying in a plane coincident with that of the web portion 65. As best seen in FIGURES 2 and 6, the opposite outer surfaces of the arms 67 and 68 of the C-shaped enlargements 66 are respectively r-abbeted along the full lengths thereof to provide the enlargement with shouldered end portions having oppositely tapered surfaces 70 and 71 which converge toward a point lying in the longitudinal median plane of the T-shaped main section of the conductor rail. The tapered surfaces 70 and 71 operate in conjunction with the opposite flanges 72 of the generally E-shaped cap section 63 to form a mechanical interlock between the T-shaped main section 62 and the cap section 63.
The cap section 63 is medially provided along its full length with a wedge-shaped web portion 73 serrated along its side surfaces as at 74, which wedge-shaped web is complemental in shape to and is forcible downward into the wedge-shaped groove 68 of the C-shaped enlargement 66 formed on the end of the main section stem. The surfaces of the wedge-shaped groove 69 may also be serrated to interlock with the serrations 74 of the cap member 63, or they may be free of serrations but so relatively spaced apart that the serrations 74 of the cap 63 cut into these surfaces as the cap is forced mechanically onto the main section 62. These serrations serve effectively not only to provide maximum physical and electrical interengagement between the interlocked elements of the composite rail, but also insure against all possible longitudinal shifting movement of one element relatively to the other.
While the cap section 63 shown in detailed form in FIG- URES 4 and 5 is illustrated as being serrated on the side surfaces of its medial web 73, the serrations may alternatively be formed on the bottom of the web portion 73 and on the inner cap surfaces parallel thereto in the manner illustrated at 76 in the showing of FIGURE 3 illustrating a modified form of cap section 63'. Of course,'if desired, the serrations 74 and 76 may both be utilized.
As best seen in FIGURE 6, in the assembly of the rail section 62 and its cap 63, the top and bottom flanges 72 of the cap 63 are forced inward toward one another and around the laterally spaced arms 67 and 68 of the C-shaped enlargement until the flanges engage the surfaces 70 and 71. Preferably, before the main section and cap section of the composite conductor rail are mechanically interfitted and secured together, the mating surfaces are coated with a conductive plastic material 75, such as a carbon or silver-filled epoxy resin, which functions as a combined sealant and bond between the metal rails sections.
FIGURE 6a illustrates another form of composite conductor rail structure organized in exactly the same manner as that illustrated in FIGURE 6 in that it includes a main section 77 and a cap section 78 mechanically intersecured and bonded together by a conductive plastic material 79. The cap section 78 is observed to be of the same E-shaped configuration as the cap sections 63 and 63 previously described, whereas the main section 77 differs from the main section 62 in that it is of H-shape rather than of T-shape. The equivalent of the opposite side arms 67 and 68 of the C-shaped enlargement 66 of the structure shown in FIGURES 2 and 6 is present in the structure of FIGURE 6a as the laterally spaced arms 80 and 81 formed as extensions of the web portion of the H-shaped main section 77 which arms define therebetween a wedge-shaped groove and are longitudinally rabbetted or shouldered to provide the raked or angulated outer surfaces about and against which the opposite side flanges of the cap section 78 are turned inward.
Although the conductor rail main sections have been illustrated in the showings of FIGURES 6 and 6a as being of T-shape or H-shape, other structural forms may as well be utilized so long as they provide the mechanical strength required for the particular application and sufficient cross-sectional area to prevent any substantial electrical voltage drop along the length of the conductor rail system.
As best seen in FIGURES 8, 9 and 10, each of the insulator blocks 31 is formed with forwardly projecting flat planar top and bottom flanges 82 and 83 respectively, opposite side walls 84 and a generally arcuate front wall 85 formed with a pair of laterally spaced forwardly projecting bosses 86. Extending forwardly from the bottom edge of the right hand boss of each insulator block, as best seen in FIGURES 8 and 10, is an element 87 terminating in an upturned flange to provide a shelf-like support for the conductor rail section, each of these supports being of sufiicient strength to support its share of the rail load under normal and electrical short circuit conditions. Extending forward from the upper edge of the left hand boss 86 of each insulator block is a second element 88 terminating in a downturned flange which element 88 overlies the rail supported by the element 87 and assists in holding the rail in its normal mounted position. The insulator blocks 31 are so formed that they may be turned top-for-bottom with either of the elements 87 and 88 functioning as the actual load bearing device. The elements 87 and 88 are so spaced relatively to one another and to the rail supported therebetween as to permit free longitudinal shifting of the rail relatively to the insulator blocks for such positional adjustment of the rail as may be necessary.
