US3339493A - Railroad ballast handling system - Google Patents

Railroad ballast handling system Download PDF

Info

Publication number
US3339493A
US3339493A US387144A US38714464A US3339493A US 3339493 A US3339493 A US 3339493A US 387144 A US387144 A US 387144A US 38714464 A US38714464 A US 38714464A US 3339493 A US3339493 A US 3339493A
Authority
US
United States
Prior art keywords
ballast
chain
frame
cutting head
ties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US387144A
Inventor
Jr John F Bryan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US387144A priority Critical patent/US3339493A/en
Application granted granted Critical
Publication of US3339493A publication Critical patent/US3339493A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/06Renewing or cleaning the ballast in situ, with or without concurrent work on the track
    • E01B27/10Renewing or cleaning the ballast in situ, with or without concurrent work on the track without taking-up track

Definitions

  • Service operations on railroad track include the removal of ballast from beneath the railroad cross ties or from the zones between the ties for removal of debris which fouls the ballast and accelerates deterioration of the ties.
  • the present invention relates to an improved system in which a cutting head may be towed behind a vehicle to engage and remove ballast from beneath the railroad ties while permitting ready adjustment both in the elevation of the cutting chain, the lateral position thereof, and ultimately in the configuration of the cutting head.
  • the cutting head may be adjusted from a work configuration in which the chain passes over supporting rollers or wheels adjacent to the ends of the tics and courses beneath the ties to a folded configuration in which the cutting head lies within the perimeter of a prescribed clearance outline.
  • the invention in a further aspect, relates to a suspended cutter head tower behind a railroad car by relatively long towbars at least v one of which is employed for transmission of power to the cutting hea-d.
  • a pair of hydraulic elevators are e1nployed for controlling the elevation of the cutter head relative to the railroad car.
  • At least one hydraulic control means is employed for laterally positioning the cutter head relative to the railroad car.
  • the system provides for automatic handling of ballast removed from beneath the ties by ⁇ depositing the same, through the use of the cutting chain during an upward course thereof, lonto a belt conveyor system.
  • the invention further relates to a method of skeletonizing a railroad track.
  • the track is progressively elevated and is supported at a slightly elevated position by tamping ballast under the ends of ties at predetermined spaced tie locations.
  • Ballast then is continuously plowed inwardly under the ends of each of the ties to provide continuous tie support for the mechanism supporting the plows and the ballast treating unit.
  • the ballast is continuously cut and removed frorn the ballast section for a depth below the bottom of the elevated ties corresponding with the original base of the ties.
  • the ties are automaticaly lowered back to the surface of the plowed bed at a location trailing the point of contact with the ballast face.
  • a system for removal of ballast from beneath railroad ties.
  • a wheeled frame is powered for travel along a railroad track which tows a cutting head having a cutting chain.
  • the chain is driven along a path having a lower course which is generally horizontal and located beneath the ties.
  • Towbars extend generally parallel between the frame and coupling points on the cutting head to tow the cutting head beneath the frame, crowding the chain into the ballast.
  • a drive means is provided for driving the chain in the cutting head.
  • a first support 3,339,493 Patented Sept. 5,y 1967 means is connected between the frame and the cutting head for bodily raising and lowering the cutting head to control the elevation of the lower course of the chain. Support means also extend between the cutting head and the frame for adjusting the lateral position of the cutting head.
  • a method of skeletonizing a railroad track which has been raised from its normal elevation with ballast tamped beneath ties located at predetermined spaced-apart tie locations as temporary support of the track.
  • the method includes plowing successive loose ties upward into engagement with the elevated rail while continuously plowing ballast inwardly under the ends of each of the ties in a support-forming zone to provide temporary support for all of the ties.
  • ballast is continuously cut and removed from beneath'and from between the ties to a depth corresponding with the normal elevation of the bottom of the ties.
  • FIGURE 1 is a side View of an embodiment of the present invention
  • FIGURE 2 is a top View of the unit of FIGURE l;
  • FIGURE 3 is a rear view of the unit of FIGURE l;
  • FIGURE 4 is an enlarged rear View of the cutting head of FIGURE 1;
  • FIGURE 5 illustrates a link for the chain of FIGURES 1 4;
  • FIGURE 6 illustrates the link of FIGURE 5 viewed from the left end
  • FIGURE 7 illustrates a ballast treating train
  • FIGURE 8 illustrates one 'form of control in the present invention.
  • FIGURE 9 illustrates a modified form of control system.
  • FIGURES 1-3 illustrate a system for undercutting and removing ballast from beneath the ties of the railroad track 10.
  • the track 10 is mounted in the usual manner on the ties which are supported by ballast. Ballast fouled with fine debris, if permitted to remain untreated would accelerate deterioration of the ties and early replacement of the ties on a large scale may be required. It has been found that if the ballast is removed and treated and replaced, that the life of the track is extended.
  • a ballast removing and treating mechanism which is versatile in its ability to meet varying conditions encountered along railroad trackage.
  • a vehicle 11, FIGURE 1, includes a main frame 12 supported on two tandem axle assemblies 13 and 14.
  • the assemblies 13 and 14 are conventional units such as ordinarily employed in heavy duty trucks and the like, modified, however, to receive anged Wheels for track use. Both axle assemblies are driven from a motor 15, the drive coupling not being shown in FIGURE 1.
  • Frame 12 also supports a torque converter 16 which is coupled by a two-stage chain drive 18 from the output shaft 16 to a drive shaft 17.
  • the chain drive 18 provides for speed reduction related to the nature of the work encountered in the ballast as will hereinafter be described.
  • Trailing the vehicle 11 is a cutting head 20.
  • the cutting head 20 includes a pair of side members 21 and 22.
  • the side members 21 and 22 are interconnected by cross members as will hereinafter be described such that it forms a rigid framework.
  • Attached to the cutting head 20 are three towbars 23, 24, and 25, only bars 23 and 25 being seen in FIGURE 1.
  • the bar 23 is pivotally coupled through pin 3G to a bracket on the bottom of the frame 12. At the trailing end, bar 23 is coupled through pin 31 to a bracket on the lower frame portion member 21.
  • the second towbar 24 is pivotally coupled to the frame 12 through pin 32.
  • the trailing end of the bar 24 is connected through pin 33 to a bracket on the lower portion of the cutter head frame.
  • the third towbar 25 serves a dual function of linking the cutter head 20 to the vehicle 11 at a third point and to transmit rotary power to the cutter head 20. More particularly, the bar 25 is coupled through a universal joint 35 to the output shaft 17 in the transmission system. At the trailing end, bar 25 is coupled through a universal joint 36 to a drive shaft 37 on the cutter head 20.
  • the cutter head 20 is to be towed behind the vehicle 11 by means of the three towbars 23-25. Hydraulic cylinder means are then used to control the elevation of the cutter head 20 and the lateral position thereof, relative to frame 12, as will now be described.
  • Three couplings are provided between the frame 12 and the cutter head 20 by hydraulic cylinders 40, 41 and 42.
  • the cylinders 40 and 41 coupled between the frame 12 and the cutter head 20 serve to control elevation.
  • the cylinder 40 is pivotally connected at the lower end through fpin 45 to a bracket on frame 12.
  • the piston in cylinder 40 is pivotally connected through pin 46 to a bracket located near the upper edge of the cutter head 20.
  • Cylinder 40 extends upwardly and rearwardly from frame 12.
  • the orientation of cylinder 40 for example, may be substantially vertical and will serve along with the cylinder 41 to control the elevation of the head 20 relative to the track 10.
  • the third cylinder 42 is connected between the frame 12 and the cutting head 20 to control the lateral position of the cutting head relative to the track 10.
  • the cutting head may be moved vertically or horizontally. Since the towbars are relatively long, the head 20 follows a relatively large diameter arc as the elevation thereof is changed. At the same time power is transmitted by way of shaft 25 to the cutting head 20.
  • the frame plate 22 has a downwardly extending rectangular section 50 which serves as a ballast box and which serves also to house and provide support for a shaft 51 on which an idler wheel 52 (shown dotted) is supported.
  • a cutting chain 53 passes over idler wheel 52.
  • the frame plate 22 and its mating frame plate 21 are of essentially the same configuration extending upwardly to form an extension 54 of the ballast box 50.
  • the frame plate 22 is coupled to frame plate 21 on the upper outer perimeter by two cylindrical struts 55 and 56.
  • the lower edges 57 of the frame plates 21 and 22 are generally horizontal extending above and spanning the rails 10.
  • the frame plates 21 and 22 also have a central aperture 58 therein.
  • a conveyer belt 60 shown in FIGURE 1 passes over a drum 61 mounted on the bottom of the triangular-shaped opening 58 in the plates 21 and 22.
  • the plates 21 and 22 are further coupled together by a plate 65 forming a bottom closure for the ballast box 50.
  • the plate 65 has a lower leg 66 which is slotted to acccommodate passage therethrough of the idler 52.
  • the ballast box plate 65 has a downwardly extending leg 67 and a section 68 which extends parallel to the lower sloping surface. Section 69 extends upward along the perimeter of the opening 58.
  • the plate 65 terminates at the point 70 so that 4ballast propelled into the ballast box 60 will be drawn upwardly by the chain 53 to point 70 and will spill onto the conveyer Ibelt passing over drum 61 for removal to a vehicle on track 10 positioned rearwardly of the vehicle 11.
  • the plates 21 and 22 are further interconnected by a batiie plate 75 which is secured along the upper righthand margin of the opening 58.
  • the baffle plate 75 Serves as a backstop for ballast tossed towards the conveyer belt by the chain 53.
