US3308469A - Multi-mode antenna system - Google Patents
Multi-mode antenna system Download PDFInfo
- Publication number
- US3308469A US3308469A US315949A US31594963A US3308469A US 3308469 A US3308469 A US 3308469A US 315949 A US315949 A US 315949A US 31594963 A US31594963 A US 31594963A US 3308469 A US3308469 A US 3308469A
- Authority
- US
- United States
- Prior art keywords
- waveguide
- channels
- energy
- radiating aperture
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 230000005684 electric field Effects 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/04—Multimode antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/10—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
- H01J25/12—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator with pencil-like electron stream in the axis of the resonators
Definitions
- This invention relates to UHF antenna systems of a type having means for controlling the radiation pattern thereof, herein designated as multi-mode antennas.
- Objects of this invention therefore, include the provision of an improved multi-mode antenna system having means for controlling the output radiation pattern thereof more closely and eificiently than was heretofore possible; to provide a multi-mode antenna array having means for minimizing pattern disturbance through undesired interaction between adjacent energy channels thereof; and to provide an improved UHF antenna array including in combination a plurality of input or exciter channels and associated absorbing channels for providing an improved controllable energy output.
- FIG. 2 is a simplified two-dimensional representation of the antenna structure shown in FIG. 1;
- FIG. 3 is a view similar to FIG. 2 showing an antenna system embodying the improvements of the present invention.
- a UHF antenna system means defining a plurality of separate wave channels in parallel all positioned within a common waveguide means and all terminating at a common radiating aperture and excited means connected with an input end of said waveguide means and operable for feeding thereinto input wave energy of separately selectable mode, phase and amplitude characteristics for propagation through said separate channels, the input wave energy fed to the respective channels will combine at said common radiating aperture to create thereat a preselectable radiation pattern.
- FIG. 1 which illustrates one typical structure embodying the earlier teachings just outlined, the structure extends along the aXes of a trirectangular reference frame OXYZ in which axis OY is shown vertical and parallel to the electric vector of the incident wave energy; OX is horizontal and parallel to the magnetic vector of the incident waves; and axis OZ is parallel to the direction of incident-wave propagation.
- the structure comprises a feeder section FE, a so-called mode-selector section ME and an output section OV.
- Section ME is bounded by the transverse vertical planes indicated at P1 and P2, and includes a pair of wave-guide portions MEI and ME2 positioned side by side and separated by a common vertical partition N.
- the mode-selector section ME controls the distribution of the electrical (E) vectors through the antenna.
- the two portions MEI and ME2 thereof are individually excited with input wave energy through respective pairs of input waveguides A1-B1 and A2-B2 forming part of feeder section FE.
- the antenna structure beyond the plane P2 is subdivided vertically into several, here four, generally horizontal channels by spaced horizontal partitions Q Q Q serving impose a stratification on the electric field which is found effective to maintain the desired uniform law of field distribution in the vertical direction up to the outlet end of the antenna located in that plane P3.
- These channels have their inlets designated 5, 6, 7, 8 and their outlets designated 9, 1t), 11, 12, respectively. It will be noted that the radiating aperture of the antenna system is, in effect, subdivided into a plurality of elementary apertures 9 through 12.
- the hatched areas 1 and 2 represent the distribution of the vector intensity of the transverse field component in the plane P1, as produced by the input energy app-lied through the exciters or feeders A and B which are representative of the waveguide pairs A B and A B of FIG. 1.
- the areas 1 and 2 act as sources from which the wave energy propagates as indicated by the arrows into and through the channels 6, 7 in the output section of the antenna, so that at the outlets 10, 11 of said channels there is provided a field intensity as indicated by the cross-hatched area 13, representing the desired output field distribution, corresponding to a preselected out- I put radiation pattern.
- the above-described composite or multi-mode antenna structure operates satisfactorily to provide controllable radiation patterns in cases where the transverse dimension of the antenna is comparatively large and the number of parallel channels required is not too great in comparison. In other cases, however, there may exist a relatively high coupling factor between the respective channels at their outlet ends such as 9 through 12, so that the energy therein will interact and generate reflected waves which tend to propagate back towards the input end of the system and disturb the forward propagation of the incident waves. Specifically, with reference to FIG. 2, if it is assumed that a relatively close coupling is present between the outlets 9 and 10, and between outlets 11 and 12, then parasitic fields are present at the outlets 9 and 12, as indicated by the hatched areas 14 and 15.
