US3328314A - Noncaking straight-chain alkyl aryl sulfonate detergent compositions - Google Patents

Noncaking straight-chain alkyl aryl sulfonate detergent compositions Download PDF

Info

Publication number
US3328314A
US3328314A US375938A US37593864A US3328314A US 3328314 A US3328314 A US 3328314A US 375938 A US375938 A US 375938A US 37593864 A US37593864 A US 37593864A US 3328314 A US3328314 A US 3328314A
Authority
US
United States
Prior art keywords
detergent
sodium
composition
weight
anticaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US375938A
Inventor
David M Marquis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Priority to US375938A priority Critical patent/US3328314A/en
Priority to GB25330/65A priority patent/GB1074517A/en
Priority to DE1467571A priority patent/DE1467571C3/en
Priority to NL656507785A priority patent/NL146875B/en
Priority to FR21257A priority patent/FR1439422A/en
Priority to BE674793A priority patent/BE674793A/xx
Application granted granted Critical
Publication of US3328314A publication Critical patent/US3328314A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/3472Organic compounds containing sulfur additionally containing -COOH groups or derivatives thereof

Definitions

  • a particulate solid detergent composition containing alkyl-substituted aryl sulfonate organic detergent, the alkyl group substituted on the nucleus being of straight-chain structure, said detergent composition having uniformly dispersed therethrough a minor proportion of an anticaking agent to suppress the caking tendencies of said organic detergent.
  • LAS linear alkyl benzene sulfonate
  • n-alkene or an n-alkyl halide alkylating agent of the desired molecular weight range, i.e., corresponding to a carbon content of 9 to 18 carbon atoms.
  • the alkylating agent can be derived from petroleum distillate cracking or petroleum wax cracking, catalytic dehydrogenation of n-paraffins, chlorination-dehydrochlorination of n-paraffins, ethylene polymerization, and chlorination of n-paraffins.
  • the raw materials from which the straight-chain stock is to be derived may be, and often is, subjected to isonormal separation processes, such as those involving molecular sieves and urea clathration to produce a more linear product than could otherwise be obtained.
  • the linear alkyl benzene sulfonates possess undesirable caking tendencies. Indeed, the caking problem seems to be aggravated with the linear alkyl benzene sul fonates to the extent that known anticaking additives, although regarded as being satisfactorily effective in branched-chain alkyl benzene sulfonates, are often, on the other hand, not quite so effective with currently produced linear alkyl benzene sulfonates.
  • anticaking inhibitors although eminently effective in linear alkyl benzene sulfonate deice CH2 CH C O OM C O OM wherein M represents either sodium or potassium alkali metal.
  • the anticaking additive can be prepared by adding sodium bisulfite to an aqueous solution of the disodium salt of maleic acid.
  • a satisfactory amount of auticaking inhibitor can range from about 2 to 25 preferably 8 to 20%, by weight, based on alkyl benzene sulfonate detergent.
  • the invention is applicable to built detergent compositions, i.e., compositions containing nonsoap linear alkyl benzene sulfonate synthetic detergent, and an inorganic salt detergent builder, such as a sulfate, carbonate, silicate borate, or condensed phosphate sodium salt.
  • built detergent compositions i.e., compositions containing nonsoap linear alkyl benzene sulfonate synthetic detergent, and an inorganic salt detergent builder, such as a sulfate, carbonate, silicate borate, or condensed phosphate sodium salt.
  • a more specific embodiment of the invention is the preparation of a particulate solid detergent composition consisting essentially of nonsoap linear alkyl benzene sodium sulfonate detergent having caking tendencies, an inorganic sodium salt detergent builder, and a small but effective amount to suppress said caking tendencies of the aforesaid sodium or potassium sulfosuccinate anticaking inhibitor.
  • nonsoap synthetic detergent can range from about 5 to 95%, preferably 10 to 40%, by weight, based on it and detergent builder; inorganic detergent salt builder, from 5 to 95%, preferably 60 to by weight, based on it and nonsoap detergent; and anticaking agent from about 2 to 25%, preferably 8 to 20%, by weight, based on nonsoap synthetic detergent.
  • the invention is particularly useful in connection with so-called heavy-duty detergent compositions or synthetics for household use, especially adapted for washing cotton.
  • these compositions consist essentially of the nonsoap synthetic detergent and a condensed phosphate such as tetra-sodium pyrophosphate and/or sodium tripolyphosphate, usually in a weight ratio of phosphate to synthetic detergent ranging from less than 1:1 to more than 3:1.
  • Other inorganic salt detergent builders as well can be present to the extent that the total inorganic salt builder, including the phosphate, to synthetic detergent weight ratio can be as high as 10:1.
  • special purpose additives such as a bleach, perfume, foam booster, etc., may be present in the finished composition, in a combined amount up to 30' percent by weight of the finished composition.
  • a particularly useful embodiment of the invention is the preparation of a heavy-duty particulate solid detergent composition, at least 70% by weight thereof consisting essentially of linear C C alkyl benzene sulfonate organic detergent, an inorganic salt detergent builder in a weight ratio to organic detergent ranging from 1:1 to 10:1, said inorganic salt detergent builders including a condensed sodium phosphate, such as tetra-sodium pyrophosphate and/or sodium tripolyphosphate, present in a weight ratio to the organic detergent ranging from about 1:1 to 3:1.
  • a condensed sodium phosphate such as tetra-sodium pyrophosphate and/or sodium tripolyphosphate
  • the anticaking preventive is incorporated in the detergent composition in such fashion as to effect intimate and thorough admixture with, or uniform dispersion throughout, the other components of the detergent composition. This can be accomplished by wet-mixing, such as by forming an aqueous dispersion or slurry comprising the anticaking additive and other components of the composition, and then drying the dispersion.
  • Another way of effecting uniform dispersions of the anticaking inhibitor throughout the composition is to integrate its incorporation with the process of making the linear alkyl benzene sulfonate detergent by adding the inhibitor at the neutralization step, as follows.
  • aryl compound such as benzene or toluene, benzene hereinafter being taken as representative, is alkylated with an alkylating agent in the presence of an alkylating catalyst.
  • benzene can be alkylated with a straightchain olefin mixture, for example, a C -C aolefin mixture, or any desired olefin fraction, such as a C C or a C 41 a-olefin fraction, or mixtures thereof, in the presence of HF catalyst; or with a chloroparaffin of similarly varying carbon range in the presence of a Friedel-Crafts catalyst, such as AlCl
  • a suitable sulfonating agent such as sulfuric acid, oleum, or S to produce the alkyl benzene sulfoni-c acids.
  • excess sulfonating agent can be removed from the sulfonation mixture by adjusting the water content of the mixture, settling to obtain a top sulfonic acid phase and a lower spent acid phase, which is discarded.
  • the sulfonic acid phase is then neutralized with a suitable base, such as caustic or sodium carbonate to give the alkyl benzene sodium sulfonate.
  • the anticaking inhibitor of the present invention can be incorporated into the detergent composition by adding preformed sodium or potassium sulfosuccinate either to the neutralizing caustic solution or to the sulfonation mixture prior to or during the neutralization step.
