US3329496A - Method for producing a fine graphite cast iron - Google Patents

Method for producing a fine graphite cast iron Download PDF

Info

Publication number
US3329496A
US3329496A US316928A US31692863A US3329496A US 3329496 A US3329496 A US 3329496A US 316928 A US316928 A US 316928A US 31692863 A US31692863 A US 31692863A US 3329496 A US3329496 A US 3329496A
Authority
US
United States
Prior art keywords
graphite
eutectic
iron
magnesium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US316928A
Inventor
Okumoto Takeomi
Okada Senri
Maebashi Yoshitsugu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of US3329496A publication Critical patent/US3329496A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/08Manufacture of cast-iron

Definitions

  • This invention relates to a novel method for producing a fine graphite cast iron having little shrinkage and high wear resistance by adding an Al-Mg alloy to a molten 1ron.
  • an eutectic graphite cast iron shows little shrinkage on solidification and exhibits a high resistance to wear when lubricated under low load conditions. It is also well known that the form of graphite in cast iron varies depending on the variation in the amount of oxygen contained therein. As the oxygen content decreases the graphite form changes in the following order: white iron, eutectic graphite, losette graphite, coarse flake graphite, losette graphite, eutectic graphite, fine particle graphite, super cooled white pig iron. Furthermore, it is known that an amount of sulfur present in a certain range gives a similar effect. Since the amounts of oxygen and sulfur at which the eutectic graphite is produced must be severely limited to a narrow range in a cast iron having the ordinary composition, it has been difiicult to produce a stable eutectic graphite.
  • a spheroidal graphite is produced by adding Mg (a deoxidizing and desulfurizing element) to molten iron.
  • Mg a deoxidizing and desulfurizing element
  • separate additions of pure Mg and Al produces an undesirable low amount of eutectic graphite formed in the structure, whereas the addition of aluminum and magnesium as an alloy achieves a much better percentage of eutectic graphite formed in the structure.
  • the present invention resides in producing a stable eutectic graphite by adding a Mg-Al alloy containing 2060% by weight magnesium to molten iron having an eutectic degree of 0.7-1.1.
  • the weight percent alloy refers to the amount of magnesium present in the magnesium-aluminum alloy, the balance being essentially aluminum.
  • FIG. 1 is a curve which shows the relationship between the percentage of eutectic graphite formed in the structure, the amount of magnesium in the Mg-Al alloy and the amount of Mg present in the iron-alloy composition.
  • FC-20 standard molten iron a cast iron defined in the Japanese Industrial Standards corresponding to ASTM, A48, Class 30B
  • FC-20 standard molten iron a cast iron defined in the Japanese Industrial Standards corresponding to ASTM, A48, Class 30B
  • the resulting iron-alloy composition contained 0.05 to 0.5% by weight magnesium.
  • a remarkably excellent result is obtained by the addition of 30% by weight of a Mg-Al alloy to molten iron such that the final iron-alloy composition contained 0.1% magnesium.
  • FIG. 2 is a curve which shows the relationship between the percentage of a fine eutectic graphite structure and the eutectic degree of the molten iron when 30% by weight of a Mg-Al alloy is added to produce an ironalloy composition containing 0.1% by weight magnesium. That is, it shows the percentage of the eutectic graphite formed in test pieces produced by adding 30% of a Mg-Al alloy, to the molten iron to produce a composition containing 0.1% magnesium.
  • the eutectic degree of molten iron is adjusted to 0.7l.1 keeping the Si content at the 2% level constant, by adding steel scrap, ferro-silicon or electrode graphite to FC-ZO grade iron and casting the molten iron as mentioned on the FIG. 1.
  • FIG. 2 shows that a high percentage of the eutectic graphite is formed according to the process of the present invention which is substantially independent of the eutectic degree (Sc).
  • the fluidity of the molten iron treated according to this invention can be lowered, and if necessary, up to 1.0% by weight of one or more of P, Se, Te and rare earth elements may be added to the molten iron after the treatment with the Al-Mg alloy.
  • the addition of phosphorus results in the formation of stedite (eutectic ferrite and Fe P) and in the enhancement of wear resistance of the cast iron product.
  • this invention is characterized in that it comprises adding 20-60% by weight of a Mg-Al alloy to molten iron having an eutectic degree of 0.7-1.1. Less than 20% by Weight of Mg in the alloy is not desirable because the percentage of the eutectic graphite will become suddenly lowered as a result. More than 60% of Mg is also undesirable because of high explosiveness and low yield regarding the additives.
  • the reasons for restricting the eutectic degree to 0.7-1.1 are as follows: When the eutectic degree is less than 0.7, the chilling tendency of the iron increases and it becomes difficult to produce good gray cast iron. When the eutectic degree is more than 1.1, kish graphites are produced rather than the fine graphites of the present invention.
  • the eutectic degree (So) as defined in FIGURE 2 can also be called the degree of saturation as disclosed in W.- Hiller and Walkling, Foundry, vol. (December 1962), page 54, and can be represented by the equation:
  • CE percent C+ /3 (percent Si-l-percent P) 3 by weight of the iron composition, and casting said com position in a sand mold.
  • a process for producing fine eutectic graphite iron which consists essentially of adding to molten iron having an eutectic degree of about 0.7 to 1.1, a magnesiumaluminum alloy containing about 20 to 60% by weight magnesium, the balance being essentially aluminum, said magnesium representing about 0.05 to 0.5% by weight of the iron composition, and further adding up to about 1% by weight of a material selected from the group consisting of phosphorus, selenium, tellurium, the rare earth tion in a sand mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