- the antenna system described above is modified so as to absorb all, or most of the unwanted feedback energy recycled into the system and thus to eliminate or reduce the aforesaid distorting effects.
- the modification in this instance consists in removing the central section 17 in the input plane, between the feeders A and B, and substituting therefor an energy-absorbing unit.
- this unit comprises a pair of juxtaposed channels C and D leading upstream from the plane P1 and preferably containing absorbing material or impedance-matched loads 19, 20.
- the absorbing channels such as C, D are effectively decoupled from the adjacent input channels A, B through any suitable decoupling means of known character.
- the structure in the input plane P1 of the improved antenna system according to the invention constitutes in effect a directional coupler.
- the actual number and position of the absorbing or impedance-matched channels provided according to the present invention will depend on the particular construction of the multi-mode antenna system to which the invention is applied. While two such channels have here been shown, more may be required in some cases whereas in others a single absorbing channel may sufiice. Generally speaking, the total number of additional absorbing channels used is equal to the number of degrees of freedom present in the particular law of irradiation with which the antenna system is to be used, :as will be understood from the explanations given in my aforementioned French patent. Various other changes :and departures from the single exemplary embodiment schematically shown herein and described above may be conceived without exceeding the scope of the invention.
- An antenna system comprising waveguide means having an output end defining radiating aperture means, a plurality of exciters connected with an input end of said waveguide means for feeding thereto input wave energy of separately selectable mode, phase and amplitude characteristics for propagation to said radiating aperture means, said waveguide means being dimensioned for simultaneous propagation of different modes of radiation from said exciters to said aperture means, and wave-absorption means within said waveguide means positioned and arranged for receiving and absorbing stray energy fed back into the waveguide means from said radiating aperture means, said exciters being spacedly juxtaposed in a transverse plane at said input end and said wave-absorption means is positioned between said exciters at said input end.
- said waveabsorption means includes at least one channel extending forwardly from said input end in the direction of propagation said channel being open toward said aperture means and decoupled from said exciters.
- a multimode antenna system having a selectively determinable radiation pattern produced by the superposition of a plurality of partial electric fields at a radiating aperture thereof, comprising:
- waveguide means dimensioned to be capable of simultaneously propagating a plurality of different energy modes in a predetermined direction from an input end to an output end thereof, said output end forming a radiating aperture;
- feeder means connected to said input end for supplying thereto a plurality of components of wave energy simultaneously propagable with different modes through said waveguide means to create respective superposed partial electric fields simultaneously present at said radiating aperture, said feeder means forming channels with axes parallel to said direction;
- wave-absorption means connected with said waveguide means for capturing and absorbing stray energy produced by spurious coupling between said partial fields;
- said waveguide means is of rectangular cross section, said channels being in the form of a pair of rectangular feeder guides opening into said input end in transversely spaced generally symmetrical relation, said wave-absorption means being positioned in a central area of said input end between said feeder guides.
- a multimode antenna system having a selectively determinable radiation pattern produced by the superposition of a plurality of partial electric fields at a radiating aperture thereof, comprising:
- waveguide means dimensioned to be capable of simultaneously propagating a plurality of different energy modes in a predetermined direction from an input end to an output end thereof, said output end forming a radiating aperture;
- feeder means connected to said input end for supplying thereto a plurality of components of wave energy simultaneously propagable with different modes through said waveguide means to create respective superposed partial electric fields simultaneously present at said radiating aperture; said feeder means forming channels with axes parallel to said direction;
- wave-absorption means connected with said waveguide means for capturing and absorbing stray energy produced by spurious coupling between said partial fields;
- said waveguide means includes a rectangular waveguide section having a central longitudinal partition, said channels being in the form of rectangular feeder guides connected to the input end of said waveguide section and having narrow sides parallel to said partition, said feeder guides being arranged symmetrically on opposite sides of said partition and being spaced in a direction parallel to said partition, said wave-absorption means being positioned between said feeder guides.
- said waveguide means further includes an output waveguide section extending from an output end of said rectangular waveguide section to said radiating aperture, said output section being formed with parallel longitudinal partitions extending in planes orthogonal to the plane of said central partition, thereby channeling said different compo- 'nents of wave energy during simultaneous propagation thereof to said radiating aperture.