  • inorganic sodium sulfate detergent builder in addition to inorganic sodium sulfate detergent builder, other inorganic salt detergent builders, such as the condensed phosphates, carbonates, silicates, and borates, can be incorporated in the detergent composition. These may be added to the neutralized slurry prior to drying in accordance with the specifications desired in the ultimate or finished composition. The slurry thus built is then converted to the particulate solid form and size by a suitable drying operation such as spray-drying or drum-drying.
  • suitable drying operation such as spray-drying or drum-drying.
  • a particularly useful composition is one based on linear alkyl benzene sodium sulfonate detergent, and a condensed phosphate ordinarily used in conjunction with a synthetic surfactant to produce a heavy-duty detergent composition.
  • the polyphosphates can be used in their commercially available anhydrous form, obtained by the hightemperature dehydration of the orthophosphates-tripolyphosphates, from a mixture of disodium orthophosphate and monoorthophosphate; tetrasodium pyrophosphate, from disodium orthophosphate; and sodium polymeta-phosphates, from orthophosphate.
  • the various condensed phosphates can be used singly or in admixture.
  • ingredients or fillers in combined amounts up to about 30 weight percent of the final composition, can be incorporated.
  • optional ingredients are those customarily present in heavy-duty detergent formulations. These include in weight amounts based on final composition, an anticorrosion and stabilizing agent, such as, sodium silicate, wherein the SiO to Na O ratio can range from 1/2 to 2/1 in proportion of, for example, 5 percent; an anti-redeposition agent, such as carboxymethyl cellulose, as described for example in US. Patent No.
  • a foam modifier such as a monoor di-ethanolamide of a fatty acid, such as lauric isopropanolamide, in proportions, for example, of 5 percent
  • a chemical bleaching agent such as sodium perborate or sodium percarbonate, for example, in an amount of 2 to 5 percent, optical whiteners, in amounts of the order 0.1 to 0.2 percent, such as the triazinyl and aroylstilbenzene, such as benzidinesulphones, bisbenzimidazoles, triazoles, and amino coumarins
  • sequestering agents in amounts, for example, of the order of less than one percent, such as tetrasodium ethylene diamine tetraacetic acid.
  • Example 1 (a) A mixture of linear alkyl benzene sodium sulfonates having 11-14 carbon atoms in the alkyl groups, and obtained by the AlCl alkylation of benzene with chlorinated C -C normal paraffins, was dried to a constant weight on a hot plate at C. to produce a free-flowing powder.
  • the dried powder was placed in an uncovered jar and exposed to room conditions of temperature and humidity, that is, 21 C. and 55% relative humidity.
  • Example 2 (a) Detergent like that of Example 1 containing 13.7 percent of sodium sulfate produced in the process of making the detergent was dried to constant weight as in Example l to produce a free-flowing granular composition. This composition was placed in a jar and exposed to the same atmospheric conditions as in Example 1 for 15 minutes, and then sealed. The detergent composition formed a cake which could be dislodged only by severe shaking of the jar.
  • the resulting solution was dried to constant weight as in (a) to produce a free-flowing powder.
  • This powder was placed in a jar, and exposed to the same conditions of temperature and humidity. After 15 minutes the jar was sealed. No caking was observed, and the material in the jar was free flowing.
  • a suitable method for determining the extent of caking in a built detergent composition is the lift-tackiness test.
  • the ingredients of the composition to be tested are formed into a water slurry of approximately 50% solids content.
  • This slurry is mixed with a mechanical stirrer for 15 minutes and then dried on a glass plate.
  • the glass plate is kept on a steam plate or hot plate which is kept at constant temperature in the range of 135150 C.
  • the slurry is spread on With a large 3l-mil doctor blade and allowed to dry until the dried product is readily scraped off (2 to 4 minutes).
  • the composition then contains about 12% moisture.
  • the powder is then screened and that passing through a 20 mesh screen and retained on a 48 mesh screen is used for testing.
  • the apparatus used in the test comprises a stationary aluminum cylinder having a diameter of 1%", mounted above a spring pan balance supported on a screw-type jack.
  • the bottom of the aluminum cylinder is covered with double-sided adhesive tape, which is changed with each test.
  • the underside of the adhesive tape is coated with a thin layer of the test sample.
  • the jack is slowly raised and the test sample is made to impinge upon the treated bottom of the aluminum cylinder to a pressure of 100 g.
  • the powder adhering to the cylinder is scraped onto the same weighing paper, and the total amount of sample that has been lifted is weighed.
  • Example 3 A detergent formulation having the following composition in parts by weight was prepared:
  • Example 4 A detergent formulation having the following composition in parts by weight was prepared:
  • This formulation had a tackiness of 1.65 ml.
  • Example 5 A detergent formulation having the following composition in parts by weight was prepared:
  • Example 6 The effect of additive concentration was determined on the following formulation using the lift-tackiness test:
  • Process for suppressing the caking tendencies of straight-chain sodium alkyl benzene sulfonate nonsoap detergent containing 9 to 18 carbon atoms in the alkyl portion of the molecule which comprises uniformly dispersing throughout said detergent 2 to 25% by weight, based on said nonsoap detergent of an anticaking inhibitor selected from the group consisting of sodium sulfosuccinate and potassium sulfosuccinate.
  • a built particulate solid detergent composition con sisting essentially of straight-chain sodium C C alkyl benzene sulfonate nonsoap detergent component having caking tendencies, inorganic sodium salt detergent builder component, and an anticaking inhibitor component to suppress said caking tendencies selected from the group consisting of sodium sulfosuccinate and potassium sulfosuccinate, the nonsoap detergent and the detergent builder each being present in a proportion within about the range of to 95%, by weight, based on the two, and the anticaking inhibitor, in the range of about 2 to 25%, by weight, based on the nonsoap detergent, said composition being obtained by drying an aqueous dispersion of the aforementioned components.
  • Heavy-duty particulate solid detergent composition at least about by weight thereof consisting essentially of a mixture of (a) straight-chain sodium alkyl benzene sulfonate nonsoap detergent containing 9 to 18 carbon atoms in the alkyl portion of the molecule, and (b) inorganic sodium salt detergent builder, the weight ratio of inorganic sodium salt detergent builder to nonsoap detergent ranging from 1:1 to 10:1, and uniformly dispersed throughout the particles of said composition, an anticaking agent selected from the group consisting of sodium sulfosuccinate and potassium sulfosuccinate, said anticaking agent being present in an amount ranging from about 2 to 25%, by weight, based on nonsoap detergent.
  • composition according to claim 10 wherein the straight-chain sodium alkyl benzene sulfonate nonsoap detergent contains 10 to 14 carbon atoms in the alkyl portion of the molecule.
  • composition according to claim 10 wherein the anticaking agent is present in an amount of about 820%, by weight, based on the nonsoap detergent.
  • composition according to claim 13 wherein the anticaking agent is sodium sulfosuccinate.
  • composition according to claim 10 wherein the anticaking agent is potassium sulfosuccinate.

