US3330216A - Fuel pump with turbulence reducing inlet dome - Google Patents

Fuel pump with turbulence reducing inlet dome Download PDF

Info

Publication number
US3330216A
US3330216A US460087A US46008765A US3330216A US 3330216 A US3330216 A US 3330216A US 460087 A US460087 A US 460087A US 46008765 A US46008765 A US 46008765A US 3330216 A US3330216 A US 3330216A
Authority
US
United States
Prior art keywords
inlet
dome
pump
tube
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US460087A
Inventor
Frederick J Schimmelpfenig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US460087A priority Critical patent/US3330216A/en
Priority to GB22341/66A priority patent/GB1092616A/en
Application granted granted Critical
Publication of US3330216A publication Critical patent/US3330216A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M1/00Carburettors with means for facilitating engine's starting or its idling below operational temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/43Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel
    • F02M2700/4302Arrangements for supplying air, fuel or auxiliary fluids to a combustion space of mixture compressing engines working with liquid fuel whereby air and fuel are sucked into the mixture conduit
    • F02M2700/438Supply of liquid to a carburettor reservoir with limitation of the liquid level; Aerating devices; Mounting of fuel filters
    • F02M2700/4388Supply of liquid to a carburettor reservoir with limitation of the liquid level; Aerating devices; Mounting of fuel filters with fuel displacement by a pump
    • F02M2700/439Supply of liquid to a carburettor reservoir with limitation of the liquid level; Aerating devices; Mounting of fuel filters with fuel displacement by a pump the pump being a membrane pump