  • the cutter chain 53 passes over a second idler pulley 80 which is mounted on a shaft 81 at the lower end of an arm 82.
  • the arm 82 is pivoted between the frames 21 and 22 as at pin 83.
  • the arm 82 is coupled to the cutter head frame at a second point by a hydraulic cylinder 85 which is connected to the frame at pin 86.
  • the piston rod 87 lfor cylinder 85 is coupled at pin 88 to the arm 82.
  • the hydraulic cylinder 85 is not seen in FIGURES 1 and 2 because it is mounted on the bottom of the cutter head frame approximately centrally of the cutting chain 53.
  • the cylinder 85 serves to position the idler sprocket 80 beyond the end of the ties and to control the width of ballast to be removed by the chain 53.
  • a drive sprocket 90 over which the chain 53 is threaded drives the chain clockwise as viewed in FIGURE 4.
  • the sprocket is mounted on shaft 37 which in turn is journaled in a drive frame 91 formed by a pair of arms one of which may be seen in FIGURE 4. More particularly, the arms of the drive frame 91 are pivoted as at pin 92 in an ear at an intermediate point along the arm 82.
  • the drive frame 91 is of irregular shape to permit the cutter head to be folded for transit as will hereinafter be described.
  • the arms of the drive frame are coupled by a strut 93 located near the pivot pin 92.
  • the ar-ms are also coupled together by a strut 94.
  • the shaft 37 extends between the two arms at a point above the strut 94.
  • a third strut 95 for the drive frame 91 is positioned at the upper extremity thereof.
  • the upper end of the drive frame 91 is coupled to the main frame members 21 and 22 by hydraulic cylinders 96 and 97. Only the cylinder 96 is shown in FIGURES 3 and 4.
  • the lower end of the cylinder 96 is connected through a .pin 98 to the frame plate 22.
  • the pin 98 passes through a stirrup which is formed by the plate 22 and a second plate 99 is secured to the pipe 56.
  • the upper end of the piston rod 100 is connected to the drive frame 91 through pin 101.
  • the second cylinder 97 is connected between stirrups on struts 56 and 95.
  • cylinders 85, 96, and 97 are employed to control the width of the cut made by the chain 53 on the bottom course and the tension on the chain for any given width.
  • FIGURES 5 and 6 illustrate one form of a cutting link which serves to make up the chain 53.
  • Link is provided with a body 111 which rides on the sprockets 80 and 90, and rides over the surface of the idler Wheel 52.
  • a side bar 112, FIGURE 5, on the front of the link is provided with a boss 113 which serves as a bearing for a coupling pin.
  • a pin 114 passes through the clevis and is keyed into the clevis -by a cotter pin 115.
  • a second arm 116 is provided with a boss 117 which also serves as a bearing.
  • a clevis is positioned on the back of the body 111 for mating a boss on an adjacent link.
  • a pin 118 passes through the clevis and is keyed into the clevis by a cotter 119.
  • the cutting tip 120 of link 110 is in the form of a relatively wide blade.
  • the blade extends at an angle forwardly from the b-ody 111 and serves as a cutting tool and as a rake to propel the ballast cut from the understructured body of ballast away from the working face.
  • the side bar 112 is of substantially reduced section to minimize obstruction to passage of the ballast toward the center of link 110. As best seen in FIGURE 6, side bar 112 has a thickness x.
  • the bar 116 is of a greater width y to oppose ow of the ballast beyond the same and to control the ballast -such that it will occupy the zone 125 between the arms 112 and 116 and will be moved by the body section 111 from the place of dislodgement into the ballast box and then upward onto the conveyer.
  • FIGURE 6 is a view of the link from the left end as shown in FIGURE 5.
  • the head of the pin 119 is an oblong head which seats against the end of lug 122.
  • the head of the pin 114 is seated between ribs 123 and 124. The latter ribs serve to strengthen the cutting blade and at the same time prevent rotation of the pin in its clevis.
  • the unit 11 In placing the system in operati-on, the unit 11 is located at a beginning site and the ballast or one tie is removed from beneath the track in order to thread the chain therebeneath. The ends of the chain are then coupled together so that the chain encompasses the track and the ties. Tension is placed on the chain by actuation of the cylinders 85, 96, and 97. Upon application of power to the drive sprocket 90, the cutter head 20 may be lowered to the desired depth. The vehicle 11 may then be moved forward by application of power to the tandem axle units to crowd the tips of the cutter chain 53 against the working face.
  • the chain is driven in a clockwise direction by the top sprocket 90 at a nominal rate of 600 feet per minute.
  • the ballast is cut or broken loose and dragged into the confined ballast box 50.
  • the stop plate 65 prevents the material from falling back into the track area.
  • the two trailing links 23 and 24 are attached to the lower portion of the cutting head 20 on either side. These links carry the major :portion of the force required to crowd the digging chain into the ballast.
  • the drive shaft 25 which powers the top sprocket is of fixed length and also serves as a locating member for the cutting head.
  • the cutting head is positioned in the plane determined by the three links 23-25 by means of the two vertical hydraulic cylinders 40 and 41 and the lateral hydraulic cylinder 42. Actuating these cylinders separately permits an operator to position the cutting head for various depths of cut, to the right or left, or should it be desired, lower on one side than the other.
  • both the right hand and left hand vertical hydraulic cylinders are extended, the loading frame is raised and shifted laterally. The left hand sprocket positioning arm is then retracted which permits the assembly to come within the standard railway clearance diagram.
  • Scarifying teeth are provided at the forward end of the machine 11 with inclined blades so arranged as to wedge shoulder ballast underneath the ends of the cross ties. This feature is utilized in cases where it is desirable to remove only the ballast between the ties without lowering the elevation of the track. This operation is known as skeletonizing Ior stripping.
  • a tamping jack precedes the vehicle 11. It is used to raise the track a distance equal to the thickness of the chain cut. The track is raised and ballast tamped under the cross tie ends at intervals of ve or six ties. These intervals are too far apart and the compaction provided by the tamping jack generally is insuicient to bear the weight of the ballast removing machine 11.
  • the scarier is used to wedge suicient ballast under the ends of each cross tie to support the track under the weight of the machine with minimum settling.
  • an inner scarifying tooth on each side of the machine is arranged so that its leading end will pass under the ties which are left down when the track is raised.
  • the inner teeth wedge the ties up against the rail, where they are held by the ballast. This permits unspiking defective ties and removing tie plates in advance of the undercutting operation, thereby facilitating replacement of the ties after undercutting.
  • scariers are mounted at the front of the frame 12. More particularly, wings and 151 are pivotally mounted through pins 152 and 153 on opposite sides of the frame 12. As shown in FIGURE l, the wing 152 extends downward from the frame 12. As shown in FIGURE 2, it extends outwardly from frame 12.
  • the wing 150 supports three scarifier teeth 155, 156, and 157. Teeth 155 and 156 are mounted on Shanks 158 and 159.
  • the depth of the cutting teeth can be adjusted by controlling the angle of the wing 150 and by adjusting the point at which the shank is secured to the wing. As indicated each of shanks carrying the scarifying teeth have holes passing therethrough to accommodate pins such as the p-in 160 to secure the shank to the wing.
  • the scarifying tooth 157 has an inwardly sloping face. As shown in FIGURE 1, it has an upwardly sloping surface.
  • FIGURE 3 shows the shank 161 on which the tooth 157 is mounted extending downwardly and inwardly under the ends of the ties.
  • the inner face of the tooth 157 is vertical.
  • the bottom surface of the tooth 157 is flat. Since the surface 162 is canted inwardly, the tooth 157 serves to plow ballast inwardly under the ties and to force the same up against the ties to provide temporary support for skeletonizing operations. It may also engage ties which are unspiked prior to passage of the scarier to elevate them and prop them up under the rail for temporary support of the Vehicle 11.
  • a frame is provided for control of wings 150 and 151. It includes a pair of posts 171 and 172 which are supported on opposite sides of the fra-me and are coupled across the top by a member which spans the motor 15.
  • a hydraulic cylinder 173 is connected through a pin 174 to a clevis at the top of the post 171.
  • the piston of cylinder 173 is connected through pin 175 to a clevis on the wing 150.
  • the cylinder 173 thus provides control of the position of the wing 150.
  • a hydraulic cylinder 175 controls the position of wing 151.
  • the ballast box 50 has a back plate which is a downward extension of the frame plate 22.
  • the back plate extends down to the level of the lower margin 180.
  • a side plate 181 on the box 50 is coupled to the rear section by a hinge 182.
  • a reinforcing body 183 is applied to the outside of the end plate 181.
  • the end plate 181 of the ballast box is coupled by a link 185 to the frame plate 21.
  • the link 185 is adjustable so that the end plate 181 may be oriented parallel to the frame plate 12 or may be angled outward to plow ballast into the ballast box as the cutting head moves forward.
  • the front frame plate 21 does not extend down to the bottom level 180, Ibut is terminated above the normal level of the ballast surface. By this means the ballast untouched by the chain but loosened by the scarifier can ow freely into the ballast box as the cutting head moves forward.
  • the rear surface of the ballast box extends down to the level 180 as shown in FIGURE 3 and thus serves to scrape or finish the exposed ballast surface adjacent to the left margin of the chain 50.
  • Motor 15 serves to power the entire unit. As shown in FIGURE 2, the output shaft 190 is coupled to the torque converter 16. A second output shaft is coupled to a pump 191 which is connected through suitable controls in the cab 192 to each of the hydraulic cylinders in the system.
  • the tank 193 serves as a reservoir for hydraulic oil and tank 194 is a fuel tank. While hydraulic lines have not been shown, the mode of control of hydraulic cylinders is well known and for this reason the details have been omitted.
  • Three controls are provided in the cab 192 for individual control of the three positioning hydraulic cylinders 40, 41, and 42.
  • a fourth control serves to actuate the two cylinders 96 and 97 to control the position of the sprocket 90.