Description

United States Patent C 3 328 314 NONCAKHNG srRArcn'r-cHAIN ALKYLARYL SULFONATE DETERGENT COMPOSITIONS David M. Marquis, Orinda, Calif., assignor to Chevron Research Company, a corporation of Delaware No Drawing. Filed June 17, 1964, Ser. No. 375,938 14 Claims. (Cl. 252-383) The present invention relates to a process for suppressing the caking tendencies of alkyl aryl sulfonate detergents, and to the resulting detergent compositions having improved non-caking properties. More particuarly, it relates to the preparation of a particulate solid detergent composition containing alkyl-substituted aryl sulfonate organic detergent, the alkyl group substituted on the nucleus being of straight-chain structure, said detergent composition having uniformly dispersed therethrough a minor proportion of an anticaking agent to suppress the caking tendencies of said organic detergent.
For a great number of years the bulk of detergent alkylate used to make the finished detergent composition by conversion to the sulfonic acid, followed by neutralization, has been the monophenyl substituted polypropylene polymers, as described in US. Patents Nos. 2,477,382 and 2,477,383 to Lewis. While these detergent compositions have superior detersive powers, it Was recognized early in their development that in the particulate solid forms they were hygroscopic and possessed undesirable caking tendencies. These defects were particularly noticeable in built alkyl benzene sulfonate detergent formulations or compositions useful as household washing powders. To inhibit or prevent the undesirable caking phenomenon use was made of a number of anticaking agents, particularly satisfactory being sodium benzene sulfonate or sodium toluene sulfonate, as shown in US. Patent No. 2,773,833.
Because of the branched-chain nature of the alkyl polypropylene precursor used in making detergent alkylate, the subsequently sulfonated and neutralized detergent does not meet the recently specified requirements of biodegradability. Therefore, in order to produce a more biodegradable detergent, there is being promoted a socalled linear alkyl benzene sulfonate (LAS), i.e., one derived from the sulfonation and neutralization of detergent alkylate in which the hydrocarbyl or alkyl radical is derived from straight-chain or normal hydrocarbons instead of polypropylene. To make the biodegradable detergent, conventional reactions involve catalytic alkylation of benzene or some other aryl compounds, such as toluene or xylene, with either an n-alkene or an n-alkyl halide alkylating agent of the desired molecular weight range, i.e., corresponding to a carbon content of 9 to 18 carbon atoms. The alkylating agent can be derived from petroleum distillate cracking or petroleum wax cracking, catalytic dehydrogenation of n-paraffins, chlorination-dehydrochlorination of n-paraffins, ethylene polymerization, and chlorination of n-paraffins. In addition, the raw materials from which the straight-chain stock is to be derived may be, and often is, subjected to isonormal separation processes, such as those involving molecular sieves and urea clathration to produce a more linear product than could otherwise be obtained.
Like the branched-chain polypropylene-based detergents, the linear alkyl benzene sulfonates possess undesirable caking tendencies. Indeed, the caking problem seems to be aggravated with the linear alkyl benzene sul fonates to the extent that known anticaking additives, although regarded as being satisfactorily effective in branched-chain alkyl benzene sulfonates, are often, on the other hand, not quite so effective with currently produced linear alkyl benzene sulfonates. Conversely, the presently contemplated anticaking inhibitors, although eminently effective in linear alkyl benzene sulfonate deice CH2 CH C O OM C O OM wherein M represents either sodium or potassium alkali metal. The anticaking additive can be prepared by adding sodium bisulfite to an aqueous solution of the disodium salt of maleic acid. In general a satisfactory amount of auticaking inhibitor can range from about 2 to 25 preferably 8 to 20%, by weight, based on alkyl benzene sulfonate detergent.
The invention is applicable to built detergent compositions, i.e., compositions containing nonsoap linear alkyl benzene sulfonate synthetic detergent, and an inorganic salt detergent builder, such as a sulfate, carbonate, silicate borate, or condensed phosphate sodium salt.
Therefore, a more specific embodiment of the invention is the preparation of a particulate solid detergent composition consisting essentially of nonsoap linear alkyl benzene sodium sulfonate detergent having caking tendencies, an inorganic sodium salt detergent builder, and a small but effective amount to suppress said caking tendencies of the aforesaid sodium or potassium sulfosuccinate anticaking inhibitor. The proportions of nonsoap synthetic detergent can range from about 5 to 95%, preferably 10 to 40%, by weight, based on it and detergent builder; inorganic detergent salt builder, from 5 to 95%, preferably 60 to by weight, based on it and nonsoap detergent; and anticaking agent from about 2 to 25%, preferably 8 to 20%, by weight, based on nonsoap synthetic detergent.