Definitions

  • This invention relates to fuel pumps and more particularly to fuel pumps of the diaphragm type such as are used on automobiles.
  • An object of the present invention is to provide an improved fuel pump of the diaphragm type in which the pulsations are dampened and the flow is not disrupted or impeded by undue turbulence.
  • a feature of this invention is a diaphragm type fuel pump in which an apertured inlet tube is so located in an air inlet dome as to direct flow toward the inlet valve without disturbing the air or vapor trapped in the dome.
  • FIGURE 1 is an elevation and part sectional view of a fuel pump as one embodiment of the present invention and as supported for operation of an automobile engine;
  • FIGURE 2 shows a modification of the inlet dome arrangement of FIGURE 1.
  • FIGURE 1 of the drawings a portion of an automobile engine is shown as a support for a fuel pump body 12 which is attached to the engine 10 as by bolts 14.
  • the body 12 has a passage 16 in which is mounted a pivot pin 18 and on this pin a rocker arm 20 is adapted to be oscillated by some portion of the engine such as a cam on the camshaft.
  • the rocker arm 20 is adapted by means of two cooperating backing plates 24 and 26 to reciprocate a pumping diaphragm indicated at 30. This diaphragm has its periphery clamped between a rim of the pump body 12 and a pump cover generally indicated at 32.
  • the pump cover is composed of an upright sheet metal dome 34 in the form of an inverted cup, an outer shell 36 which is crimped as at 38 to the pump body 12 tightly to retain the diaphragm as well as the periphery of an inner shell 40.
  • the outer shell 36 retains the dome 34 by means of a brazed and tight joint as at 42.
  • the inner shell 40 bears an aperture 44 in alignment with an aperture 46 in the outer shell 36 so that a oneway inlet valve 50 supported by the inner shell 40 is in alignment with both apertures 44 and 46.
  • the valve 50 is not specifically described herein as it is conventional but it will be appreciated that when suction is induced between the diaphragm 30 and inner shell 40 by reciprocation of the diaphragm 30, the one-way inlet valve 50 will open and when the pressure in the pumping chamber 60 increases, the inlet valve 50 will close.
  • An inlet tube 54 extends into the dome 34 and the length of the tube substantially traverses the full width of the pulsator chamber formed by that dome but its width is less than that of the pulsator chamber. It will be seen in FIGURE 1 that the tube 54 is open at its end 56. An aperture 58 is formed in the bottom side of the tube 54 and this aperture faces or is directed toward the inlet valve 50.
  • the inner shell 40 of the cover 32 not only defines the pumping chamber 60 with the cooperation of the diaphragm 30 but it also cooperates with the outer shell 36 in forming outlet chamber 62.
  • a sealing washer 37 insures separation of the pump inlet flow from the outlet chamber 62.
  • Communication between the pumping chamber 60 and the outlet chamber 62 is by Way of a conventional one-way outlet valve 63.
  • Flow from the outlet chamber 62 of the pump is by way of a fitting 64 and a discharge tube 66.
  • the pump disclosed in FIGURE 1 therefore, preferably has the fuel outlet fitting 64 extend down into the lower portion of the outlet chamber 62 where the solid or liquid fuel collects. A small opening is located at the top of the outlet chamber 62 and through which vapors that collect above the lower end of the fitting 64 may pass back by means of a conduit 82 to the fuel tank.
  • FIGURE 2 a slight variation in the structure is seen in that the dome 34 is fitted with a difierent inlet tube 84.
  • This tube has an aperture 86 similar to the aperture 58 in FIGURE 1 but in this case the end of the tube 84 is closed off as at 88.
  • the dome 34 serves to increase liquid fuel flow through the pump by trapping air and fuel vapors in its top. This air and vapor in the dome is such as substantially to reduce the pressure and vacuum peaks thereby allowing the valves 59 and 63 to follow the strokes of the pump more effectively.
  • the tube 54 or 84 helps to maintain the vapor or air inside the dome 34 and reduces the turbulence in the liquid fuel which would otherwise occur and serve to disturb the air or vapor pocket in the dome 34. This reduction of turbulence definitely improves the liquid flow rate through the pump as has been determined by experimentation. Wide variations of tube designs, tube end termination points and tube angles with respect to the inlet valve 50 axis have been tested departing from those disclosed in the drawings but of all those tested, the substantial increase in liquid flow was obtained only by the tube inlet designs disclosed.
  • a diaphragm type fuel pump in which a diaphragm and a pump cover define a pumping chamber, inlet and outlet one-way valves retained in said cover, a dome forming a pulsator chamber leading to the inlet side of said inlet valve, an inlet tube extending into said dome and having a diameter less than the width of said pulsator chamber, one side of said inlet tube facing said pulsator chamber, and an aperture in the other side of said inlet tube directed toward said inlet valve.
  • a diaphragm type fuel pump in which a diaphragm and a pump cover define a pumping chamber between them, inlet and outlet one-way valves retained in said cover of said pumping chamber, a dome forming a pulsator chamber leading to the inlet side of said inlet valve, an inlet tube forming a wall partially closing off said pulsator chamber and having an open end, and an aperture in the side of said inlet tube facing and directed toward said inlet valve.
  • An upright diaphragm type fuel pump in which a diaphragm and a pump cover are clamped together to define between them a pumping chamber, inlet and outlet one-way valves retained in said cover to control fuel flow through said chamber, a vertically extending dome forming a pulsator chamber at the top of said pump and leading to the inlet side of said inlet valve, an inlet tube of smaller width than that of said pulsator cham-' ber extending horizontally and into said dome, an aperture in the bottom side of said inlet tube in alignment with the axis of said inlet valve and coaxial with the latter, and the top side of said inlet tube facing said pulsatoi' chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