  • a fifth control is provided for the hydraulic cylinder 85 which controls the position of the arm 82 carrying the idler sprocket 80.
  • Sixth and seventh controls are provided for independent actuation of the cylinders 173 and 175 on the scarifier wings.
  • the controls are represented by the bank of levers 196 and cab 192.
  • a third output shaft 197 from the motor 15 is coupled through a drive shaft (not shown) to power the tandem axles 13 and 14.
  • the engine 15 in theA form of a GMC twin 671, 300 horsepower engine is suitable.
  • Such a torque converter has an output between 400 and 700 r.p.m. This is reduced through linkage 18 by a factor of about 7 so that the drive sprocket 90 rotates up to about l() r.p.m.
  • FIGURE 7 the vehicle 11 is illustrated in operative relation with a ballast handling or surge car 200.
  • a conveyer belt unit 201 is located between the cutting head 20 and the car 200 to apply a towing force to the car 200.
  • a hydraulic motor 202 is shown diagrammatically in driving relation with respect to the conveyer belt unit 201.
  • the motor 202 is hydraulically powered from the engine 15 by a suitable pressure line (not shown).
  • the car 200 may be loaded with waste ballast for delivery at some remote point or it may be provided with a cleaner and/or conveyer to spoil the ballast and/or unwanted debris along the side of the track right-of-way.
  • FIGURE 8 A control system for the vehicle 11 and the cutting head 20 is illustrated diagrammatically in FIGURE 8.
  • the motor 15 drives pump 191 to pump hydraulic fluid from the tank 193 through a linel 210, a check valve 211, to a hydraulic motor 212.
  • a return line 213 connected to motor 212 delivers hydraulic fluid back to tank 193.
  • the motor 212 is coupled by way of the linkage 214 to the drive wheels of vehicle 11 as represented by the wheel 215.
  • a Ventilating line 220 is connected to line 210 and is provided to bypass hydraulic fluid from line 210 by way of valve 221 and line 222, to tank 193. The speed of the vehicle is reduced to the extent that valve 221 is opened.
  • the valve 221 is controlled by a centrifugal switch 223 which is driven from the output of a torque converter 16 which drives sprocket 90 and the chain 53.
  • the pump 191 is set to produce a selected pressure for operation of the motor 212.
  • the torque converter 16 is set to drive chain 53 at a predetermined speed, preferably of the order of about 600 feet per minute.
  • the torque converter 16 has an output speed dependent upon the load on the chain 53.
  • Switch 223 operates to energize valve 221 to bypass hydraulic fluid to motor 212 at a speed at which the torque converter 16 is about to become stalled. This stops forward movement of the vehicle 11 and permits the chain 53 to clear itself, whereupon the torque converter 16 brings the chain 53 up to its speed again, valve 221 closes, and the normal forward progress of the vehicle 11 is resumed.
  • the pump 191 may be a variable volume pressure compensated pump of the type manufactured and sold by Vickers Inc. Division, Sperry Rand Corp., Detroit, Mich., and identified as Model PUB. 29-L5-l0-c-10.
  • the motor 212 may be a propelling drive motor of the type manufactured and sold by Oliver Tyrone Corp., Pittsburgh, Pa., and identified as Model GMA3-300.
  • the solenoid operated valve unit 221 may be of the type manufactured and sold by Vickers Inc. Division, Sperry Rand Corp., Detroit Mich., and identified as CT. 5-06-F-G-10.
  • the centrifugal switch unit 223 may be of the type manufactured and sold by Allen Bradley, Milwaukee, Wis., and identified as a zero speed plugging switch Cat. #808Fl, Series C.
  • FIGURE 8 the control function for varying the forward speed of the vehicle is produced by the centrifugal switch 223.
  • the control function is sensed hydraulically. While the system of FIGURE 8 is preferred, it will be understood that a system such as shown in FIGURE 9 may be found to be suitable. Where consistent, like parts have been given the same reference characters as in FIGURES l-8.
  • FIGURE 9 the drive for motor 215 through line 210 is vented or bypassed to tank 193 by way of a variable flow, pressure compensated control unit 230.
  • Line 210 is connected to the input to the control unit 230.
  • the output line 231 leads to tank 193.
  • a second pump 232 a vane type pressure pump, is supplied from tank 193 and drives one end of double rod ended cylinder control unit 234.
  • the pump applies pressure above a piston 235 in unit 234 opposing the force of a spring 236.
  • the piston rod 237 is coupled by linkage 238 to the variable control on the valve unit 230.
  • a line 239 is connected from pump 232 by way of a fixed orifice 240 leading to a reference input to the unit 230.
  • the pump 232 is driven, as by linkage 241, from the output of the torque converter 16.
  • the output pressure in unit 234 from pump 232 is reduced so that spring 236 actuates the control unit 230 to bypass hydraulic fluid normally flowing through motor 212 and shunts the same to tank 193.
  • the pump 209 may be a fixed displacement pump of the type manufactured and sold by Oliver Tyrone Corp., Pittsburgh, Pennsylvania, and identied as 20, A Gear Pump.
  • the sensing pump 232 may be a vane pump of the type manufactured and sold by Gresen Mfg. C0., Minneapolis, Minn., Catalog No. TC-12-S-75-50-B-CW.
  • the double rod ended cylinder 234 may be of the type manufactured and sold by Oftman-Miller Machine Co., Inc. Hammond, Ind., Model No. CDER HYD-1. 5 x 6.
  • the pressure compensated variable ow control unit 230 may be of the type manufactured and sold by Waterman Hydraulics Corporation, Evanston, Ill., Catalog No. l441-R-4-.5-28 Pressure Pump.
  • the fixed orifice 240 may be of the type manufactured and sold by Manatrol, Elyria, Ohio, and identified as Control Valve Model No. N-l200B.
  • a relief valve 242 was connected to the line 210 to protect against over pressure and may be of the type manufactured and sold by -Dennison Engineering Division of American Brake Shoe Co., Columbus, Ohio, and identified as relief valve RV-20.
  • a vehicle a car or wheeled frame
  • a prime mover or motor 15 which provides drive power for the vehicle as well as for the ballast cutting chain.
  • the prime mover is coupled to the chain by a mechanical drive including the torque converter 16 which h-as an output speed dependent upon the load on the chain.
  • the speed of lthe chain is sensed and drive power to the vehicle is lowered, modulated, or even completely removed when the speed of the chain is lowered.
  • the forward progress -of the vehicle is arrested as the speed of the chain approaches stalling speed of the torque converter 16.
  • the cutting head in which the chain is propelled is supported from the vehicle by adjustable means which permit location of the chain in its working position and which permit folding of the cutting head for transit over the track.
  • the cutting head is bodily raised and lowered, depending upon the requirements at a given location.
  • the cutting chain for working the ballast from under the railroad track involves the elon- .gated body member 111 having a blade 120 thereon which extends angularly from the right-hand end of the body as viewed in FIGURE 5.
  • M-ale and female clevis portions are integral with the body 111 adjacent to the root of the blade 120 and have pin-receiving ports centered on a plane passing through the body, with respect to which the blade 120 is symmetrical.
  • the male porti-on 112 has a lateral dimension parallel to the above plane which substantially exceeds the lateral dimension thereof normal to the plane.
  • the other maleand female clevis portions of each chain link are integral with the body 111 at points remote from the blade 120 and have pin-receiving ports :axially aligned with the ports in the clevis portions adjacent to the blade 120.
  • Links of the above character, coupled together, may form a continuous chain which delivers ballast from beneath the railroad track into the compartment or ballast box 50 housing the idler wheel 52.
  • the idler wheel 52 includes a hub portion 52a, and a chain guide disk 52b over which the chain passes.
  • the body portion 111 of each chain link bears on disk 52h.
  • lRearward of disk 52b and mounted on shaft 51 is a large pusher disk 52C which provides a surface against which the left-hand end of the link, as viewed in FIGURE 5, may bear.
  • the portion ⁇ 66 of plate 65 is slotted and lits over the guide disk 52b and the pusher disk 52C. Ballast delivered into the ballast box 50 is then propelled upward along the sloping surface of ballast deposited in the compartment formed by the plate ⁇ 65 and then is delivered onto the conveyor belt or track 61.
  • a system for removing ballast from beneath railroad ties which comprises:
  • (f) means connected between said cutting head and said frame for adjusting the lateral position of said cutting head.
  • a system for removing ballast from beneath railroad ties which comprises:
  • a cutting head having a cutting chain therein adapted to be driven along a triangular path, the lower course of which is generally horizontal and located beneath said ties,
  • drive means including at least one of said towbars coupled to said chain in driving relation
  • a system for removing ballast from beneath a railroad track which comprises:
  • control means for adjusting the configuration of said secondary frame for control of the tension on said chain.
  • said main frame comprises a pair of parallel plates positioned on opposite sides of said iirst idler wheel with a central opening in at least one plate, in which a conveyor belt extends through said opening, and in which a plate extends angularly upward from said first idler wheel along the perimeter of said opening for supporting and directing ballast carried upward by said chain for deposit onto said belt.
  • a cutting head for removing ballast from beneath a railroad track which comprises:
  • control means for independently adjusting the positions of said second idler wheel and said drive sprocket for control of the width of the cutting course of said chain and the tension on said chain.
  • a chain for working ballast from under railroad track which comprises:
  • a system ⁇ for working ballast from beneath a railroad track which comprises:
  • a system for working ballast from beneath a railroad track which comprises:
  • sensing means ⁇ for producing a control function representative of the velocity of said chain
  • a system for removing ballast from beneath railroad ties which comprises:
  • sensing means for sensing the velocity of said chain
  • means responsive to said sensing means for lowering the drive power on said wheeled frame when the velocity of said chain falls
  • 5 means connected between said frame and said cutting head for bodily moving said cutting head in directions lying in a plane perpendicular to said track.
  • a system for removing ballast from beneath railroad ties which comprises:

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

Sept. r5, 1967 J. F. BRYAN, JR
RAILROAD BALLAST HANDLING SYSTEM 5 Sheets-Sheet 1 Filed Aug- 1964 Ins,
...nu :1.o l.
R A mm V mm R B ...L/M N H w A Y B wm. mm-
Sept. 5, 1967 J. F. BRYAN, JR
RAILROAD BALLAST HANDLING SYSTEM 5 Sheets-Sheet 2 Filed Aug. 5, 1964 INVENTOR JOHN F. BRYAN, JR. BY 0. M M
Sept' 5, 1967 J. F. BRYAN, .JR 3,339,493
RAILROAD BALLAST HANDLING SYSTEM Filed Aug. 5, 1964 5 Sheets-Sheet Z5 INVENTOR. JOHN F. BRYAN, JR.
Sept. 5, 1967 J. F. BRYAN. JR
RAILROAD BALLAST HANDLING SYSTEM Filed Aug. 3, 1964 v5 sheets-sheet 4 ...I i l I umqwmawmvwwmwmgw!wmqwmwwww., @.mel sllnslfmnuuasllnsllnl n.
INVENTOR, JOHN F. BRYAN, JR.
Sept. 5, 1967 J. F. BRYAN, .1R 3,339,493'
RAILROAD BALLAST HANDLING SYSTEM Filed Aug. 5, 1964 5 Sheets-Sheet 5 FIG. 7 u 2 :l INVENTOR. JOHN F. BRYAN, JR.
United States Patent Otice 3,339,493 RAILROAD BALLAST HANDLING SYSTEM John F. Bryan, Jr., Dallas, Tex. (Box 176, Irving, Tex. 75060) Filed Aug. 3, 1964, Ser. No. 387,144 12 Claims. (Cl. 1434-7) 'Ihis invention relates to a system for removal and handling of ballast under railroad track and more particularly to an articulated cutting head which is adjustable in position behind a track vehicle and adjustable in configuration to accommodate either track work in expanded configuration or transit over the track in a compact configuration lying within a prescribed clearance limit.
Service operations on railroad track include the removal of ballast from beneath the railroad cross ties or from the zones between the ties for removal of debris which fouls the ballast and accelerates deterioration of the ties.
A number of systems have been used in the prior art which involve use of a chain driven beneath the railroad ties for removal of the ballast. The present invention relates to an improved system in which a cutting head may be towed behind a vehicle to engage and remove ballast from beneath the railroad ties while permitting ready adjustment both in the elevation of the cutting chain, the lateral position thereof, and ultimately in the configuration of the cutting head. The cutting head may be adjusted from a work configuration in which the chain passes over supporting rollers or wheels adjacent to the ends of the tics and courses beneath the ties to a folded configuration in which the cutting head lies within the perimeter of a prescribed clearance outline. In a further aspect, the invention relates to a suspended cutter head tower behind a railroad car by relatively long towbars at least v one of which is employed for transmission of power to the cutting hea-d. A pair of hydraulic elevators are e1nployed for controlling the elevation of the cutter head relative to the railroad car. At least one hydraulic control means is employed for laterally positioning the cutter head relative to the railroad car. The system provides for automatic handling of ballast removed from beneath the ties by `depositing the same, through the use of the cutting chain during an upward course thereof, lonto a belt conveyor system.
' The invention further relates to a method of skeletonizing a railroad track. In skeletonizing the track, the track is progressively elevated and is supported at a slightly elevated position by tamping ballast under the ends of ties at predetermined spaced tie locations. Ballast then is continuously plowed inwardly under the ends of each of the ties to provide continuous tie support for the mechanism supporting the plows and the ballast treating unit. Thereafter, the ballast is continuously cut and removed frorn the ballast section for a depth below the bottom of the elevated ties corresponding with the original base of the ties. The ties are automaticaly lowered back to the surface of the plowed bed at a location trailing the point of contact with the ballast face.
More particularly, in accordance with the present invention, a system is provided for removal of ballast from beneath railroad ties. A wheeled frame is powered for travel along a railroad track which tows a cutting head having a cutting chain. The chain is driven along a path having a lower course which is generally horizontal and located beneath the ties. Towbars extend generally parallel between the frame and coupling points on the cutting head to tow the cutting head beneath the frame, crowding the chain into the ballast. A drive means is provided for driving the chain in the cutting head. A first support 3,339,493 Patented Sept. 5,y 1967 means is connected between the frame and the cutting head for bodily raising and lowering the cutting head to control the elevation of the lower course of the chain. Support means also extend between the cutting head and the frame for adjusting the lateral position of the cutting head.
In a further aspect, there is provided a method of skeletonizing a railroad track which has been raised from its normal elevation with ballast tamped beneath ties located at predetermined spaced-apart tie locations as temporary support of the track. The method includes plowing successive loose ties upward into engagement with the elevated rail while continuously plowing ballast inwardly under the ends of each of the ties in a support-forming zone to provide temporary support for all of the ties. In a working zone which continuously trails the supportforming zone, ballast is continuously cut and removed from beneath'and from between the ties to a depth corresponding with the normal elevation of the bottom of the ties.
For a more complete understanding of the present invention and for further objects and advantages thereof, reference may now be had to the following description taken in conjunction with the accompanying drawings in which:
FIGURE 1 is a side View of an embodiment of the present invention;
FIGURE 2 is a top View of the unit of FIGURE l;
FIGURE 3 is a rear view of the unit of FIGURE l;
FIGURE 4 is an enlarged rear View of the cutting head of FIGURE 1;
FIGURE 5 illustrates a link for the chain of FIGURES 1 4;
FIGURE 6 illustrates the link of FIGURE 5 viewed from the left end;
FIGURE 7 illustrates a ballast treating train;
FIGURE 8 illustrates one 'form of control in the present invention; and
FIGURE 9 illustrates a modified form of control system.
FIGURES 1-3 illustrate a system for undercutting and removing ballast from beneath the ties of the railroad track 10. The track 10 is mounted in the usual manner on the ties which are supported by ballast. Ballast fouled with fine debris, if permitted to remain untreated would accelerate deterioration of the ties and early replacement of the ties on a large scale may be required. It has been found that if the ballast is removed and treated and replaced, that the life of the track is extended. In accordance with the present invention, there is provided a ballast removing and treating mechanism which is versatile in its ability to meet varying conditions encountered along railroad trackage.
A vehicle 11, FIGURE 1, includes a main frame 12 supported on two tandem axle assemblies 13 and 14. The assemblies 13 and 14 are conventional units such as ordinarily employed in heavy duty trucks and the like, modified, however, to receive anged Wheels for track use. Both axle assemblies are driven from a motor 15, the drive coupling not being shown in FIGURE 1.
Frame 12 also supports a torque converter 16 which is coupled by a two-stage chain drive 18 from the output shaft 16 to a drive shaft 17. The chain drive 18 provides for speed reduction related to the nature of the work encountered in the ballast as will hereinafter be described.
Trailing the vehicle 11 is a cutting head 20. The cutting head 20 includes a pair of side members 21 and 22. The side members 21 and 22 are interconnected by cross members as will hereinafter be described such that it forms a rigid framework. Attached to the cutting head 20 are three towbars 23, 24, and 25, only bars 23 and 25 being seen in FIGURE 1. The bar 23 is pivotally coupled through pin 3G to a bracket on the bottom of the frame 12. At the trailing end, bar 23 is coupled through pin 31 to a bracket on the lower frame portion member 21.
As best seen in FIGURE 2, the second towbar 24 is pivotally coupled to the frame 12 through pin 32. The trailing end of the bar 24 is connected through pin 33 to a bracket on the lower portion of the cutter head frame.
The third towbar 25 serves a dual function of linking the cutter head 20 to the vehicle 11 at a third point and to transmit rotary power to the cutter head 20. More particularly, the bar 25 is coupled through a universal joint 35 to the output shaft 17 in the transmission system. At the trailing end, bar 25 is coupled through a universal joint 36 to a drive shaft 37 on the cutter head 20.
From the foregoing, it will be seen that the cutter head 20 is to be towed behind the vehicle 11 by means of the three towbars 23-25. Hydraulic cylinder means are then used to control the elevation of the cutter head 20 and the lateral position thereof, relative to frame 12, as will now be described.
Three couplings are provided between the frame 12 and the cutter head 20 by hydraulic cylinders 40, 41 and 42. The cylinders 40 and 41 coupled between the frame 12 and the cutter head 20 serve to control elevation. As best shown in FIGURE 1, the cylinder 40 is pivotally connected at the lower end through fpin 45 to a bracket on frame 12. At the upper end, the piston in cylinder 40 is pivotally connected through pin 46 to a bracket located near the upper edge of the cutter head 20. Cylinder 40 extends upwardly and rearwardly from frame 12. In actual practice, the orientation of cylinder 40, for example, may be substantially vertical and will serve along with the cylinder 41 to control the elevation of the head 20 relative to the track 10.
The third cylinder 42 is connected between the frame 12 and the cutting head 20 to control the lateral position of the cutting head relative to the track 10. Thus, the cutting head may be moved vertically or horizontally. Since the towbars are relatively long, the head 20 follows a relatively large diameter arc as the elevation thereof is changed. At the same time power is transmitted by way of shaft 25 to the cutting head 20.
It will be helpful now to refere to FIGURES 3 and 4 which illustrate the cutting head as viewed from the rear. The frame plate 22 has a downwardly extending rectangular section 50 which serves as a ballast box and which serves also to house and provide support for a shaft 51 on which an idler wheel 52 (shown dotted) is supported. A cutting chain 53 passes over idler wheel 52. The frame plate 22 and its mating frame plate 21 are of essentially the same configuration extending upwardly to form an extension 54 of the ballast box 50. The frame plate 22 is coupled to frame plate 21 on the upper outer perimeter by two cylindrical struts 55 and 56. The lower edges 57 of the frame plates 21 and 22 are generally horizontal extending above and spanning the rails 10. The frame plates 21 and 22 also have a central aperture 58 therein. A conveyer belt 60 shown in FIGURE 1 passes over a drum 61 mounted on the bottom of the triangular-shaped opening 58 in the plates 21 and 22.