July 4, 1967 TAKEOMI OKUMOTO ETAL 3,329,495
METHOD FOR PRODUCING A FINE GRAPHITE CAST IRON Filed Oct. 17, 1965 Producing rare 0f eufecf/c graph/fa v 20 40 60 a0 Campos/Wow 0f ll lg-A/a/lay (Mg%) Fig 2 Emecf/c degree 67 Proabc/ng rate of eufecflc graph/re INVENTORS g q'fii OKumoUo cnr- 0K d BY l -sh'l'csugu m ebashk United States Patent 3,329,496 METHOD FOR PRODUCING A FINE GRAPHITE CAST IRON Takeorni Okumoto, Senri Okada, and Yoshitsugu Maebashi, Katsuta-shi, Japan, assignors to Hitachi, Ltd'., Tokyo, Japan, a corporation of Japan Filed Oct. 17 1963, Ser. No. 316,928 Claims priority, application Japan, Oct. 31, 1962, 37/47,519 3 Claims. (Cl. 75-130) This invention relates to a novel method for producing a fine graphite cast iron having little shrinkage and high wear resistance by adding an Al-Mg alloy to a molten 1ron.
It is well known that an eutectic graphite cast iron shows little shrinkage on solidification and exhibits a high resistance to wear when lubricated under low load conditions. It is also well known that the form of graphite in cast iron varies depending on the variation in the amount of oxygen contained therein. As the oxygen content decreases the graphite form changes in the following order: white iron, eutectic graphite, losette graphite, coarse flake graphite, losette graphite, eutectic graphite, fine particle graphite, super cooled white pig iron. Furthermore, it is known that an amount of sulfur present in a certain range gives a similar effect. Since the amounts of oxygen and sulfur at which the eutectic graphite is produced must be severely limited to a narrow range in a cast iron having the ordinary composition, it has been difiicult to produce a stable eutectic graphite.
It is a well known fact that a spheroidal graphite is produced by adding Mg (a deoxidizing and desulfurizing element) to molten iron. According to the present invention it has been found that when a minimum amount of Mg necessary for the spheroidization of graphite is added together with a suitable amount of A1, a stable eutectic fine graphite structure is formed. In the present process, separate additions of pure Mg and Al produces an undesirable low amount of eutectic graphite formed in the structure, whereas the addition of aluminum and magnesium as an alloy achieves a much better percentage of eutectic graphite formed in the structure. Thus the present invention resides in producing a stable eutectic graphite by adding a Mg-Al alloy containing 2060% by weight magnesium to molten iron having an eutectic degree of 0.7-1.1. Thus the weight percent alloy refers to the amount of magnesium present in the magnesium-aluminum alloy, the balance being essentially aluminum.
FIG. 1 is a curve which shows the relationship between the percentage of eutectic graphite formed in the structure, the amount of magnesium in the Mg-Al alloy and the amount of Mg present in the iron-alloy composition. For example, it shows the percentage of eutectic graphite structure formed in test pieces by adding to FC-20 standard molten iron (a cast iron defined in the Japanese Industrial Standards corresponding to ASTM, A48, Class 30B) from a cupola of 2060% by weight of a Mg-Al alloy and casting it in a sand mold, 40 x 40 x 40 mm. The resulting iron-alloy composition contained 0.05 to 0.5% by weight magnesium. As is readily apparent from FIG. 1, a remarkably excellent result is obtained by the addition of 30% by weight of a Mg-Al alloy to molten iron such that the final iron-alloy composition contained 0.1% magnesium.