The invention is particularly useful in connection with so-called heavy-duty detergent compositions or synthetics for household use, especially adapted for washing cotton. As is known these compositions consist essentially of the nonsoap synthetic detergent and a condensed phosphate such as tetra-sodium pyrophosphate and/or sodium tripolyphosphate, usually in a weight ratio of phosphate to synthetic detergent ranging from less than 1:1 to more than 3:1. Other inorganic salt detergent builders as well can be present to the extent that the total inorganic salt builder, including the phosphate, to synthetic detergent weight ratio can be as high as 10:1. Further, as is known in the art, special purpose additives, such as a bleach, perfume, foam booster, etc., may be present in the finished composition, in a combined amount up to 30' percent by weight of the finished composition.
Accordingly, a particularly useful embodiment of the invention is the preparation of a heavy-duty particulate solid detergent composition, at least 70% by weight thereof consisting essentially of linear C C alkyl benzene sulfonate organic detergent, an inorganic salt detergent builder in a weight ratio to organic detergent ranging from 1:1 to 10:1, said inorganic salt detergent builders including a condensed sodium phosphate, such as tetra-sodium pyrophosphate and/or sodium tripolyphosphate, present in a weight ratio to the organic detergent ranging from about 1:1 to 3:1.
The anticaking preventive is incorporated in the detergent composition in such fashion as to effect intimate and thorough admixture with, or uniform dispersion throughout, the other components of the detergent composition. This can be accomplished by wet-mixing, such as by forming an aqueous dispersion or slurry comprising the anticaking additive and other components of the composition, and then drying the dispersion. Another way of effecting uniform dispersions of the anticaking inhibitor throughout the composition is to integrate its incorporation with the process of making the linear alkyl benzene sulfonate detergent by adding the inhibitor at the neutralization step, as follows.
Appropriate aryl compound such as benzene or toluene, benzene hereinafter being taken as representative, is alkylated with an alkylating agent in the presence of an alkylating catalyst. Thus, benzene can be alkylated with a straightchain olefin mixture, for example, a C -C aolefin mixture, or any desired olefin fraction, such as a C C or a C 41 a-olefin fraction, or mixtures thereof, in the presence of HF catalyst; or with a chloroparaffin of similarly varying carbon range in the presence of a Friedel-Crafts catalyst, such as AlCl The resulting mixture of C C monoalkyl benzenes is then sulfonated by means of a suitable sulfonating agent, such as sulfuric acid, oleum, or S to produce the alkyl benzene sulfoni-c acids.
Following the sulfonation step, excess sulfonating agent can be removed from the sulfonation mixture by adjusting the water content of the mixture, settling to obtain a top sulfonic acid phase and a lower spent acid phase, which is discarded. The sulfonic acid phase is then neutralized with a suitable base, such as caustic or sodium carbonate to give the alkyl benzene sodium sulfonate.
It is often the practice to leave all or a part of the unreacted sulfuric acid used in the sulfonation step, admixed with the alkyl benzene sulfonic acids and to neutralize them together to form an aqueous dispersion or slurry of organic sodium alkyl benzene sulfonate and inorganic sodium sulfate salt, the inorganic sulfate later serving as a builder in the finished detergent composition. The slurry is then dried as by spray-drying or drum-drying and reduced to the desired particle shape and size.
The anticaking inhibitor of the present invention can be incorporated into the detergent composition by adding preformed sodium or potassium sulfosuccinate either to the neutralizing caustic solution or to the sulfonation mixture prior to or during the neutralization step.
As hereinabove indicated, in addition to inorganic sodium sulfate detergent builder, other inorganic salt detergent builders, such as the condensed phosphates, carbonates, silicates, and borates, can be incorporated in the detergent composition. These may be added to the neutralized slurry prior to drying in accordance with the specifications desired in the ultimate or finished composition. The slurry thus built is then converted to the particulate solid form and size by a suitable drying operation such as spray-drying or drum-drying.
As stated, a particularly useful composition is one based on linear alkyl benzene sodium sulfonate detergent, and a condensed phosphate ordinarily used in conjunction with a synthetic surfactant to produce a heavy-duty detergent composition. The polyphosphates can be used in their commercially available anhydrous form, obtained by the hightemperature dehydration of the orthophosphates-tripolyphosphates, from a mixture of disodium orthophosphate and monoorthophosphate; tetrasodium pyrophosphate, from disodium orthophosphate; and sodium polymeta-phosphates, from orthophosphate. The various condensed phosphates can be used singly or in admixture. As is known in the detergent art, the proportions of the various phosphates are frequently altered in practice to meet the manufacturers own specifications. Generally good results are obtained when sodium tripolyphosphate is essentially the sole condensed phosphate, or is admixed with the other condensed phosphate, for example, 80% tripolyphosphate and 20% pyrophosphate.