The plates 21 and 22 are further coupled together by a plate 65 forming a bottom closure for the ballast box 50. The plate 65 has a lower leg 66 which is slotted to acccommodate passage therethrough of the idler 52. The ballast box plate 65 has a downwardly extending leg 67 and a section 68 which extends parallel to the lower sloping surface. Section 69 extends upward along the perimeter of the opening 58. The plate 65 terminates at the point 70 so that 4ballast propelled into the ballast box 60 will be drawn upwardly by the chain 53 to point 70 and will spill onto the conveyer Ibelt passing over drum 61 for removal to a vehicle on track 10 positioned rearwardly of the vehicle 11.
The plates 21 and 22 are further interconnected by a batiie plate 75 which is secured along the upper righthand margin of the opening 58. The baffle plate 75 Serves as a backstop for ballast tossed towards the conveyer belt by the chain 53.
The cutter chain 53 passes over a second idler pulley 80 which is mounted on a shaft 81 at the lower end of an arm 82. The arm 82 is pivoted between the frames 21 and 22 as at pin 83. The arm 82 is coupled to the cutter head frame at a second point by a hydraulic cylinder 85 which is connected to the frame at pin 86. The piston rod 87 lfor cylinder 85 is coupled at pin 88 to the arm 82. The hydraulic cylinder 85 is not seen in FIGURES 1 and 2 because it is mounted on the bottom of the cutter head frame approximately centrally of the cutting chain 53. The cylinder 85 serves to position the idler sprocket 80 beyond the end of the ties and to control the width of ballast to be removed by the chain 53.
A drive sprocket 90 over which the chain 53 is threaded drives the chain clockwise as viewed in FIGURE 4. The sprocket is mounted on shaft 37 which in turn is journaled in a drive frame 91 formed by a pair of arms one of which may be seen in FIGURE 4. More particularly, the arms of the drive frame 91 are pivoted as at pin 92 in an ear at an intermediate point along the arm 82. The drive frame 91 is of irregular shape to permit the cutter head to be folded for transit as will hereinafter be described. The arms of the drive frame are coupled by a strut 93 located near the pivot pin 92. The ar-ms are also coupled together by a strut 94. The shaft 37 extends between the two arms at a point above the strut 94. A third strut 95 for the drive frame 91 is positioned at the upper extremity thereof. The upper end of the drive frame 91 is coupled to the main frame members 21 and 22 by hydraulic cylinders 96 and 97. Only the cylinder 96 is shown in FIGURES 3 and 4. The lower end of the cylinder 96 is connected through a .pin 98 to the frame plate 22. As best seen in FIGURE 1, the pin 98 passes through a stirrup which is formed by the plate 22 and a second plate 99 is secured to the pipe 56. The upper end of the piston rod 100 is connected to the drive frame 91 through pin 101. In a similar manner, the second cylinder 97 is connected between stirrups on struts 56 and 95. Thus, cylinders 85, 96, and 97 are employed to control the width of the cut made by the chain 53 on the bottom course and the tension on the chain for any given width.
The foregoing linkages present in the cutting head for support of the chain will permit the cutting head to be folded to a position within the limits of a standard railroad diagram for transit from one location to another. More particularly, in FIGURE 3, an outline has been superimposed upon the cutting head and the supporting mechanism to represent the standard clearance outline. When it is desired to transport the cutting head from one location to another, one joint in the chain is removed to permit the chain to be withdrawn from its lower course. The cylinders 40 and 41 are then actuated to elevate the cutting head. Cylinder 42 is then adjusted to center the cutting head within the clearance youtline 105. The cylinder 85 is actuated to retract the arm 82 to a position within the clearance outline. The configuration of the arm 82 and the drive frame 91 are such that they permit the cutting head to -be folded to within the clearance outline 105.
FIGURES 5 and 6 illustrate one form of a cutting link which serves to make up the chain 53. Link is provided with a body 111 which rides on the sprockets 80 and 90, and rides over the surface of the idler Wheel 52. A side bar 112, FIGURE 5, on the front of the link, is provided with a boss 113 which serves as a bearing for a coupling pin. At the back of each link and in alignment with the boss 113 is a clevis. A pin 114 passes through the clevis and is keyed into the clevis -by a cotter pin 115. A second arm 116 is provided with a boss 117 which also serves as a bearing. A clevis is positioned on the back of the body 111 for mating a boss on an adjacent link. A pin 118 passes through the clevis and is keyed into the clevis by a cotter 119.
The cutting tip 120 of link 110 is in the form of a relatively wide blade. The blade extends at an angle forwardly from the b-ody 111 and serves as a cutting tool and as a rake to propel the ballast cut from the understructured body of ballast away from the working face. In this connection, it will 4be noted that the side bar 112 is of substantially reduced section to minimize obstruction to passage of the ballast toward the center of link 110. As best seen in FIGURE 6, side bar 112 has a thickness x. In contrast, the bar 116 is of a greater width y to oppose ow of the ballast beyond the same and to control the ballast -such that it will occupy the zone 125 between the arms 112 and 116 and will be moved by the body section 111 from the place of dislodgement into the ballast box and then upward onto the conveyer.
FIGURE 6 is a view of the link from the left end as shown in FIGURE 5. As seen in FIGURE 6, the head of the pin 119 is an oblong head which seats against the end of lug 122. In a similar manner, the head of the pin 114 is seated between ribs 123 and 124. The latter ribs serve to strengthen the cutting blade and at the same time prevent rotation of the pin in its clevis.
In placing the system in operati-on, the unit 11 is located at a beginning site and the ballast or one tie is removed from beneath the track in order to thread the chain therebeneath. The ends of the chain are then coupled together so that the chain encompasses the track and the ties. Tension is placed on the chain by actuation of the cylinders 85, 96, and 97. Upon application of power to the drive sprocket 90, the cutter head 20 may be lowered to the desired depth. The vehicle 11 may then be moved forward by application of power to the tandem axle units to crowd the tips of the cutter chain 53 against the working face.
The chain is driven in a clockwise direction by the top sprocket 90 at a nominal rate of 600 feet per minute. The ballast is cut or broken loose and dragged into the confined ballast box 50. The stop plate 65 prevents the material from falling back into the track area. When the chain has turned the corner in the Aballast box, it becomes essentially a bucket elevator, raising the material from the box and depositing it on the conveyer which extends back from the machine. The ballast can thus be cleaned and restored to the track or wasted as desired.
The two trailing links 23 and 24 are attached to the lower portion of the cutting head 20 on either side. These links carry the major :portion of the force required to crowd the digging chain into the ballast. The drive shaft 25 which powers the top sprocket is of fixed length and also serves as a locating member for the cutting head. The cutting head is positioned in the plane determined by the three links 23-25 by means of the two vertical hydraulic cylinders 40 and 41 and the lateral hydraulic cylinder 42. Actuating these cylinders separately permits an operator to position the cutting head for various depths of cut, to the right or left, or should it be desired, lower on one side than the other. When both the right hand and left hand vertical hydraulic cylinders are extended, the loading frame is raised and shifted laterally. The left hand sprocket positioning arm is then retracted which permits the assembly to come within the standard railway clearance diagram.
Scarifying teeth are provided at the forward end of the machine 11 with inclined blades so arranged as to wedge shoulder ballast underneath the ends of the cross ties. This feature is utilized in cases where it is desirable to remove only the ballast between the ties without lowering the elevation of the track. This operation is known as skeletonizing Ior stripping. In order to accomplish this, a tamping jack precedes the vehicle 11. It is used to raise the track a distance equal to the thickness of the chain cut. The track is raised and ballast tamped under the cross tie ends at intervals of ve or six ties. These intervals are too far apart and the compaction provided by the tamping jack generally is insuicient to bear the weight of the ballast removing machine 11. The scarier is used to wedge suicient ballast under the ends of each cross tie to support the track under the weight of the machine with minimum settling.
More particularly, an inner scarifying tooth on each side of the machine is arranged so that its leading end will pass under the ties which are left down when the track is raised. The inner teeth wedge the ties up against the rail, where they are held by the ballast. This permits unspiking defective ties and removing tie plates in advance of the undercutting operation, thereby facilitating replacement of the ties after undercutting.
In FIGURES 1 and 2 it will be noted that scariers are mounted at the front of the frame 12. More particularly, wings and 151 are pivotally mounted through pins 152 and 153 on opposite sides of the frame 12. As shown in FIGURE l, the wing 152 extends downward from the frame 12. As shown in FIGURE 2, it extends outwardly from frame 12. The wing 150 supports three scarifier teeth 155, 156, and 157. Teeth 155 and 156 are mounted on Shanks 158 and 159. The depth of the cutting teeth can be adjusted by controlling the angle of the wing 150 and by adjusting the point at which the shank is secured to the wing. As indicated each of shanks carrying the scarifying teeth have holes passing therethrough to accommodate pins such as the p-in 160 to secure the shank to the wing.
As best seen in FIGURE 2, the scarifying tooth 157 has an inwardly sloping face. As shown in FIGURE 1, it has an upwardly sloping surface. FIGURE 3 shows the shank 161 on which the tooth 157 is mounted extending downwardly and inwardly under the ends of the ties. The inner face of the tooth 157 is vertical. The bottom surface of the tooth 157 is flat. Since the surface 162 is canted inwardly, the tooth 157 serves to plow ballast inwardly under the ties and to force the same up against the ties to provide temporary support for skeletonizing operations. It may also engage ties which are unspiked prior to passage of the scarier to elevate them and prop them up under the rail for temporary support of the Vehicle 11.