- An antenna system comprising Waveguide means having an output end defining radiating aperture means, a plurality of exciters connected with an input end of said waveguide means for feeding thereto input Wave energy of separately selectable mode, phase and amplitude characteristics for propagation to said radiating aperture means, said waveguide means being dimensioned for simultaneous propagation of different modes of radiation from said exciters to said aperture means, waveabsorption means Within said waveguide means positioned and arranged for receiving and absorbing stray energy fed back into the Waveguide means from said radiating aperture means, and a plurality of parallel propagation channels at said output end having inputs longitudinally spaced from and respectively confronting said exciters and said wave-absorption means.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR912799A FR82483E (fr) | 1961-03-01 | 1962-10-19 | Aériens pour ondes ultra-courtes |
Publications (1)
Publication Number | Publication Date |
---|---|
US3308469A true US3308469A (en) | 1967-03-07 |
Family
ID=8789075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US315949A Expired - Lifetime US3308469A (en) | 1962-10-19 | 1963-10-14 | Multi-mode antenna system |
Country Status (4)
Country | Link |
---|---|
US (1) | US3308469A (xx) |
DE (1) | DE1441615B2 (xx) |
NL (1) | NL143375C (xx) |
SE (1) | SE314418B (xx) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383630A (en) * | 1965-06-09 | 1968-05-14 | Nippon Electric Co | Electromagnetic wave transmission device having large waveguide joined to two smaller ridged waveguides |
US3530483A (en) * | 1967-07-13 | 1970-09-22 | Csf | Multimode monopulse horn antenna |
US3713167A (en) * | 1971-08-05 | 1973-01-23 | Us Navy | Omni-steerable cardioid antenna |
US4357612A (en) * | 1980-03-07 | 1982-11-02 | Thomson-Csf | Multimode ultrahigh-frequency source and antenna |
US4764775A (en) * | 1985-04-01 | 1988-08-16 | Hercules Defense Electronics Systems, Inc. | Multi-mode feed horn |
US4813886A (en) * | 1987-04-10 | 1989-03-21 | Eip Microwave, Inc. | Microwave distribution bar |
US6703980B2 (en) | 2000-07-28 | 2004-03-09 | Thales | Active dual-polarization microwave reflector, in particular for electronically scanning antenna |
WO2020180220A1 (en) * | 2019-03-04 | 2020-09-10 | Saab Ab | Dual-band multimode antenna feed |
US11575277B2 (en) | 2020-10-05 | 2023-02-07 | Raytheon Technologies Corporation | Node power extraction in a waveguide system |
US11677831B2 (en) | 2020-10-05 | 2023-06-13 | Raytheon Technologies Corporation | Radio frequency waveguide system for mixed temperature environments |
US11698348B2 (en) | 2020-10-05 | 2023-07-11 | Raytheon Technologies Corporation | Self-referencing microwave sensing system |
US12050152B2 (en) | 2020-10-05 | 2024-07-30 | Rtx Corporation | Multi-mode microwave waveguide blade sensing system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2567210A (en) * | 1947-07-23 | 1951-09-11 | Sperry Corp | Ultra-high-frequency attenuator |
US2803009A (en) * | 1950-11-13 | 1957-08-13 | Western Electric Co | Protective shield for providing an impedance match between a radar feed and its parabolic reflector |
US2931033A (en) * | 1955-07-19 | 1960-03-29 | Bell Telephone Labor Inc | Multi-mode automatic tracking antenna system |
US2963701A (en) * | 1957-09-25 | 1960-12-06 | Antenna Systems Inc | Electrically steerable horn antenna system |
US2965898A (en) * | 1958-05-26 | 1960-12-20 | Rca Corp | Antenna |
-
1963
- 1963-10-14 US US315949A patent/US3308469A/en not_active Expired - Lifetime
- 1963-10-17 SE SE11416/63A patent/SE314418B/xx unknown
- 1963-10-17 DE DE1441615A patent/DE1441615B2/de not_active Withdrawn
- 1963-10-18 NL NL63299435A patent/NL143375C/xx not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2567210A (en) * | 1947-07-23 | 1951-09-11 | Sperry Corp | Ultra-high-frequency attenuator |