In addition to the detergent builders, other ingredients or fillers, in combined amounts up to about 30 weight percent of the final composition, can be incorporated. Examples of optional ingredients are those customarily present in heavy-duty detergent formulations. These include in weight amounts based on final composition, an anticorrosion and stabilizing agent, such as, sodium silicate, wherein the SiO to Na O ratio can range from 1/2 to 2/1 in proportion of, for example, 5 percent; an anti-redeposition agent, such as carboxymethyl cellulose, as described for example in US. Patent No. 2,568,334, proportions of about 1 to 3 percent being cited as illustrative; a foam modifier, such as a monoor di-ethanolamide of a fatty acid, such as lauric isopropanolamide, in proportions, for example, of 5 percent; a chemical bleaching agent such as sodium perborate or sodium percarbonate, for example, in an amount of 2 to 5 percent, optical whiteners, in amounts of the order 0.1 to 0.2 percent, such as the triazinyl and aroylstilbenzene, such as benzidinesulphones, bisbenzimidazoles, triazoles, and amino coumarins; sequestering agents, in amounts, for example, of the order of less than one percent, such as tetrasodium ethylene diamine tetraacetic acid.
The following examples are given to illustrate the invention, parts being by weight:
Example 1 (a) A mixture of linear alkyl benzene sodium sulfonates having 11-14 carbon atoms in the alkyl groups, and obtained by the AlCl alkylation of benzene with chlorinated C -C normal paraffins, was dried to a constant weight on a hot plate at C. to produce a free-flowing powder.
The dried powder was placed in an uncovered jar and exposed to room conditions of temperature and humidity, that is, 21 C. and 55% relative humidity.
After 15 minutes the jar was sealed. The material was observed to be stuck to the bottom of the jar and could not be made to flow freely.
(b) Water solutions of the same detergent material as used in (a) and of sodium sulfate were mixed and dried to constant weight. The dried free-flowing mixture contained 50 parts linear alkyl benzene sodium sulfonates and 8 parts of sodium sulfate.
Under the same conditions as in (a), the free-flowing mixture was exposed in a jar for 15 minutes after which the jar was sealed. The mixture was found to be partly caked to the bottom of the jar, and could not be made to flow freely.
(c) Under the same conditions as in (b), except that the sodium sulfate was replaced by an equal weight of sodium sulfosuccinate, after exposure for 15 minutes and scaling in the jar, no caking was observed, and the contents of the jar flowed freely.
((1) Upon repeating (c), using potassium sulfosuccinate in place of the sodium sulfosuccinate, again no caking was observed and the contents of the jar flowed freely.
Example 2 (a) Detergent like that of Example 1 containing 13.7 percent of sodium sulfate produced in the process of making the detergent was dried to constant weight as in Example l to produce a free-flowing granular composition. This composition was placed in a jar and exposed to the same atmospheric conditions as in Example 1 for 15 minutes, and then sealed. The detergent composition formed a cake which could be dislodged only by severe shaking of the jar.
(b) 57 parts of the detergent-sulfate mixture of (a) was dissolved in water. To this solution was added 8 parts of sodium sulfosuccinate dissolved in water.
The resulting solution was dried to constant weight as in (a) to produce a free-flowing powder. This powder was placed in a jar, and exposed to the same conditions of temperature and humidity. After 15 minutes the jar was sealed. No caking was observed, and the material in the jar was free flowing.
A suitable method for determining the extent of caking in a built detergent composition, and the one utilized in the examples below, is the lift-tackiness test.
According to this test, the ingredients of the composition to be tested are formed into a water slurry of approximately 50% solids content. This slurry is mixed with a mechanical stirrer for 15 minutes and then dried on a glass plate. The glass plate is kept on a steam plate or hot plate which is kept at constant temperature in the range of 135150 C. The slurry is spread on With a large 3l-mil doctor blade and allowed to dry until the dried product is readily scraped off (2 to 4 minutes). The composition then contains about 12% moisture.
The powder is then screened and that passing through a 20 mesh screen and retained on a 48 mesh screen is used for testing.
The apparatus used in the test comprises a stationary aluminum cylinder having a diameter of 1%", mounted above a spring pan balance supported on a screw-type jack. The bottom of the aluminum cylinder is covered with double-sided adhesive tape, which is changed with each test. The underside of the adhesive tape is coated with a thin layer of the test sample.
30 ml. of screened sample prepared as above is weighed, and is poured in the form of a conical pile on a piece of filter paper in a Petri dish having a diameter of 9 crn., and supported on the pan of the balance. The top of the sample pile is spread level to the top of the Petri dish.
The jack is slowly raised and the test sample is made to impinge upon the treated bottom of the aluminum cylinder to a pressure of 100 g.
This pressure is maintained for 30 seconds, and then slowly released by lowering the jack. As soon as the Petri dish clears the sample adhering to the cylinder, a piece of stiff weighing paper is slid under the cylinder to catch any sample falling off the cylinder while the Petri dish is being lowered out of the way.
The powder adhering to the cylinder is scraped onto the same weighing paper, and the total amount of sample that has been lifted is weighed.
Caking tendency as measured by this test is rated on the volume of solids sticking to the plunger, calculated as follows, the lower the value, the less pronounced is the caking tendency:
Wt. lifted X 30 Tackiness (ml') wt. of sample used Example 3 (a) A detergent formulation having the following composition in parts by weight was prepared:
This formulation when subjected to the lift-tackiness test was found to have a tackiness value of 1.40 ml.
(b) To batches of a formulation having the same composition as in (a), there was added 3 parts by weight of one of the following additives. Tackiness values were determined as before.
Additive: Tackiness (ml.) Sodium toluene sulfonate 1.18 Sodium borate 1.39 Sodium sulfosuccinate 0.89
Example 4 (a) A detergent formulation having the following composition in parts by weight was prepared:
This formulation had a tackiness of 1.65 ml.
(b) To batches of a formulation having the same composition as in (a), there was added 3 parts by weight of one of the following additives, tackiness values being determined as before:
Additive: Tackiness (ml.) Sodium toluene sulfonate 1.71 Sodium borate 1.26 Sodium sulfosuccinate 0.28 Potassium sulfosuccinate 0.73 Ammonium sulfosuccinate 1.54
Example 5 (a) A detergent formulation having the following composition in parts by weight was prepared:
Parts Sodium alkyl benzene sulfonate (in which the alkyl group is a straight-hydrocarbon chain having 10 to 13 carbon atoms) 17 Laurie ethanolamide 2 Trisodium polyphosphate 45 Sodium silicate 5 Carboxy methyl cellulose 1 Sodium sulfate 19 This formulation had a tackiness of 4.86 ml.
(b) To batches of a formulation having the same composition as in (a), there was added 3 parts by weight of one of the following additives, and tackiness values determined as before:
Additive: Tackiness (ml.) Sodium toluene sulfonate 2.33 Sodium borate 1.92 Sodium sulfosuccinate 1.35
Example 6 The effect of additive concentration was determined on the following formulation using the lift-tackiness test:
Part-s Sodium alkyl benzene sulfonate (as in Example 1)-- 25 Sodium tripolyphosphate 40 Sodium silicate 7 Carboxy methyl cellulose 1 Sodium sulfate 19 Water 7 Additive Parts Tackiness No Additive- 8.2 Sodium sulfosuccinate 1.0 3. 4 D0 2. 0 2. 5 D0 3. 0 2. 1 Sodium Toluene sulfonate 1.0 8. 6 Do 2. 0 8. 6 Do 3. 0 8. 0
What is claimed is:
1. Process for suppressing the caking tendencies of straight-chain sodium alkyl benzene sulfonate nonsoap detergent containing 9 to 18 carbon atoms in the alkyl portion of the molecule, which comprises uniformly dispersing throughout said detergent 2 to 25% by weight, based on said nonsoap detergent of an anticaking inhibitor selected from the group consisting of sodium sulfosuccinate and potassium sulfosuccinate.
2. Process according to claim 1, wherein the anticaking inhibitor is present in an amount of about 8 to 25%, by weight, based on nonsoap detergent.
3. Process according to claim 1, wherein the anticaking inhibitor is sodium sulfosuccinate.
4. Process according to claim 1, wherein the anticaking inhibitor is potassium sulfosuccinate.
5. A built particulate solid detergent composition con sisting essentially of straight-chain sodium C C alkyl benzene sulfonate nonsoap detergent component having caking tendencies, inorganic sodium salt detergent builder component, and an anticaking inhibitor component to suppress said caking tendencies selected from the group consisting of sodium sulfosuccinate and potassium sulfosuccinate, the nonsoap detergent and the detergent builder each being present in a proportion within about the range of to 95%, by weight, based on the two, and the anticaking inhibitor, in the range of about 2 to 25%, by weight, based on the nonsoap detergent, said composition being obtained by drying an aqueous dispersion of the aforementioned components.
6. A built detergent according to claim 5, wherein the nonsoap detergent is present in a proportion in about the range of 10 to 40%, and the inorganic sodium salt detergent builder, in about the range 60 to 90%.
' 7. A built detergent according to claim 5, wherein the anticaking inhibitor is present in an amount of about 8 to 20%, by weight, based on nonsoap detergent.
8. A built detergent composition according to claim 6, wherein the anticaking inhibitor is sodium sulfosuccinate.
9. A built detergent composition according to claim 6, wherein the anticalting inhibitor is potassium sulfosuccinate.
1i). Heavy-duty particulate solid detergent composition at least about by weight thereof consisting essentially of a mixture of (a) straight-chain sodium alkyl benzene sulfonate nonsoap detergent containing 9 to 18 carbon atoms in the alkyl portion of the molecule, and (b) inorganic sodium salt detergent builder, the weight ratio of inorganic sodium salt detergent builder to nonsoap detergent ranging from 1:1 to 10:1, and uniformly dispersed throughout the particles of said composition, an anticaking agent selected from the group consisting of sodium sulfosuccinate and potassium sulfosuccinate, said anticaking agent being present in an amount ranging from about 2 to 25%, by weight, based on nonsoap detergent.
11. Composition according to claim 10, wherein the straight-chain sodium alkyl benzene sulfonate nonsoap detergent contains 10 to 14 carbon atoms in the alkyl portion of the molecule.
12. Composition according to claim 10, wherein the anticaking agent is present in an amount of about 820%, by weight, based on the nonsoap detergent.
13. Composition according to claim 10, wherein the anticaking agent is sodium sulfosuccinate.
14. Composition according to claim 10, wherein the anticaking agent is potassium sulfosuccinate.
No references cited.
LEON D. ROSDOL, Primary Examiner.
I. GLUCK, Assistant Examiner.