A frame is provided for control of wings 150 and 151. It includes a pair of posts 171 and 172 which are supported on opposite sides of the fra-me and are coupled across the top by a member which spans the motor 15. A hydraulic cylinder 173 is connected through a pin 174 to a clevis at the top of the post 171. The piston of cylinder 173 is connected through pin 175 to a clevis on the wing 150. The cylinder 173 thus provides control of the position of the wing 150. In a similar manner, a hydraulic cylinder 175 controls the position of wing 151.
The scarier may loosen the ballast on the shoulder of the track bed well in advance of the cutting head 20. The ballast along the track edge is loosened so that the frame portions of the cutting head will -be able to be moved through the loosened debris outside the limits of the course of the cutting chain without diiculty. More particularly, as shown in FIGURES 1 and 2, the ballast box 50 has a back plate which is a downward extension of the frame plate 22. The back plate extends down to the level of the lower margin 180. A side plate 181 on the box 50 is coupled to the rear section by a hinge 182. A reinforcing body 183 is applied to the outside of the end plate 181.
As shown in FIGURE 2, the end plate 181 of the ballast box is coupled by a link 185 to the frame plate 21. The link 185 is adjustable so that the end plate 181 may be oriented parallel to the frame plate 12 or may be angled outward to plow ballast into the ballast box as the cutting head moves forward. Although not shown, the front frame plate 21 does not extend down to the bottom level 180, Ibut is terminated above the normal level of the ballast surface. By this means the ballast untouched by the chain but loosened by the scarifier can ow freely into the ballast box as the cutting head moves forward. The rear surface of the ballast box extends down to the level 180 as shown in FIGURE 3 and thus serves to scrape or finish the exposed ballast surface adjacent to the left margin of the chain 50.
Motor 15 serves to power the entire unit. As shown in FIGURE 2, the output shaft 190 is coupled to the torque converter 16. A second output shaft is coupled to a pump 191 which is connected through suitable controls in the cab 192 to each of the hydraulic cylinders in the system. The tank 193 serves as a reservoir for hydraulic oil and tank 194 is a fuel tank. While hydraulic lines have not been shown, the mode of control of hydraulic cylinders is well known and for this reason the details have been omitted. Three controls are provided in the cab 192 for individual control of the three positioning hydraulic cylinders 40, 41, and 42. A fourth control serves to actuate the two cylinders 96 and 97 to control the position of the sprocket 90. A fifth control is provided for the hydraulic cylinder 85 which controls the position of the arm 82 carrying the idler sprocket 80. Sixth and seventh controls are provided for independent actuation of the cylinders 173 and 175 on the scarifier wings. The controls are represented by the bank of levers 196 and cab 192.
A third output shaft 197 from the motor 15 is coupled through a drive shaft (not shown) to power the tandem axles 13 and 14. Such transmission systems are well known and for this reason have not been detailed in the drawings. The engine 15 in theA form of a GMC twin 671, 300 horsepower engine is suitable. The torque converter 16, in the form of ten-inch, three stage torque converter with reversible gears manufactured and sold by Twin Disc Clutch Company, Rockford, Ill., as model CRR-l0043, is satisfactory. Such a torque converter has an output between 400 and 700 r.p.m. This is reduced through linkage 18 by a factor of about 7 so that the drive sprocket 90 rotates up to about l() r.p.m.
In FIGURE 7 the vehicle 11 is illustrated in operative relation with a ballast handling or surge car 200. A conveyer belt unit 201 is located between the cutting head 20 and the car 200 to apply a towing force to the car 200. A hydraulic motor 202 is shown diagrammatically in driving relation with respect to the conveyer belt unit 201. The motor 202 is hydraulically powered from the engine 15 by a suitable pressure line (not shown). The car 200 may be loaded with waste ballast for delivery at some remote point or it may be provided with a cleaner and/or conveyer to spoil the ballast and/or unwanted debris along the side of the track right-of-way.
A control system for the vehicle 11 and the cutting head 20 is illustrated diagrammatically in FIGURE 8. The motor 15 drives pump 191 to pump hydraulic fluid from the tank 193 through a linel 210, a check valve 211, to a hydraulic motor 212. A return line 213 connected to motor 212 delivers hydraulic fluid back to tank 193. The motor 212 is coupled by way of the linkage 214 to the drive wheels of vehicle 11 as represented by the wheel 215.
A Ventilating line 220 is connected to line 210 and is provided to bypass hydraulic fluid from line 210 by way of valve 221 and line 222, to tank 193. The speed of the vehicle is reduced to the extent that valve 221 is opened. The valve 221 is controlled by a centrifugal switch 223 which is driven from the output of a torque converter 16 which drives sprocket 90 and the chain 53. In operation, the pump 191 is set to produce a selected pressure for operation of the motor 212. The torque converter 16 is set to drive chain 53 at a predetermined speed, preferably of the order of about 600 feet per minute. The torque converter 16 has an output speed dependent upon the load on the chain 53. Switch 223 operates to energize valve 221 to bypass hydraulic fluid to motor 212 at a speed at which the torque converter 16 is about to become stalled. This stops forward movement of the vehicle 11 and permits the chain 53 to clear itself, whereupon the torque converter 16 brings the chain 53 up to its speed again, valve 221 closes, and the normal forward progress of the vehicle 11 is resumed.
In the embodiment illustrated in FIGURE 8, the pump 191 may be a variable volume pressure compensated pump of the type manufactured and sold by Vickers Inc. Division, Sperry Rand Corp., Detroit, Mich., and identified as Model PUB. 29-L5-l0-c-10.
The motor 212 may be a propelling drive motor of the type manufactured and sold by Oliver Tyrone Corp., Pittsburgh, Pa., and identified as Model GMA3-300.
The solenoid operated valve unit 221 may be of the type manufactured and sold by Vickers Inc. Division, Sperry Rand Corp., Detroit Mich., and identified as CT. 5-06-F-G-10.
The centrifugal switch unit 223 may be of the type manufactured and sold by Allen Bradley, Milwaukee, Wis., and identified as a zero speed plugging switch Cat. #808Fl, Series C.
In FIGURE 8, the control function for varying the forward speed of the vehicle is produced by the centrifugal switch 223. In the modification of the system as shown in FIGURE 9, the control function is sensed hydraulically. While the system of FIGURE 8 is preferred, it will be understood that a system such as shown in FIGURE 9 may be found to be suitable. Where consistent, like parts have been given the same reference characters as in FIGURES l-8.
In FIGURE 9 the drive for motor 215 through line 210 is vented or bypassed to tank 193 by way of a variable flow, pressure compensated control unit 230. Line 210 is connected to the input to the control unit 230. The output line 231 leads to tank 193. A second pump 232, a vane type pressure pump, is supplied from tank 193 and drives one end of double rod ended cylinder control unit 234. The pump applies pressure above a piston 235 in unit 234 opposing the force of a spring 236. The piston rod 237 is coupled by linkage 238 to the variable control on the valve unit 230. A line 239 is connected from pump 232 by way of a fixed orifice 240 leading to a reference input to the unit 230. The pump 232 is driven, as by linkage 241, from the output of the torque converter 16. When the torque converter 16 approaches a stalling speed, the output pressure in unit 234 from pump 232 is reduced so that spring 236 actuates the control unit 230 to bypass hydraulic fluid normally flowing through motor 212 and shunts the same to tank 193.
In FIGURE 9, the pump 209 may be a fixed displacement pump of the type manufactured and sold by Oliver Tyrone Corp., Pittsburgh, Pennsylvania, and identied as 20, A Gear Pump.
The sensing pump 232 may be a vane pump of the type manufactured and sold by Gresen Mfg. C0., Minneapolis, Minn., Catalog No. TC-12-S-75-50-B-CW. The double rod ended cylinder 234 may be of the type manufactured and sold by Oftman-Miller Machine Co., Inc. Hammond, Ind., Model No. CDER HYD-1. 5 x 6.
The pressure compensated variable ow control unit 230 may be of the type manufactured and sold by Waterman Hydraulics Corporation, Evanston, Ill., Catalog No. l441-R-4-.5-28 Pressure Pump.
The fixed orifice 240 may be of the type manufactured and sold by Manatrol, Elyria, Ohio, and identified as Control Valve Model No. N-l200B.
A relief valve 242 was connected to the line 210 to protect against over pressure and may be of the type manufactured and sold by -Dennison Engineering Division of American Brake Shoe Co., Columbus, Ohio, and identified as relief valve RV-20.
The foregoing description has dealt with the preferred embodiment of the invention in which a vehicle, a car or wheeled frame, is designed to travel along a railroad track and which carries a prime mover or motor 15 which provides drive power for the vehicle as well as for the ballast cutting chain. The prime mover is coupled to the chain by a mechanical drive including the torque converter 16 which h-as an output speed dependent upon the load on the chain. The speed of lthe chain is sensed and drive power to the vehicle is lowered, modulated, or even completely removed when the speed of the chain is lowered. IPreferably, the forward progress -of the vehicle is arrested as the speed of the chain approaches stalling speed of the torque converter 16. The cutting head in which the chain is propelled is supported from the vehicle by adjustable means which permit location of the chain in its working position and which permit folding of the cutting head for transit over the track. Thus, the cutting head is bodily raised and lowered, depending upon the requirements at a given location.
In a preferred form, the cutting chain for working the ballast from under the railroad track involves the elon- .gated body member 111 having a blade 120 thereon which extends angularly from the right-hand end of the body as viewed in FIGURE 5. M-ale and female clevis portions are integral with the body 111 adjacent to the root of the blade 120 and have pin-receiving ports centered on a plane passing through the body, with respect to which the blade 120 is symmetrical. The male porti-on 112 has a lateral dimension parallel to the above plane which substantially exceeds the lateral dimension thereof normal to the plane. The other maleand female clevis portions of each chain link are integral with the body 111 at points remote from the blade 120 and have pin-receiving ports :axially aligned with the ports in the clevis portions adjacent to the blade 120.