As best shown in FIGURES 8, 9 and 10, the insulator block 31 is of symmetrical configuration with reference to both its horizontal and its vertical median planes, in consequence of which it may be readily molded of two identical half-sections which are then suitably bonded together, as indicated by the line 31a to form a unitary assembly as shown. Of course, the insulator block 31 may also be molded as a one-piece construction, in which case there would be no central joint such as is shown in the drawings. Whether formed as a one-piece molding or of two sections joined together as shown, the front wall 85 of the insulator block 31 is spaced forward of its rear surface so that the insulator block is basically in the shape of a hollow unit, thus saving on the cost of materials without in any way degrading the electrical insulation properties and capability of the insulator block. The flat planar top and bottom flanges 82 and 83 permit the vertical stacking of a plurality of such insulator blocks in the manner most clearly shown in the illustrations of FIGURES 1 and 9, and the lateral offset of the rail support elements 87 and 88 affords the ability to rotate the individual insulator block through an angle of 45 degrees from its normal in-line positions, as shown in FIGURE 1, to allow the insulator to be installed to or removed from the conductor rail without necessitating the removal of the rail or disturbance of rail splice connections. These insulator blocks are molded of electrical grade thermosetting plastic which might be typically fiber glass reinforced polyester, an epoxy resin or reinforced diallyl phthalate, all of which are designed for structural strength, high are track and Wet tracking resistance and adequate electrical creepage characteristics.
Turning now to the showings of FIGURES 16, 18 and 19, it will be observed that these figures correspond respectively to the showings of FIGURES l, 9 and 10, but with respect to a different arrangement of protective covers, support brackets and insulation blocks. The support brackets are seen in the showings of FIGURES l6 and 18 to be of the type illustrated in the showing of FIG- URE 14 as including a pair of L-s'haped upper and lower angles 56 between which vertically extends the insulator block securing bolt 59 secured at its upper end by the nut 60. The insulator block carrying brackets are secured to laterally spaced vertically extending posts 89 rather than to the previously illustrated walls.
The insulator blocks 90, as best illustrated in FIGURES 16 through 19, are observed to be very similar to the previously described insulator blocks 31 as shown in detail and described in connection with FIGURES 8, 9 and 10. The insulator blocks 90 differ, however, from the previously described insulator blocks 31 in that instead of merely being provided with top and bottom flanges 91 and 92 similar to those designated 82 and 83 in FIGURE 8, the insulator blocks 90 are additionaly provided with a pair of vertically spaced intermediate flanges 93 and 94 respectively disposed above and below the rail supporting section of the insulator block. These intermediate flanges 93 and 94 increase the surface path length across which any electrical discharge must take place, and hence increase the surface insulation resistance of the insulator block. As with the previously described insulator blocks 31, the insulator blocks 90 also include a pair of opposite side walls 95, a front wall 96 carrying forwardly projecting bosses 97 disposed in side-by-side relationship from the top of one of which bosses forwardly extends a flanged support element 98 while a similar support element 99 extends forwardly from the bottom of the other boss. Extending vertically through the flange carrying top and bottom walls 91 and 92 are the vertically aligned insulator block bores 100 through which the mounting bolt 59 is projected to secure the insulator blocks in proper position.
The conductor rail system of FIGURE 16 is provided with interphase insulating protective shields or covers of inverted L-shape designated generally as 101 with each including a generally horizontally disposed top wall 102 and a vertically disposed rear wall 103. As in the case of the insulating blocks for supporting the rails, these shields or covers are formed of any suitable electrically-non-conductive material, such as fiber glass reinforced polyester, epoxy resin or the like. The top wall 102 of the two lowermost protective shields or covers is disposed between the top and bottom flanges of the insulator blocks in the manner best seen in the showing of FIG- URE 18. The insulating cover top walls 102 are of course suitably apertured for alignment with the insulator block holes so that the vertically extending bolt 59 may be passed therethrough. Also, as best seen in FIGURE 18, the cover vertical rear Walls 103 are of somewhat greater length than the height of the insulator blocks 90 so that the bottom edge of the cover rear wall extends downward below the bottom flange 92 of the insulator block. This bottom extension overlaps the forwardly offset upper edge of the cover rear wall to provide an unbroken rear wall of cover insulation in the region between the posts 89 and thereby prevent access to the electrically energized conductor rails from the rear.