Claims (1)

1. PROCESS FOR SUPPRESSING THE CAKING TENDENCIES OF STRAIGHT-CHAIN SODIUM ALKYL BENZENE SULFONATE NONSOAP DETERGENT CONTAINING 9 TO 18 CARBON ATOMS IN THE ALKYL PORTION OF THE MOLECULE, WHICH COMPRISES UNIFORMLY DISPERSING THROUGHOUT SAID DETERGENT 2 TO 25% BY WEIGHT, BASED ON SAID NONSOAP DETERGENT OF AN ANTICAKING INHIBITOR SELECTED FROM THE GROUP CONSISTING OF SODIUM SULFOSUCCINATE AND POTASSIUM SULFOSUCCINATE.
US375938A 1964-06-17 1964-06-17 Noncaking straight-chain alkyl aryl sulfonate detergent compositions Expired - Lifetime US3328314A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US375938A US3328314A (en) 1964-06-17 1964-06-17 Noncaking straight-chain alkyl aryl sulfonate detergent compositions
GB25330/65A GB1074517A (en) 1964-06-17 1965-06-15 Noncaking straight-chain alkyl aryl sulfonate detergent compositions
DE1467571A DE1467571C3 (en) 1964-06-17 1965-06-16 Non-caking, soap-free detergent mixtures
NL656507785A NL146875B (en) 1964-06-17 1965-06-17 PROCESS FOR THE PREPARATION OF SOAP-FREE SOLID CLEANERS BASED ON SODIUM ALKYLBENZE SULPHONATES.
FR21257A FR1439422A (en) 1964-06-17 1965-06-17 Detergent compositions of straight chain alkyl aryl sulfonates, not clumping
BE674793A BE674793A (en) 1964-06-17 1966-01-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US375938A US3328314A (en) 1964-06-17 1964-06-17 Noncaking straight-chain alkyl aryl sulfonate detergent compositions
BE674793A BE674793A (en) 1964-06-17 1966-01-06

Publications (1)

Publication Number Publication Date
US3328314A true US3328314A (en) 1967-06-27

Family

ID=25656369

Family Applications (1)

Application Number Title Priority Date Filing Date
US375938A Expired - Lifetime US3328314A (en) 1964-06-17 1964-06-17 Noncaking straight-chain alkyl aryl sulfonate detergent compositions

Country Status (5)