Links of the above character, coupled together, may form a continuous chain which delivers ballast from beneath the railroad track into the compartment or ballast box 50 housing the idler wheel 52. The idler wheel 52 includes a hub portion 52a, and a chain guide disk 52b over which the chain passes. The body portion 111 of each chain link bears on disk 52h. lRearward of disk 52b and mounted on shaft 51 is a large pusher disk 52C which provides a surface against which the left-hand end of the link, as viewed in FIGURE 5, may bear. The portion `66 of plate 65 is slotted and lits over the guide disk 52b and the pusher disk 52C. Ballast delivered into the ballast box 50 is then propelled upward along the sloping surface of ballast deposited in the compartment formed by the plate `65 and then is delivered onto the conveyor belt or track 61.
Having described the invention in connection with certain specic embodiments thereof, it is to be understood that funther modifications may now suggest themselves to those skilled in the art and it is intended to cover such modiiications as fall within t-he scope of the appended claims. j v What is claimed is:
1. A system for removing ballast from beneath railroad ties which comprises:
(a) a wheeled frame powered for travel along a railroad track,
(b) a cutting head having a cutting chain therein adapted to be driven along a path, the lower course `of which is generally horizontal and located beneath said ties, t
(c) at least three elongated towbars extending generally in parallel relation between points intermedi ate the length of said frame and three distributed coupling points on said cutting head to tow said cutting head behind said frame -and crowd said chain into said ballast,
(d) drive means for driving said chain in said cutting head,
(e) means lconnected between said frame and said cutting head for bodily raising and lowering said cutting head to control the elevation of said lower course, and
(f) means connected between said cutting head and said frame for adjusting the lateral position of said cutting head.
2. A system for removing ballast from beneath railroad ties which comprises:
(a) a wheeled frame powered for travel along the railroad track,
(b) a cutting head having a cutting chain therein adapted to be driven along a triangular path, the lower course of which is generally horizontal and located beneath said ties,
(c) at least three elongated towbars extending in parallelV relation lbetween points intermediate the length of said frame and three coupling points of triangular distribution on the face of said cutting head adjacent the rear of said frame to tow said head behind said frame and crowd said chain into said ballast beneath said track,
(d) drive means including at least one of said towbars coupled to said chain in driving relation,
(e) a pair of elevator means connected from opposite sides of said frame to said cutting head for control Y of the elevation of said lower course, and
(f) an adjustable linkage connected between one side of said cutting head and the other side of said frame for adjusting the lateral position of said cutting head.
3. A system for removing ballast from beneath a railroad track which comprises:
(a) a drive sprocket and two idler wheels in a common plane with said idler wheels spaced horizontally one from another below said drive sprocket,
(b) a continuous cutting chain threaded over said drive sprocket :and said idler wheels for loosening and conveying ballast to a discharge side of said track,
(c) a main frame supporting one of said idler wheels at said discharge side and extending upwardly and vacross said track,
(d) :a secondary frame pivotally secured to said main frame and supporting said drive sprocket and the second of said idler wheels at a point intermediate the axes of said drive sprocket and said second idler wheel, and
(e) control means for adjusting the configuration of said secondary frame for control of the tension on said chain.
4. The combination set forth in claim 3 in which said main frame comprises a pair of parallel plates positioned on opposite sides of said iirst idler wheel with a central opening in at least one plate, in which a conveyor belt extends through said opening, and in which a plate extends angularly upward from said first idler wheel along the perimeter of said opening for supporting and directing ballast carried upward by said chain for deposit onto said belt.
5. A cutting head for removing ballast from beneath a railroad track which comprises:
(a) a drive sprocket and two idler wheels in a cornmon plane with said idler wheels positioned below said drive sprocket and on a generally horizontal line,
(b) a continuous cutting chain threaded over said drive sprocket and said idler wheels for loosening and conveying ballast to -a discharge side of said track,
(c) a main frame supporting one of said idler wheels at said discharge side and extending upwardly and across said track,
(d) a secondary frame pivotally secured to said main frame and supporting said drive sprocket and the second of said idler wheels at a point intermediate the axes of said drive sprocket and said second idler wheel, and
(e) control means for independently adjusting the positions of said second idler wheel and said drive sprocket for control of the width of the cutting course of said chain and the tension on said chain.
6. A chain for working ballast from under railroad track which comprises:
(a) an elongated body member having a blade symmetrical to a plane passing longitudinally through said body and angularly extending from one end of said body,
(b) first male and female -clevis portions integral with said body adjacent to the root of said blade with pinreceiving ports centered on said plane and with the male portion having a lateral dimension parallel to said plane which substantially exceeds the lateral dimension thereof normal to said plane, and
(c) second male and female clevis portions integral 4with said body remote from said root of said blade with the latter male portion having a dimension normal to said plane corresponding with the lateral dimension of said body and with the pin-receiving ports axially aligned with corresponding ports in said rst clevis portions.
7. A system `for working ballast from beneath a railroad track which comprises:
(a) a car adapted to ride on side ltrack and supporting a cutting chain, a lower course of which passes beneath said track to remove said ballast,
(b) a prime mover on said car for powering said car and said chain including a mechanical linkage including a torque converter for driving said chain at a chain-load dependent speed,
(c) means for sensing the velocity of said chain, and
(d) means for modulating the drive power from said prime mover to said car proportionally as the speed of said chain.
8. A system for working ballast from beneath a railroad track which comprises:
(a) a car adapted to ride on said track and supporting a cutting chain, a lower course of which passes beneath said track to remove said ballast,
(b) a prime mover on said car for powering said car and said chain including a mechanical drive coupled to said chain with speed dependent upon the load on the chain,
(c) a linkage extending from said prime mover to apply drive power to said car,
(d) sensing means `for producing a control function representative of the velocity of said chain, and
(e) means responsive to said control function from said sensing means for modulating the drive power from said prime mover to said car proportionally as the speed of said chain.
9. A system for removing ballast from beneath railroad ties which comprises:
(a) a wheeled frame powered for travel along a railroad track,
(b) a cutting head having a cutting chain therein supported to follow a path, the lower course of which is generally horizontal and located beneath said ties,
(c) at least three elongated towbars extending generally in parallel relation between points intermediate the `length of said frame and three coupling points on said cutting head to tow said cutting head behind said frame and crowd said lchain into said ballast,
(d) a prime mover on said frame with a torque converter mechanically coupled to said chain in said cutting head,
(e) sensing means for sensing the velocity of said chain, (f) means responsive to said sensing means for lowering the drive power on said wheeled frame when the velocity of said chain falls, and 5 (g) means connected between said frame and said cutting head for bodily moving said cutting head in directions lying in a plane perpendicular to said track.
10. A system for removing ballast from beneath railroad ties which comprises:
(a) a wheeled frame powered for travel along a railroad track,
(b) a cutting head,
(c) at least three elongated towbars extending generally in parallel relation between points intermediate the length of said frame and three coupling points on said cutting head to tow said cutting head behind said frame,
(d) an arm extending above said cutting head and supporting a chain drive sprocket,
(e) a second arm extending from said cutting head and including an idler sprocket located adjacent to one end of said ties,
(f) an idler wheel in said cutting head adjacent the -other end of said ties,
(g) a cutting chain threaded over said drive sprocket,
said idler sprocket and said idler wheel,
(h) drive means coupled to said drive sprocket for driving said chain toward said idler sprocket and thence to said idler wheel,
(i) compartmenting means around said idler wheel into which ballast is deposited when traveling with said chain from said idler wheel for forming an inclined ballast surface beneath said chain as it travels from said idler wheel to said drive sprocket, and
(j) a conveyor belt positioned to receive ballast moved over said surface and for conveying such received ballast from the region of said cutting head.
11. The combination set forth in claim 1 in which said vehicle supports scariier elements on opposite sides thereof 40 ahead of said cutting head.
12. The combination set forth in claim 1 in which said vehicle supports scarier elements on opposite sides thereof ahead of said cutting head with at least one scarier element on each side of said frame extending downwardly 45 and inwardly under the ends of the ties and having inwardly and upwardly directed surfaces which raise ties and ballast as they move along said track under the ends of said ties.
References Cited 5 UNITED STATES PATENTS 1,818,148 8/1931 Matson 172-3 1,899,874 2/1933 Lemaire 37-104 x 2,950,549 8/1960 Kershaw 37-104 3,222,803 12/1965 Honey et a1 37- 104 3,251,422 5/ 1966 Allgaier et al 172-3 X ABRAHAM G. STONE, Primary Examiner.
ARTHUR L. LA POINT, WILLIAM A. SMITH, III,
Examiners. R. A. BERTSCH, R. L. HOLLISTER,
Assistant Examiners.