July 11. 9 F. .1. SCHiMMELPFENIG 3,330,216
FUEL PUMP WITH TURBULENCE REDUCING INLET DOME Filed June 1, 1965 j? [N VENTOR.
flak/m1 J' Sui/212711402 United States Patent 3,330,216 FUEL PUMP WITH TURBULEN CE REDUCING INLET DOME Frederick J. Schimznelpfenig, Davison, Mich, assignor to General Motors Corporation, Detroit, Mich., a corporation of Delaware Filed June 1, 1965, Ser. No. 466,087 4 Ciaims. (Cl. 103150) ABSTRACT OF THE DISCLOSURE A diaphragm type liquid fuel pump having a fuel inlet connection dampening pressure pulsations to improve fuel flow.
SPECIFICATION This invention relates to fuel pumps and more particularly to fuel pumps of the diaphragm type such as are used on automobiles.
It has been customary in the past to employ air domes for the inlets of many reciprocating diaphragm fuel pumps, the purpose in mind being to minimize pulsations in the pump flow and thereby increase and smooth out the pump discharge. Such a pump is disclosed in the U.S. Patent 2,419,775 granted Apr. 29, 1947, in the name of William H. Hazard.
It has now been found that the use of an apertured tube in an air inlet dome with the aperture of the tube directed downwardly toward the inlet valve leading to the diaphragm pumping chamber results in a pronounced increase in the liquid flow through the pump and as compared with air inlet domes as employed heretofore in this field.
An object of the present invention is to provide an improved fuel pump of the diaphragm type in which the pulsations are dampened and the flow is not disrupted or impeded by undue turbulence.
A feature of this invention is a diaphragm type fuel pump in which an apertured inlet tube is so located in an air inlet dome as to direct flow toward the inlet valve without disturbing the air or vapor trapped in the dome.
This and other important features of the invention will now be described in detail in the specification and then pointed out more particularly in the appended claims.
In the drawings:
FIGURE 1 is an elevation and part sectional view of a fuel pump as one embodiment of the present invention and as supported for operation of an automobile engine; and
FIGURE 2 shows a modification of the inlet dome arrangement of FIGURE 1.
In FIGURE 1 of the drawings, a portion of an automobile engine is shown as a support for a fuel pump body 12 which is attached to the engine 10 as by bolts 14. As is conventional in automobile pumps, the body 12 has a passage 16 in which is mounted a pivot pin 18 and on this pin a rocker arm 20 is adapted to be oscillated by some portion of the engine such as a cam on the camshaft. As will be understood and which is conventional in fuel pumps, the rocker arm 20 is adapted by means of two cooperating backing plates 24 and 26 to reciprocate a pumping diaphragm indicated at 30. This diaphragm has its periphery clamped between a rim of the pump body 12 and a pump cover generally indicated at 32. The pump cover is composed of an upright sheet metal dome 34 in the form of an inverted cup, an outer shell 36 which is crimped as at 38 to the pump body 12 tightly to retain the diaphragm as well as the periphery of an inner shell 40. The outer shell 36 retains the dome 34 by means of a brazed and tight joint as at 42.
3,330,216 Patented July 11, 1967 The inner shell 40 bears an aperture 44 in alignment with an aperture 46 in the outer shell 36 so that a oneway inlet valve 50 supported by the inner shell 40 is in alignment with both apertures 44 and 46. The valve 50 is not specifically described herein as it is conventional but it will be appreciated that when suction is induced between the diaphragm 30 and inner shell 40 by reciprocation of the diaphragm 30, the one-way inlet valve 50 will open and when the pressure in the pumping chamber 60 increases, the inlet valve 50 will close.
An inlet tube 54 extends into the dome 34 and the length of the tube substantially traverses the full width of the pulsator chamber formed by that dome but its width is less than that of the pulsator chamber. It will be seen in FIGURE 1 that the tube 54 is open at its end 56. An aperture 58 is formed in the bottom side of the tube 54 and this aperture faces or is directed toward the inlet valve 50.
The inner shell 40 of the cover 32 not only defines the pumping chamber 60 with the cooperation of the diaphragm 30 but it also cooperates with the outer shell 36 in forming outlet chamber 62. A sealing washer 37 insures separation of the pump inlet flow from the outlet chamber 62. Communication between the pumping chamber 60 and the outlet chamber 62 is by Way of a conventional one-way outlet valve 63. Flow from the outlet chamber 62 of the pump is by way of a fitting 64 and a discharge tube 66.