FIG. 2 is a curve which shows the relationship between the percentage of a fine eutectic graphite structure and the eutectic degree of the molten iron when 30% by weight of a Mg-Al alloy is added to produce an ironalloy composition containing 0.1% by weight magnesium. That is, it shows the percentage of the eutectic graphite formed in test pieces produced by adding 30% of a Mg-Al alloy, to the molten iron to produce a composition containing 0.1% magnesium. The eutectic degree of molten iron is adjusted to 0.7l.1 keeping the Si content at the 2% level constant, by adding steel scrap, ferro-silicon or electrode graphite to FC-ZO grade iron and casting the molten iron as mentioned on the FIG. 1. FIG. 2 shows that a high percentage of the eutectic graphite is formed according to the process of the present invention which is substantially independent of the eutectic degree (Sc). The fluidity of the molten iron treated according to this invention can be lowered, and if necessary, up to 1.0% by weight of one or more of P, Se, Te and rare earth elements may be added to the molten iron after the treatment with the Al-Mg alloy. The addition of phosphorus results in the formation of stedite (eutectic ferrite and Fe P) and in the enhancement of wear resistance of the cast iron product. Since the addition of aluminum-magnesium alloy sometimes causes the incorporation of dross and the formation of pinholes, the presences of selenium and tellurium are effective in preventing such occurrences. Rare earth elements prevent the reduction of the amount of eutectic graphite when a thick cast iron product is produced.
Above are the explanations of this invention. In short, this invention is characterized in that it comprises adding 20-60% by weight of a Mg-Al alloy to molten iron having an eutectic degree of 0.7-1.1. Less than 20% by Weight of Mg in the alloy is not desirable because the percentage of the eutectic graphite will become suddenly lowered as a result. More than 60% of Mg is also undesirable because of high explosiveness and low yield regarding the additives. The reasons for restricting the eutectic degree to 0.7-1.1 are as follows: When the eutectic degree is less than 0.7, the chilling tendency of the iron increases and it becomes difficult to produce good gray cast iron. When the eutectic degree is more than 1.1, kish graphites are produced rather than the fine graphites of the present invention.
The eutectic degree (So) as defined in FIGURE 2 can also be called the degree of saturation as disclosed in W.- Hiller and Walkling, Foundry, vol. (December 1962), page 54, and can be represented by the equation:
Percent O or Percent C Sc= 1 l 4.3 (SH-percent P) 4=.23 (percent Si) Also, eutectic degree is directly related to carbon equivalent which can be represented by the equation:
CE=percent C+ /3 (percent Si-l-percent P) 3 by weight of the iron composition, and casting said com position in a sand mold.
2. The process of claim 1, wherein said magnesium is present in the alloy in an amount of about 30% and in the iron composition in an amount of about 0.1% by weight.
3. A process for producing fine eutectic graphite iron which consists essentially of adding to molten iron having an eutectic degree of about 0.7 to 1.1, a magnesiumaluminum alloy containing about 20 to 60% by weight magnesium, the balance being essentially aluminum, said magnesium representing about 0.05 to 0.5% by weight of the iron composition, and further adding up to about 1% by weight of a material selected from the group consisting of phosphorus, selenium, tellurium, the rare earth tion in a sand mold.
References Cited UNITED STATES PATENTS Millis et al. 75-130 Heine 75--130 Busby 75130- Wever et a1. 75-129 X Zifferer 75-130 Menzen 7558 Dickinson 75-130 X Osborn et al 75-130 DAVID L. RECK, Primary Examiner.
HYLAND BIZOT, Examiner. elements and mixtures thereof and casting said composi- 15 H W TARRING Assistant Examiner