Country Link
US (1) US3328314A (en)
BE (1) BE674793A (en)
DE (1) DE1467571C3 (en)
GB (1) GB1074517A (en)
NL (1) NL146875B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470213A (en) * 1966-05-16 1969-09-30 Chevron Res Sulfosuccinate salt solubilization of fumaric acid
US3491030A (en) * 1968-10-21 1970-01-20 Union Carbide Corp Alkali metal alkylaryl sulfonate compositions
US3533944A (en) * 1968-12-23 1970-10-13 Chevron Res Anti-caking composition for linear alkyl aryl sulfonate detergents
US3912663A (en) * 1971-06-25 1975-10-14 Lever Brothers Ltd Sulfosuccinate derivatives as detergent builders
US3998762A (en) * 1974-11-20 1976-12-21 Kao Soap Co., Ltd. Granular or powdery detergent composition
US4000094A (en) * 1974-11-08 1976-12-28 The Procter & Gamble Company Water-insoluble aluminosilicate-containing detergent composition
EP0061295A1 (en) * 1981-03-23 1982-09-29 Unilever Plc Process for preparing low silicate detergent compositions
US5478502A (en) * 1994-02-28 1995-12-26 The Procter & Gamble Company Granular detergent composition containing hydrotropes and optimum levels of anoionic surfactants for improved solubility in cold temperature laundering solutions
US5478503A (en) * 1994-02-28 1995-12-26 The Procter & Gamble Company Process for making a granular detergent composition containing succinate hydrotrope and having improved solubility in cold temperature laundering solutions
US20060019846A1 (en) * 2004-07-20 2006-01-26 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Mild, moisturizing cleansing compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470213A (en) * 1966-05-16 1969-09-30 Chevron Res Sulfosuccinate salt solubilization of fumaric acid
US3491030A (en) * 1968-10-21 1970-01-20 Union Carbide Corp Alkali metal alkylaryl sulfonate compositions
US3533944A (en) * 1968-12-23 1970-10-13 Chevron Res Anti-caking composition for linear alkyl aryl sulfonate detergents
USRE29576E (en) * 1971-06-25 1978-03-14 Lever Brothers Company Sulfosuccinate derivatives as detergent builders
US3912663A (en) * 1971-06-25 1975-10-14 Lever Brothers Ltd Sulfosuccinate derivatives as detergent builders
US4000094A (en) * 1974-11-08 1976-12-28 The Procter & Gamble Company Water-insoluble aluminosilicate-containing detergent composition
US3998762A (en) * 1974-11-20 1976-12-21 Kao Soap Co., Ltd. Granular or powdery detergent composition
EP0061295A1 (en) * 1981-03-23 1982-09-29 Unilever Plc Process for preparing low silicate detergent compositions
US4460491A (en) * 1981-03-23 1984-07-17 Lever Brothers Company Process for preparing low silicate detergent compositions
US5478502A (en) * 1994-02-28 1995-12-26 The Procter & Gamble Company Granular detergent composition containing hydrotropes and optimum levels of anoionic surfactants for improved solubility in cold temperature laundering solutions
US5478503A (en) * 1994-02-28 1995-12-26 The Procter & Gamble Company Process for making a granular detergent composition containing succinate hydrotrope and having improved solubility in cold temperature laundering solutions
US20060019846A1 (en) * 2004-07-20 2006-01-26 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Mild, moisturizing cleansing compositions
WO2006007945A1 (en) * 2004-07-20 2006-01-26 Unilever Plc Mild, moisturizing cleansing compositions
US7259131B2 (en) 2004-07-20 2007-08-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Mild, moisturizing cleansing compositions
CN1988877B (en) * 2004-07-20 2010-06-16 荷兰联合利华有限公司 Mild moisturizing cleansing compositions

Also Published As

Publication number Publication date
DE1467571C3 (en) 1974-01-31
GB1074517A (en) 1967-07-05
NL146875B (en) 1975-08-15
NL6507785A (en) 1965-12-20
BE674793A (en) 1966-07-06
DE1467571A1 (en) 1969-01-02

Similar Documents

Publication Publication Date Title
JP2888859B2 (en) Granular laundry composition
US4129511A (en) Method of spray drying detergents containing aluminosilicates
US5354493A (en) Process for the production of surfactant-containing granulates
US3951877A (en) Heavy-duty granular detergent composition with sodium citrate builder
EP0506184B1 (en) Detergent compositions and process for preparing them
US3328314A (en) Noncaking straight-chain alkyl aryl sulfonate detergent compositions
US3361675A (en) Dry-mixed detergent compositions
JPH083119B2 (en) Method for producing granular detergent composition
CZ316894A3 (en) Process for preparing compact detergents
US3960780A (en) Non-caking alkyl ether sulfate-containing detergent composition
JP4033895B2 (en) Process and composition for compact detergent
US2625514A (en) Noncaking abrasive detergent compositions
US3424690A (en) Noncaking linear secondary alkyl sulfonate and sulfate detergent compositions
JP3560340B2 (en) Detergent composition
JPS5921360B2 (en) Modification method of granular detergent
US4171277A (en) Granulated composition comprising a polymer phosphate and an alkali metal aluminum silicate, process of making and method of using same
US4288340A (en) Granulated composition comprising a polymer phosphate and an alkali metal aluminum silicate, process of making and method of using same
US3325422A (en) Linear alkyl aryl sulfonate detergent compositions
US3356709A (en) Disulfonate anti-caking agents for straight-chain sulfonate detergents
US3454499A (en) Process for preparing a crystalline uniformly sized granular detergent composition
US3849346A (en) Process for preparing granular detergent composition
US3446743A (en) Straight-chain alkyl aryl sulfonate detergent compositions
US3360469A (en) Dry-mixed detergent compositions
HUT77855A (en) Detergent compositions and process for preparing them
US3446580A (en) Non-caking sodium tripolyphosphate