Cars with a high underhood temperature sometimes require a vapor diverter for satisfactory operation, that is, to avoid vapor lock of the fuel system. The pump disclosed in FIGURE 1, therefore, preferably has the fuel outlet fitting 64 extend down into the lower portion of the outlet chamber 62 where the solid or liquid fuel collects. A small opening is located at the top of the outlet chamber 62 and through which vapors that collect above the lower end of the fitting 64 may pass back by means of a conduit 82 to the fuel tank.
In FIGURE 2, a slight variation in the structure is seen in that the dome 34 is fitted with a difierent inlet tube 84. This tube has an aperture 86 similar to the aperture 58 in FIGURE 1 but in this case the end of the tube 84 is closed off as at 88.
The dome 34 serves to increase liquid fuel flow through the pump by trapping air and fuel vapors in its top. This air and vapor in the dome is such as substantially to reduce the pressure and vacuum peaks thereby allowing the valves 59 and 63 to follow the strokes of the pump more effectively.
The tube 54 or 84 helps to maintain the vapor or air inside the dome 34 and reduces the turbulence in the liquid fuel which would otherwise occur and serve to disturb the air or vapor pocket in the dome 34. This reduction of turbulence definitely improves the liquid flow rate through the pump as has been determined by experimentation. Wide variations of tube designs, tube end termination points and tube angles with respect to the inlet valve 50 axis have been tested departing from those disclosed in the drawings but of all those tested, the substantial increase in liquid flow was obtained only by the tube inlet designs disclosed. In comparing the various inlet tube designs, no changes other than in the tube inlets were made in the pumps undergoing tests but it is understood that the same advantages are obtained using the inlet arrangement of the present invention if the outlet fitting 64 were changed also to embody a dome and inlet tube as employed with regard to the inlet valve, i.e., many variations may be made in the outlet arrangement without adversely affecting the performance of the tube 54 or 84 with respect to the inlet valve and dome 34.
I claim:
1. A diaphragm type fuel pump in which a diaphragm and a pump cover define a pumping chamber, inlet and outlet one-way valves retained in said cover, a dome forming a pulsator chamber leading to the inlet side of said inlet valve, an inlet tube extending into said dome and having a diameter less than the width of said pulsator chamber, one side of said inlet tube facing said pulsator chamber, and an aperture in the other side of said inlet tube directed toward said inlet valve.
2. A diaphragm type fuel pump in which a diaphragm and a pump cover define a pumping chamber between them, inlet and outlet one-way valves retained in said cover of said pumping chamber, a dome forming a pulsator chamber leading to the inlet side of said inlet valve, an inlet tube forming a wall partially closing off said pulsator chamber and having an open end, and an aperture in the side of said inlet tube facing and directed toward said inlet valve.
4 pulsator chamber, and an aperture in the opposite side of said inlet tube directed toward said inlet valve.
4. An upright diaphragm type fuel pump in which a diaphragm and a pump cover are clamped together to define between them a pumping chamber, inlet and outlet one-way valves retained in said cover to control fuel flow through said chamber, a vertically extending dome forming a pulsator chamber at the top of said pump and leading to the inlet side of said inlet valve, an inlet tube of smaller width than that of said pulsator cham-' ber extending horizontally and into said dome, an aperture in the bottom side of said inlet tube in alignment with the axis of said inlet valve and coaxial with the latter, and the top side of said inlet tube facing said pulsatoi' chamber.
References Cited UNITED STATES PATENTS 2,419,775 4/ 1947 Hazard 103 224 2,901,176 8/1959 Hoyt 103224 2,955,671 10/1960 Leistritz 18148 3,148,745 9/1964 Jones 103-224 3,188,975 6/1965 Sprayberry et a1. 181- 47.1 3,236,383 2/1966 Smith et al 103-450 ROBERT M. WALKER, Primary Examiner.
DONLEY I. STOCKING, Examiner,
W. L. FREEH, Assistant Examiner.