Referring now to FIGURE 20 it is observed that in the event that it is desired to replace an insulator block 90 in a post carried system of the type shown, it is only necessary to release the vertically extending bolt 59 which holds the insulators in proper vertical position, drop the bolt until it clears the bottom of the insulator to be changed, which in the illustrated case is the upper such unit, slide the insulator block 90 laterally to clear the post 89 and rotate it through approximately 45 degrees to disengage the support tabs 98 and 99 from the conductor rail structure, and then rearwardly remove the insulator. The new insulator is attached in exactly the reverse of the manner just described, namely, the insulator is engaged with the conductor rail by holding it in the position shown in FIGURE 20, then rotating the insulator block 90 through 45 degrees and sliding the same laterally into vertical alignment with the other insulator blocks. The bolt 59 is then pushed upward through the insulator block apertures 100 and is secured to the upper end of the bracket. The insulator blocks 31 shown in FIGURES 8, 9 and 10 are of course exchanged in exactly the manner just described for the insulating blocks 90.
FIGURES 21 through 23 illustrate the manner of splicing adjacent lengths of conductor rail together to form a continuous conductor rails of any desired length. The splicing mechanism consists of a C-shaped sleeve member 104 which slips endwise about the top portion of the T-shaped conductor rail main section 62 or its equivalent in the I-l-shaped conductor rail 77, these latter being illustrated in FIGURES 6 and 6a, an arcuate bias plate 105 disposed between the top of the conductor rail main section and that portion of the C-shaped sleeve member which bridges between the opposed arms thereof, and a plurality of draw up bolts 106 threadly engaged through the C-shaped sleeve member bridging wall into abutment with the convex surface of the bias plate 105. With the conductor rail sections in end abutment, as seen in FIGURES 21 and 23, the bolts 106 are driven against the bias plate 105 to thereby pull the arms of the sleeve member tightly against the underside of the top portion of the conductor main section 62 to thereby effect a tight clamp.
FIGURES 24 and 25 illustrate a device for transmitting electrical power to or withdrawing power from a conductor rail. This device includes a C-shaped sleeve member 107 having its arms engaged with the head of the T-shaped main section of conductor rail in the same manner as just described for theconductor rail splicing device, and being clamped tightly thereto by means of the bolts threaded through the bridging wall of the C-shaped clamp 107 into bearing engagement with the upper surface of the top portion 64 of the conductor rail main section 62. Rigidly secured to the C-shaped clamp 107 by bolts 109 projected therethrough and into threaded engagement with the clamp is a T-shaped element 110 having an aperture 111 extending completely therethrough from top to bottom and into which may be projected an electrical conductor 12 secu'rable as by means of the clamping set screw 113.
Having now described our invention in connection with particularly illustrated embodiments thereof, variations and modifications of our invention may now suggest themselves from time to time to those persons normally skilled in the art without departing from the essential spirit or scope of the invention, and accordingly it is intended to claim the same broadly as well as specifically as indicated by the appended claimed.
What is claimed to be new and useful is:
1. In a current conductor rail system for supplying electrical energy to electrically energizable movable utilities which carry current collector devices engageable with the conductor rails of such a system,
(a) a plurality of insulator block assemblies spaced apart along the length of said conductor rails and supporting the rails in desired position by engagement with the base part thereof, each of said assemblies including (1) a bracket having upper and lower spaced apart horizontal flanges, means for detachably securing a plurality of vertically stacked insulator blocks to and between said flanges in fixed position, and means for securing said bracket to a supporting structure,
(2) a plurality of vertically stacked identical insulator blocks each having a pair of-upper and lower parallel planar surfaces arranged with the lower surface of one block seated upon the upper surface of the block immediately therebe'low, and with the stacked height of said insulator blocks substantially corresponding to the distance between the upper and lower horizontal flanges of said bracket, each of said insulator blocks being provided with a pair of laterally spaced support tabs extending forward from the front face of said insulator with a vertical spacing therebetween substantially equal to the vertical extent of said conductor rail base part, the upper and lower ones of said support tabs being turned respectively downward and upward at their forward ends with points of termination spaced vertically apart a distance substantially equal to the vertical extent of said conductor rail web and spaced forward from said front face by an amount substantially equal to the horizontal thickness of said rail base part, the lateral spacing of said support tabs being such that no part of the upper one directly overlies the lower one.