Claims (1)

1. A PROCESS FOR PRODUCING FINE EUTECTIC GRAPHITE IRON WHICH CONSISTS ESSENTIALLY OF ADDING TO MOLTEN IRON A MAGNESIUM-ALUMINUM ALLOY CONTAINING ABOUT 20 TO 60% BY WEIGHT MAGNESIUM, THE BALANCE BEING ESSENTIALLY ALUMINUM, SAID MAGNESIUM REPRESENTING ABOUT 0.05 TO 0.5% BY WEIGHT OF THE IRON COMPOSITION, AND CASTING SAID COMPOSITION IN A SAND MOLD.
US316928A 1962-10-31 1963-10-17 Method for producing a fine graphite cast iron Expired - Lifetime US3329496A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4751962 1962-10-31

Publications (1)

Publication Number Publication Date
US3329496A true US3329496A (en) 1967-07-04

Family

ID=12777343

Family Applications (1)

Application Number Title Priority Date Filing Date
US316928A Expired - Lifetime US3329496A (en) 1962-10-31 1963-10-17 Method for producing a fine graphite cast iron

Country Status (1)

Country Link
US (1) US3329496A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485761A (en) * 1947-03-22 1949-10-25 Int Nickel Co Gray cast iron having improved properties
US2651570A (en) * 1949-11-19 1953-09-08 Wisconsin Alumni Res Found Manufacture of malleablized white cast iron
US2663635A (en) * 1950-11-27 1953-12-22 Int Nickel Co Addition agent and method for introducing magnesium into cast iron
US2705196A (en) * 1952-02-20 1955-03-29 Manufacturers Chemical Corp Process for de-oxidizing a molten metal
US2780541A (en) * 1954-04-09 1957-02-05 Zifferer Lothar Robert Process for treating molten metals
US2805932A (en) * 1953-02-25 1957-09-10 Menzen Paul Process for the treatment of steel smeltings with light metals
US2885285A (en) * 1957-08-22 1959-05-05 Allis Chalmers Mfg Co Alloyed nodular iron
US3197306A (en) * 1964-08-31 1965-07-27 Dow Chemical Co Method for treating ferrous metals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485761A (en) * 1947-03-22 1949-10-25 Int Nickel Co Gray cast iron having improved properties
US2651570A (en) * 1949-11-19 1953-09-08 Wisconsin Alumni Res Found Manufacture of malleablized white cast iron
US2663635A (en) * 1950-11-27 1953-12-22 Int Nickel Co Addition agent and method for introducing magnesium into cast iron
US2705196A (en) * 1952-02-20 1955-03-29 Manufacturers Chemical Corp Process for de-oxidizing a molten metal
US2805932A (en) * 1953-02-25 1957-09-10 Menzen Paul Process for the treatment of steel smeltings with light metals
US2780541A (en) * 1954-04-09 1957-02-05 Zifferer Lothar Robert Process for treating molten metals
US2885285A (en) * 1957-08-22 1959-05-05 Allis Chalmers Mfg Co Alloyed nodular iron
US3197306A (en) * 1964-08-31 1965-07-27 Dow Chemical Co Method for treating ferrous metals

Similar Documents

Publication Publication Date Title
US4414027A (en) Method for obtaining iron-based alloys allowing in particular their mechanical properties to be improved by the use of lanthanum, and iron-based alloys obtained by the said method
US2750284A (en) Process for producing nodular graphite iron
US2762705A (en) Addition agent and process for producing magnesium-containing cast iron
US3459541A (en) Process for making nodular iron
JP2000512686A (en) Composition for low sulfur rat pig iron inoculation
US3598576A (en) Method of making nodular iron
US2675308A (en) Art of using magnesium-containing addition agents to produce spheroidal graphite cast iron
US3798027A (en) Gray iron
US3829311A (en) Addition alloys
US2792300A (en) Process for the production of nodular iron
US2542655A (en) Gray cast iron
US4227924A (en) Process for the production of vermicular cast iron
US4501612A (en) Compacted graphite cast irons in the iron-carbon-aluminum system
US3619172A (en) Process for forming spheroidal graphite in hypereutectoid steels
US2749238A (en) Method for producing cast ferrous alloy
US4579164A (en) Process for making cast iron
US4430123A (en) Production of vermicular graphite cast iron
US3033676A (en) Nickel-containing inoculant
US3329496A (en) Method for producing a fine graphite cast iron
US2841488A (en) Nodular cast iron and process of making same
US3762915A (en) Method for casting gray cast iron composition
US3336118A (en) Magnesium alloy for cast iron
US3421887A (en) Process for producing a magnesium-containing spherical graphite cast iron having little dross present
US3663212A (en) Nodular irons and method for controlling same
US2809888A (en) Cast iron with high creep resistance and method for making same