Claims (1)

1. A DIAPHRAGM TYPE FUEL PUMP IN WHICH A DIAPHRAGM AND A PUMP COVER DEFINE A PUMPING CHAMBER, INLET AND OUTLET ONE-WAY VALVES RETAINED IN SAID COVER, A DOME FORMING A PULSATOR CHAMBER LEADING TO THE INLET SIDE OF SAID INLET VALVE, AN INLET TUBE EXTENDING INTO SAID DOME AND HAVING A DIAMETER LESS THAN THE WIDTH OF SAID PULSATOR CHAMBER, ONE SIDE OF SAID INLET TUBE FACING SAID PULSATOR
US460087A 1965-06-01 1965-06-01 Fuel pump with turbulence reducing inlet dome Expired - Lifetime US3330216A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US460087A US3330216A (en) 1965-06-01 1965-06-01 Fuel pump with turbulence reducing inlet dome
GB22341/66A GB1092616A (en) 1965-06-01 1966-05-19 Diaphragm pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US460087A US3330216A (en) 1965-06-01 1965-06-01 Fuel pump with turbulence reducing inlet dome

Publications (1)

Publication Number Publication Date
US3330216A true US3330216A (en) 1967-07-11

Family

ID=23827348

Family Applications (1)

Application Number Title Priority Date Filing Date
US460087A Expired - Lifetime US3330216A (en) 1965-06-01 1965-06-01 Fuel pump with turbulence reducing inlet dome

Country Status (2)

Country Link
US (1) US3330216A (en)
GB (1) GB1092616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3491700A (en) * 1967-03-21 1970-01-27 Airtex Prod Fuel pump
JPS52112504U (en) * 1976-02-24 1977-08-26
US4295414A (en) * 1979-08-09 1981-10-20 Kyosan Denki Kabushiki Kaisha Diaphragm-type fuel pump
US4948346A (en) * 1989-05-18 1990-08-14 Walbro Corporation Fuel pump mount for reduction of vibration transmission

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2174151A (en) * 1985-04-22 1986-10-29 Bard Inc C R Blood retroperfusion system
IT1228438B (en) * 1986-07-24 1991-06-17 Regulation Y Control S A Re Co POWER PUMP.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419775A (en) * 1944-07-03 1947-04-29 Woodruff & Edwards Inc Pump
US2901176A (en) * 1956-07-26 1959-08-25 Leroy W Hoyt Water compensator for forced flow water system including an expansion tank
US2955671A (en) * 1954-08-25 1960-10-11 Leistritz Hans Karl Induction silencers for internal combustion engine carburetors
US3148745A (en) * 1962-05-23 1964-09-15 Newport News S & D Co Noise attenuation apparatus for liquid conducting conduits
US3188975A (en) * 1963-03-25 1965-06-15 Southeastern Elevator Company Hydraulic pulsation absorption system
US3236383A (en) * 1962-06-08 1966-02-22 Acf Ind Inc Fuel pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419775A (en) * 1944-07-03 1947-04-29 Woodruff & Edwards Inc Pump
US2955671A (en) * 1954-08-25 1960-10-11 Leistritz Hans Karl Induction silencers for internal combustion engine carburetors
US2901176A (en) * 1956-07-26 1959-08-25 Leroy W Hoyt Water compensator for forced flow water system including an expansion tank
US3148745A (en) * 1962-05-23 1964-09-15 Newport News S & D Co Noise attenuation apparatus for liquid conducting conduits
US3236383A (en) * 1962-06-08 1966-02-22 Acf Ind Inc Fuel pump
US3188975A (en) * 1963-03-25 1965-06-15 Southeastern Elevator Company Hydraulic pulsation absorption system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3491700A (en) * 1967-03-21 1970-01-27 Airtex Prod Fuel pump
JPS52112504U (en) * 1976-02-24 1977-08-26
US4295414A (en) * 1979-08-09 1981-10-20 Kyosan Denki Kabushiki Kaisha Diaphragm-type fuel pump
US4948346A (en) * 1989-05-18 1990-08-14 Walbro Corporation Fuel pump mount for reduction of vibration transmission

Also Published As

Publication number Publication date
GB1092616A (en) 1967-11-29

Similar Documents

Publication Publication Date Title
US3330216A (en) Fuel pump with turbulence reducing inlet dome
US2779353A (en) Fuel pump dome structure
US3278032A (en) Fuel pump and filter assembly
US3364870A (en) Diaphragm pumps
US2625114A (en) Fuel pump
US3294240A (en) Fuel pump and filter assembly
US3150601A (en) Mechanical pump
JPH0236797B2 (en)
US3254769A (en) Fuel pump filter combination
US2873688A (en) Pump with oblique pulsator diaphragm
US3096721A (en) Fuel pump
US3027848A (en) Diaphragm pump
US3252424A (en) Fuel systems
US3364869A (en) Triple cover fuel pump
US1981667A (en) Fuel pumping device
US4153394A (en) Fuel pump
US3096722A (en) Fuel pump
US3923425A (en) Fuel pump shut-off valve
US3291065A (en) Fuel pump with inserted pulsator
US3671150A (en) Engine cam operated air compressor for vehicle leveling system
US2143350A (en) Combination air cleaner and silencer
US1907673A (en) Fuel pump
US3205829A (en) Oscillating diaphragm pump
US3236383A (en) Fuel pump
US2868135A (en) Fuel pump with pulsator