2. In a current conductor rail system as defined in claim 1 wherein said upper and lower flanges of said bracket are provided with vertically alined apertures for projection therethrough of a bolt for supporting and securing said insulator blocks in vertically stacked relation between said bracket flanges.
3. In a current conductor rail system as defined in claim 2 which includes said bolt as an element of said assembly.
4. In a current conductor rail system as defined in claim 1 wherein said bracket for supporting said insulator blocks includes means for spacing the stacked insulator blocks substantially forward from the surface of the supporting structure upon which the bracket is mounted.
5. In a current conductor rail system as defined in claim 2 wherein said insulator blocks are colinearly vertically apertured to permit projection therethrough of the said bolt for supporting the several insulating blocks in vertically stacked relation.
6. In a current conductor rail system as defined in claim 1 wherein said bracket for supporting the stacked insulator blocks is provided with an integral backing plate for said blocks extending vertically between the vertically spaced flanges of said bracket, the frontal surface of said backing plate being set forward from the rear mounting face of the bracket to an extent suflicient to permit an insulator block to be passed vertically between the bracket support structure and the base part of a conductor rail mounted upon and supported in position by one or more of the said insulator and bracket assemblies.
7. In a current conductor rail system as defined in claim 1 having associated therewith a plurality of longitudinally extending horizontally disposed current conductor rails supporting in vertically spaced parallel relation upon said spaced apart insulator block assemblies, each of said rails having a substantially vertically disposed base part and a horizontally disposed web extending laterally from said base part, said web being of substantially less vertical depth than that of said base part and being disposed substantially midway between the upper and lower' edges of said base part, whereby said last-mentioned edges are respectively free to be embraced by the paired support tabs of a rail supporting insulating block.
8. In a current conductor rail system as defined in claim 1 characterized by the provision of insulating cover means of generally inverted L-shape in cross-section detachably engagable with said insulator block assemblies, said cover means having a vertical leg extending downward behind at least one of said insulator blocks and having a forwardly projecting substantially horizontal leg extending outward over said at least one insulator block and the conductor rail supported thereby.
9. An insulator for supporting a conductor rail of the type having a longitudinally extending current-carrying head portion and a longitudinally extending substantially flat base portion for mounting the rail in position, said insulator comprising a main body portion of molded electrical insulation material having fiat top and bottom surfaces disposed in parallel relation and a front face upon which are integrally formed a pair of rail engaging lugs which project forwardly of said front face and are each provided at its end with a lip lying in a plane spaced from and paralleling said front face, said lugs being respectively disposed adjacent the opposite vertically spaced ends of said insulator body portion in diagonally spaced relation and with the lips thereof respectively inturned to conjointly form with the front wall of the insulator a pair of opposed channels adapted to embrace opposite edges of the flat base portion of the rail to be supported by said insulator, the relative spacing of said lugs being such that upon rotation of the block through an angle of substantially 45 degrees relatively to the rail supported thereby said rail-embracing channels are freed of the rail whereby to permit the insulator to be bodily shifted rearwardly of the rail and out of engagement therewith, said insulator being of symmetrical shape with reference to both its vertical and horizontal median planes to thereby render it reversible top for bottom and having a bore extending therethrough with its axis extending perpendicularly to the flat top and bottom surfaces thereof and located in the vertical median plane of the insulator at a point spaced rearwardly of the front face of the insulator whereby a plurality of identical insulators may be vertically stacked fiatwise one upon the other for mounting in position by a single bolt projected 1 1' 1 2 through the vertically alined bores of said stacked in- 606,830 7/1898 Willard 191-32 sulators. 664,470 12/1900 Courtenay 19132 References Cited UNITED STATES PATENTS ARTHUR L. LA POINT, Primary Examiner. Re, 11,613 6/ 1897 Hanson et 1, 191 3() 5 STANLEY T. KRAWCZEWICZ, Assistant Examiner.
584,476 6/1897 Libby 19132