Claims (1)

1. A SYSTEM FOR REMOVING BALLAST FROM BENEATH RAILROAD TIES WHICH COMPRISES: (A) A WHEELED FRAME POWERED FOR TRAVEL ALONG A RAILROAD TRACK, (B) A CUTTING HEAD HAVING A CUTTING CHAIN THEREIN ADAPTED TO BE GIVEN ALONG A PATH, THE LOWER COURSE OF WHICH IS GENERALLY HORIZONTAL AND LOCATED BENEATH SAID TIES, (C) AT LEAST THREE ELONGATED TOWBARS EXTENDING GENERALLY IN PARALLEL RELATION BETWEEN POINTS INTERMEDIATE THE LENGTH OF SAID FRAME AND THREE DISTRIBUTED COUPLING POINTS ON SAID CUTTING HEAD TO TOW SAID CUTTING HEAD BEHIND SAID FRAME AND CROWD SAID CHAIN INTO SAID BALLAST,
US387144A 1964-08-03 1964-08-03 Railroad ballast handling system Expired - Lifetime US3339493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US387144A US3339493A (en) 1964-08-03 1964-08-03 Railroad ballast handling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US387144A US3339493A (en) 1964-08-03 1964-08-03 Railroad ballast handling system

Publications (1)

Publication Number Publication Date
US3339493A true US3339493A (en) 1967-09-05

Family

ID=23528661

Family Applications (1)

Application Number Title Priority Date Filing Date
US387144A Expired - Lifetime US3339493A (en) 1964-08-03 1964-08-03 Railroad ballast handling system

Country Status (1)

Country Link
US (1) US3339493A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2200406A1 (en) * 1972-09-14 1974-04-19 Plasser Bahnbaumasch Franz
FR2297282A1 (en) * 1975-01-10 1976-08-06 Plasser Bahnbaumasch Franz MOBILE RAILWAY CONSTRUCTION MACHINE, ESPECIALLY SWITCH CLEANING MACHINE
US4014389A (en) * 1974-08-14 1977-03-29 Franz Plasser Bahnbaumaschinen-Industrie-Gesellschaft M.B.H. Endless ballast conveyor chain
EP0044284A1 (en) * 1980-07-10 1982-01-20 PAGANELLI S.p.A. Device for regulating the substructure of ballast on railway tracks
US4395953A (en) * 1980-02-19 1983-08-02 Sig Societe Industrielle Suisse Railway track tamping machine
US5046270A (en) * 1987-07-23 1991-09-10 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile ballast clearing and planing machine
WO2014109755A1 (en) * 2013-01-11 2014-07-17 Joy Mm Delaware, Inc. Continuous-extraction mining system
US8985704B2 (en) 2010-07-09 2015-03-24 Joy Mm Delaware, Inc. Continuous-extraction mining system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818148A (en) * 1927-07-29 1931-08-11 Matson Oscar Ake Spading device
US1899874A (en) * 1930-07-28 1933-02-28 Lemaire Maurice Henri System for continuously cleaning the ballast of railway tracks
US2950549A (en) * 1958-03-10 1960-08-30 Royce G Kershaw Apparatus for removing ballast from beneath a railroad track
US3222803A (en) * 1964-02-24 1965-12-14 Kershaw Mfg Company Inc Ballast removing apparatus
US3251422A (en) * 1962-07-25 1966-05-17 Kopar Ges Fur Konstruktion Ent Apparatus for the automatic control of the speed of a farm-tractor during field work, particularly during plowing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818148A (en) * 1927-07-29 1931-08-11 Matson Oscar Ake Spading device
US1899874A (en) * 1930-07-28 1933-02-28 Lemaire Maurice Henri System for continuously cleaning the ballast of railway tracks
US2950549A (en) * 1958-03-10 1960-08-30 Royce G Kershaw Apparatus for removing ballast from beneath a railroad track
US3251422A (en) * 1962-07-25 1966-05-17 Kopar Ges Fur Konstruktion Ent Apparatus for the automatic control of the speed of a farm-tractor during field work, particularly during plowing
US3222803A (en) * 1964-02-24 1965-12-14 Kershaw Mfg Company Inc Ballast removing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2200406A1 (en) * 1972-09-14 1974-04-19 Plasser Bahnbaumasch Franz
US3850251A (en) * 1972-09-14 1974-11-26 E Plasser Mobile ballast cleaning machine
US4014389A (en) * 1974-08-14 1977-03-29 Franz Plasser Bahnbaumaschinen-Industrie-Gesellschaft M.B.H. Endless ballast conveyor chain
FR2297282A1 (en) * 1975-01-10 1976-08-06 Plasser Bahnbaumasch Franz MOBILE RAILWAY CONSTRUCTION MACHINE, ESPECIALLY SWITCH CLEANING MACHINE
US4395953A (en) * 1980-02-19 1983-08-02 Sig Societe Industrielle Suisse Railway track tamping machine
EP0044284A1 (en) * 1980-07-10 1982-01-20 PAGANELLI S.p.A. Device for regulating the substructure of ballast on railway tracks
US5046270A (en) * 1987-07-23 1991-09-10 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile ballast clearing and planing machine
US8985704B2 (en) 2010-07-09 2015-03-24 Joy Mm Delaware, Inc. Continuous-extraction mining system
US8985703B2 (en) 2010-07-09 2015-03-24 Joy Mm Delaware, Inc. Continuous-extraction mining system
WO2014109755A1 (en) * 2013-01-11 2014-07-17 Joy Mm Delaware, Inc. Continuous-extraction mining system

Similar Documents

Publication Publication Date Title
US5074063A (en) Undercut trenching machine
US4307667A (en) Railroad track relaying train
US3019536A (en) Railway ballast equipment
GB2134574A (en) A conveying and clearing chain arrangement for railway track maintenance machines
US3339493A (en) Railroad ballast handling system
EP1162312B1 (en) Machine for renewing a railway track
US2309712A (en) Apparatus for handling ballast in railway roadbeds
US2886904A (en) Apparatus for removing ballast from beneath railroad tracks
US20060096131A1 (en) Railway ballast excavator having inclined portion
US3427990A (en) Railroad ballast handling system
US3881422A (en) Tie replacing system
US3579873A (en) Railway ballast working apparatus
US3049817A (en) Roadway machine
EP0662176A1 (en) Improvements relating to road working apparatus
US4119154A (en) Method and apparatus for treating ballast
US1718550A (en) Ditcher or spreader for railroad work
DE2160643A1 (en) MINING MACHINE
US1654685A (en) Snow-removing apparatus
US3905715A (en) Track driven machines with torsion bar-activated controls
CA2411733C (en) Track sledding machine
DE60130254T2 (en) DEVICE AND METHOD FOR REMOVING SCRATCH BEDING
DE2103278A1 (en) Tractor with swiveling driver's seat
US3345764A (en) Two-way terracing device
US2119664A (en) Canal and road subgrader
GB2133436A (en) A boom type of trenching machine