US2803009A (en) * | 1950-11-13 | 1957-08-13 | Western Electric Co | Protective shield for providing an impedance match between a radar feed and its parabolic reflector |
US2931033A (en) * | 1955-07-19 | 1960-03-29 | Bell Telephone Labor Inc | Multi-mode automatic tracking antenna system |
US2963701A (en) * | 1957-09-25 | 1960-12-06 | Antenna Systems Inc | Electrically steerable horn antenna system |
US2965898A (en) * | 1958-05-26 | 1960-12-20 | Rca Corp | Antenna |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383630A (en) * | 1965-06-09 | 1968-05-14 | Nippon Electric Co | Electromagnetic wave transmission device having large waveguide joined to two smaller ridged waveguides |
US3530483A (en) * | 1967-07-13 | 1970-09-22 | Csf | Multimode monopulse horn antenna |
US3713167A (en) * | 1971-08-05 | 1973-01-23 | Us Navy | Omni-steerable cardioid antenna |
US4357612A (en) * | 1980-03-07 | 1982-11-02 | Thomson-Csf | Multimode ultrahigh-frequency source and antenna |
US4764775A (en) * | 1985-04-01 | 1988-08-16 | Hercules Defense Electronics Systems, Inc. | Multi-mode feed horn |
US4813886A (en) * | 1987-04-10 | 1989-03-21 | Eip Microwave, Inc. | Microwave distribution bar |
US6703980B2 (en) | 2000-07-28 | 2004-03-09 | Thales | Active dual-polarization microwave reflector, in particular for electronically scanning antenna |
WO2020180220A1 (en) * | 2019-03-04 | 2020-09-10 | Saab Ab | Dual-band multimode antenna feed |
US11936117B2 (en) | 2019-03-04 | 2024-03-19 | Saab Ab | Dual-band multimode antenna feed |
US11575277B2 (en) | 2020-10-05 | 2023-02-07 | Raytheon Technologies Corporation | Node power extraction in a waveguide system |
US11677831B2 (en) | 2020-10-05 | 2023-06-13 | Raytheon Technologies Corporation | Radio frequency waveguide system for mixed temperature environments |
US11698348B2 (en) | 2020-10-05 | 2023-07-11 | Raytheon Technologies Corporation | Self-referencing microwave sensing system |
US12050152B2 (en) | 2020-10-05 | 2024-07-30 | Rtx Corporation | Multi-mode microwave waveguide blade sensing system |
Also Published As
Publication number | Publication date |
---|---|
DE1441615A1 (de) | 1968-12-05 |
DE1441615B2 (de) | 1974-05-16 |
NL143375C (nl) | 1965-08-25 |
SE314418B (xx) | 1969-09-08 |
NL299435A (xx) | 1965-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3308469A (en) | Multi-mode antenna system | |
CA1093692A (en) | Linear accelerators of charged particles | |
US3662393A (en) | Multimode horn antenna | |
US3160887A (en) | Broadside array with adjustable coupling network for beam shaping | |
JPS5923123B2 (ja) | マイクロ・ストリツプライン・アンテナ装置 | |
US3100894A (en) | Dual frequency feed horn | |
Hakimi et al. | Wakefield in solid state plasma with the ionic lattice force | |
GB997773A (en) | Slotted waveguide antenna | |
US2692336A (en) | Aperture antenna | |
US3518576A (en) | Crossed guide directional coupler | |
JPH0246004A (ja) | 方形導波管スロットアレイアンテナ | |
US3078463A (en) | Parallel plate waveguide with slotted array and multiple feeds | |
US3109174A (en) | Antenna array | |
US3750183A (en) | Multimode antenna system | |
US4241353A (en) | Multimode monopulse feed and antenna incorporating same | |
US3018480A (en) | Improvements in aerials of the cosecantsquared type | |
US3233242A (en) | H-guide microwave antenna | |
US3189908A (en) | Ridged waveguide slot antenna | |
US3474454A (en) | Power divider for antenna array using digital ferrite phase shifters | |
US3882505A (en) | Dual band phased array element | |
GB1205002A (en) | Phased array transmission lens feed system | |
JPS61127203A (ja) | 導波管型電力分配器 | |
GB652168A (en) | Improvements in modulating systems for ultra short waves | |
US3537037A (en) | Crossed guide microwave coupler | |
US4749970A (en) | Compact orthomode transducer |