Claims (2)

1. IN A CURRENT CONDUCTOR RAIL SYSTEM FOR SUPPLYING ELECTRICAL ENERGY TO ELECTRICALLY ENERGIZABLE MOVABLE UTILITIES WHICH CARRY CURRENT COLLECTOR DEVICES ENGAGEABLE WITH THE CONDUCTOR RAILS OF SUCH A SYSTEM, (A) A PLURALITY OF INSULATOR BLOCK ASSEMBLIES SPACED APART ALONG THE LENGTH OF SAID CONDUCTOR RAILS AND SUPPORTING THE RAILS IN DESIRED POSITION BY ENGAGEMENT WITH THE BASE PART THEREOF, EACH OF SAID ASSEMBLIES INCLUDING (1) A BRACKET HAVING UPPER AND LOWER SPACED APART HORIZONTAL FLANGES, MEANS FOR DETACHABLY SECURING A PLURALITY OF VERTICALLY STACKED INSULATOR BLOCKS TO AND BETWEEN SAID FLANGES IN FIXED POSITION, AND MEANS FOR SECURING SAID BRACKET TO A SUPPORTING STRUCTURE, (2) A PLURALITY OF VERTICALLY STACKED IDENTICAL INSULATOR BLOCKS EACH HAVING A PAIR OF UPPER AND LOWER PARALLEL PLANAR SURFACES ARRANGED WITH THE LOWER SURFACE OF ONE BLOCK SEATED UPON THE UPPER SURFACE OF THE BLOCK IMMEDIATELY THEREBELOW, AND WITH THE STACKED HEIGHT OF SAID INSULATOR BLOCKS SUBSTANTIALLY CORRESPONDING TO THE DISTANCE BETWEEN THE UPPER AND LOWER HORIZONTAL FLANGES OF SAID BRACKET, EACH OF SAID INSULATOR BLOCKS BEING PROVIDED WITH A PAIR OF LATERALLY SPACED SUPPORT TABS EXTENDING FORWARD FROM THE FRONT FACE OF SAID INSULATOR WITH A VERTICAL SPACING THEREBETWEEN SUBSTANTIALLY EQUAL TO THE VERTICAL EXTENT OF SAID CONDUCTOR RAIL BASE PART, THE UPPER AND LOWER ONES OF SAID SUPPORT TABS BEING TURNED RESPECTIVELY DOWNWARD AND UPWARD AT THEIR FORWARD ENDS WITH POINTS OF TERMINATION SPACED VERTICALLY APART A DISTANCE SUBSTANTIALLY EQUAL TO THE VERTICAL EXTENT OF SAID CONDUCTOR RAIL WEB AND SPACED FORWARD FROM SAID FRONT FACE BY AN AMOUNT SUBSTANTIALLY EQUAL TO THE HORIZONTAL THICKNESS OF SAID RAIL BASE PART, THE LATERAL SPACING OF SAID SUPPORT TABS BEING SUCH THAT NO PART OF THE UPPER ONE DIRECTLY OVERLIES THE LOWER ONE.
9. AN INSULATOR FOR SUPPORTING A CONDUCTOR RAIL OF THE TYPE HAVING A LONGITUDINALLY EXTENDING CURRENT-CARRYING HEAD PORTION AND A LONGITUDINALLY EXTENDING SUBSTANTIALLY FLAT BASE PORTION FOR MOUNTING THE RAIL IN POSITION, SAID INSULATOR COMPRISING A MAIN BODY PORTION OF MOLDED ELECTRICAL INSULATION MATERIAL HAVING FLAT TOP AND BOTTOM SURFACES DISPOSED IN PARALLEL RELATION AND A FRONT FACE UPON WHICH ARE INTEGRALLY FORMED A PAIR OF RAIL ENGAGING LUGS WHICH PROJECT FORWARDLY OF SAID FRONT FACE AND ARE EACH PROVIDED AT ITS END WITH A LIP LYING IN A PLANE SPACED FROM AND PARALLELING SAID FRONT FACE, SAID LUGS BEING RESPECTIVELY DISPOSED ADJACENT THE OPPOSITE VERTICALLY SPACED ENDS OF SAID INSULATOR BODY PORTION IN DIAGONALLY SPACED RELATION AND WITH THE LIPS THEREOF RESPECTIVELY INTURNED TO CONJOINTLY FORM WITH THE FRONT WALL OF THE INSULATOR A PAIR OF OPPOSED CHANNELS ADAPTED TO EMBRACE OPPOSITE EDGES OF THE FLAT BASE PORTION OF THE RAIL TO BE SUPPORTED BY SAID INSULATOR, THE RELATIVE SPACING OF SAID LUGS BEING SUCH THAT UPON ROTATION OF THE BLOCK THROUGH AN ANGLE OF SUBSTANTIALLY 45 DEGREES RELATIVELY TO THE RAIL SUPPORTED THEREBY SAID RAIL-EMBRACING CHANNELS ARE FREED OF THE RAIL WHEREBY TO PERMIT THE INSULATOR TO BE BODILY SHIFTED REARWARDLY OF THE RAIL AND OUT OF ENGAGEMENT THEREWITH, SAID INSULATOR BEING OF SYMMETRICAL SHAPE WITH REFERENCE TO BOTH ITS VERTICAL AND HORIZONTAL MEDIAN PLANES TO THEREBY RENDER IT REVERSIBLE TOP FOR BOTTOM AND HAVING A BORE EXTENDING THERETHROUGH WITH ITS AXIS EXTENDING PERPENDICULARLY TO THE FLAT TOP AND BOTTOM SURFACES THEREOF AND LOCATED IN THE VERTICAL MEDIAN PLANE OF THE INSULATOR AT A POINT SPACED REARWARDLY OF THE FRONT FACE OF THE INSULATOR WHEREBY A PLURALITY OF IDENTICAL INSULATORS MAY BE VERTICALLY STACKED FLATWISE ONE UPON THE OTHER FOR MOUNTING IN POSITION BY A SINGLE BOLT PROJECTED THROUGH THE VERTICALLY ALINED BORES OF SAID STACKED INSULATORS.
US596357A 1964-03-11 1966-08-15 Current conductor rail system Expired - Lifetime US3341670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US596357A US3341670A (en) 1964-03-11 1966-08-15 Current conductor rail system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US350994A US3341669A (en) 1964-03-11 1964-03-11 Current conductor rail system
US596357A US3341670A (en) 1964-03-11 1966-08-15 Current conductor rail system

Publications (1)

Publication Number Publication Date
US3341670A true US3341670A (en) 1967-09-12

Family

ID=26996882

Family Applications (1)

Application Number Title Priority Date Filing Date
US596357A Expired - Lifetime US3341670A (en) 1964-03-11 1966-08-15 Current conductor rail system

Country Status (1)

Country Link
US (1) US3341670A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850271A (en) * 1973-09-29 1974-11-26 Vahle Kg P Third rail for current consumers with large current requirement and high speed
US3892299A (en) * 1974-04-19 1975-07-01 Rucker Co Mobile electrification conductor system
US3913712A (en) * 1973-06-20 1975-10-21 Demag Ag Rail structure
US4018497A (en) * 1975-11-24 1977-04-19 Midland-Ross Corporation Joint for electrical conductors
US4043436A (en) * 1976-05-06 1977-08-23 Westinghouse Electric Corporation Support apparatus for electrically conductive rail
US4135774A (en) * 1977-11-29 1979-01-23 Pioneer Works Jointing members and joints
DE2850096A1 (en) * 1978-11-18 1980-05-29 Thyssen Aufzuege Gmbh Support frame with holder for conductors - has slots formed by folding ends of support engaging flat sections of holders to suit any cross=section
US5997368A (en) * 1997-10-28 1999-12-07 Framatome Connectors Usa, Inc. Connector for connecting a conductor to a structural member
US6672441B1 (en) * 1999-03-22 2004-01-06 Siemens Aktiengesellschaft Conductor rail support
US20090064891A1 (en) * 2005-11-23 2009-03-12 Michael Hast Rail for Self-Propelled Electric Trucks
US20090120753A1 (en) * 2005-03-23 2009-05-14 Robin Kalitzki Conductor Rail Support

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584476A (en) * 1897-06-15 Insulator
US606830A (en) * 1898-07-05 Insulator
US664470A (en) * 1900-09-29 1900-12-25 William Courtenay Construction for third-rail electric railways.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US584476A (en) * 1897-06-15 Insulator
US606830A (en) * 1898-07-05 Insulator
US664470A (en) * 1900-09-29 1900-12-25 William Courtenay Construction for third-rail electric railways.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913712A (en) * 1973-06-20 1975-10-21 Demag Ag Rail structure
US3850271A (en) * 1973-09-29 1974-11-26 Vahle Kg P Third rail for current consumers with large current requirement and high speed
US3892299A (en) * 1974-04-19 1975-07-01 Rucker Co Mobile electrification conductor system
US4018497A (en) * 1975-11-24 1977-04-19 Midland-Ross Corporation Joint for electrical conductors
US4043436A (en) * 1976-05-06 1977-08-23 Westinghouse Electric Corporation Support apparatus for electrically conductive rail
US4135774A (en) * 1977-11-29 1979-01-23 Pioneer Works Jointing members and joints
DE2850096A1 (en) * 1978-11-18 1980-05-29 Thyssen Aufzuege Gmbh Support frame with holder for conductors - has slots formed by folding ends of support engaging flat sections of holders to suit any cross=section
US5997368A (en) * 1997-10-28 1999-12-07 Framatome Connectors Usa, Inc. Connector for connecting a conductor to a structural member
US6672441B1 (en) * 1999-03-22 2004-01-06 Siemens Aktiengesellschaft Conductor rail support
US20090120753A1 (en) * 2005-03-23 2009-05-14 Robin Kalitzki Conductor Rail Support
US7703589B2 (en) * 2005-03-23 2010-04-27 Siemens Aktiengesellschaft Conductor rail support
US20090064891A1 (en) * 2005-11-23 2009-03-12 Michael Hast Rail for Self-Propelled Electric Trucks
US7845285B2 (en) * 2005-11-23 2010-12-07 Swisslog Telelift Gmbh Rail for self-propelled electric trucks

Similar Documents

Publication Publication Date Title
US3341669A (en) Current conductor rail system
US3341670A (en) Current conductor rail system
US3892299A (en) Mobile electrification conductor system
US11189998B2 (en) Apparatus for electrically interconnecting two laminated multi-phase busbars
US3096131A (en) Electrical bus conductor
US2958743A (en) Shielded collector shoe and bus bar
US3730310A (en) Current conductor rail
US3475568A (en) Trolley conductor guard
CN112140944A (en) C-shaped rail insulation base device capable of being rapidly disassembled and assembled
US3858092A (en) Switchboard with improved busbar mounting and load strap feed-through provisions
US3461250A (en) Electrical conductor bars
US4888454A (en) Current supply system for track-guidable, rubber-tired, electrically propulsive vehicles
JPS62125101A (en) Insulating protective apparatus for rail clamp
US6672441B1 (en) Conductor rail support
US6938742B2 (en) Conductor rail fish-plate
US2084580A (en) Bus bar supporting means in bus duct
EP0116582B1 (en) Rail insulator for the securing of a conductor rail on a rail support
US3614340A (en) Securing means for power rail and/or shield
EP0202397A2 (en) Insulative protective device for rail fastener
US3437765A (en) Support means for a conductor rail
US5189596A (en) Transition for electrical apparatus
US2136766A (en) Third rail
US2303999A (en) Bus-bar mounting
US3709337A (en) Electrical distribution and current collecting assembly for high speed drive arrangements
US3449532A (en) Conductor bar type electrical distribution system