US3305743A - Cathode ray tube matrix structure - Google Patents

Cathode ray tube matrix structure Download PDF

Info

Publication number
US3305743A
US3305743A US312903A US31290363A US3305743A US 3305743 A US3305743 A US 3305743A US 312903 A US312903 A US 312903A US 31290363 A US31290363 A US 31290363A US 3305743 A US3305743 A US 3305743A
Authority
US
United States
Prior art keywords
matrix
printing
cathode ray
ray tube
insulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US312903A
Inventor
Oscar A Drake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Priority to US312903A priority Critical patent/US3305743A/en
Priority to US596569A priority patent/US3427644A/en
Application granted granted Critical
Publication of US3305743A publication Critical patent/US3305743A/en
Assigned to NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP. reassignment NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP. ASSIGNS ITS ENTIRE RIGHT TITLE AND INTEREST, UNDER SAID PATENTS AND APPLICATIONS, SUBJECT TO CONDITIONS AND LICENSES EXISTING AS OF JANUARY 21, 1981. (SEE DOCUMENT FOR DETAILS). Assignors: GTE PRODUCTS CORPORATION A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/02Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused
    • H01J31/06Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused with more than two output electrodes, e.g. for multiple switching or counting
    • H01J31/065Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused with more than two output electrodes, e.g. for multiple switching or counting for electrography or electrophotography, for transferring a charge pattern through the faceplate

Definitions

  • This invention relates to electrostatic printing cathode ray tubes in general and more particularly to an improved matrix structure for electrostatic printing tubes and a method for achieving the same.
  • Electrostatic printing cathode ray tubes are well known devices having found use in many rapid printing applications such as address label printing and facsimile transmission of intelligence.
  • a typical printing tube is constructed of a glass envelope containing an electron beam generating source at one endand a printing matrix array hermetically sealed or bonded to the opposite end.
  • the printing matrix comprises a discrete array of a plurality of microminiature electrical conductors sealed parallel in spaced relationship to each other in a substrate of insulative material with the conductors extending interi-orly to exteriorly therethrough.
  • conductors may be tungsten wires having diameters of 0.001 inch sealed in a borosilicate glass on centers of 0.004 inch thereby giving a density of 62,500 conductors per square inch.
  • a printing tube of this nature is conventionally operated at relatively high voltages, as for example, minus 18 kilovolts cathode voltage with reference to zero anode voltage and small electron beam currents.
  • a regulated electron beam emanating from the electron beam or gun source within the tube is caused to scan the interior surface of the matrix so as to impart a small electron beam current to selected conductor elements in the matrix array.
  • Present arrays require a 300-400 volt conductor element buildup, acquired from the electron beam, to impart a sufficient electrostatic negative charge for printing purposes.
  • a moving paper belt having a coating thereon receptive to electrostatic charge deposition is drawn across the exterior surface'of the matrix, thereby acquiring a latent image composed of negative electrostatic charge patterns from the conductor elements. Subsequent processing of the latent image on the paper belt produces a printed copy of the electrically transmitted information.
  • electrostatic printing tubes have exhibited serious flaws or defect such as areas of dead or no copy, and areas of skip or intermittent copy.
  • Dead" copy manifests itself as completely non-printing areas of the matrix and is caused by undesirable insulative films of glass or metallic oxide over the matrix conductor elements.
  • Skip copy manifests itself as intermittent printing areas of the matrix and is caused by arcing and leakage between the conductors of the matrix array.
  • Yet another prevalent type of defect is that of conductor elements snagging or abrading the moving paper belt as it passes over the exterior surface of the printing matrix.
  • an object of this invention is to provide an improved electrostatic printing tube which does not exhibit dead areas of copy resulting from insulative films over the conductor elements.
  • Another object of this invention is to provide an improved electrostatic printing tube which does not exhibit skip areas of copy resulting from arcing and leakage between conductor elements.
  • Yet another object of this invention is to provide an Patented Feb. 21, 1967 improved electrostatic printing tube having a printing matrix surface which does not abrade the coated paper belt moved contiguously thereover.
  • FIG. 1 is a cross-sectional view of a typical electrostatic printing cathode ray tube
  • FIG. 4 is an enlarged cross-sectional view of a printing matrix after abrasive processing.
  • FIG. 1 a typical electrostatic printing cathode ray tube 11 comprising an envelope 13 containing an electron beam source or gun 15 from which issues an electron beam 17 directed to impinge on the printing matrix 19 which is integrally bonded to the envelope.
  • the paper belt 21, coated to be receptive to electrostatic charge deposition, is caused to move over the matrix 19 during operation in a prescribed manner by means not shown.
  • FIG. 2 illustrates the construction of a typical printing matrix 19 wherein the electrically conductive elements 25 having diameters of 0.001 inch are hermetically sealed on centers of 0.004 inch in an insulative material 27 to extend in-teriorly to exteriorly therethrough to form parallel arrays having insulating interstitial spaces 29 separating them one from the other.
  • the conductor elements 25 are preferably selected from the group of refractory metals including such representative metals as tungsten, molybdenum, tantalum, rhenium, hafnium, and niobium.
  • the insulative material 27 used to seal the conductor elements 25 is a ceramic material chosen to facilitate the formation of an optimum bond with the metal selected for the conductor elements and at the same time exhibit the desired electrical properties especially relating to resistivity and dielectric constant. Suitable ceramic materials 27 to form such an optimum bond with the above stated refractory metals can be found in glasses having a dielectric constant of less than 7.0 of Which the borosilicate family of glasses is an example.
  • the interior interstitial surface 30 and the exterior interstitial surface 31 of the matrix 19 are initially relatively smooth, and since there are interstitial spacings of only 0.003 inch separating adjacent conductors 25 these surface areas need to be made free of all contaminationor bulb manufacturing residues.
  • Many of the conductor elements 25 are apt to have protruding burrs 33 on the ends thereof.
  • these conductor elements may be coated with an undesirable insulative film 35 of glass or oxide residue from the bulb manufacturing operation. It is quite evident that if the burrs 33 are not removed they are apt to abrade the coated paper belt 21 as it passes over the matrix 19. Further the burrs reduce the surface interstitial spacing or area between adjacent conductorsZS whereby arcing or leakage is promoted therebetween.
  • the aggravating insulative films 35 cause continuity malfunctions which result in dead areas of printed copy on .the treated paper belt.
  • FIG. 3 Processing of the printing tube matrix is shown in FIG. 3.
  • the interior pressurized blast nozzle 39 being inserted into the envelope 13 is positioned to direct the interior abrasive pressurized blast 41 issuing from the nozzle 39 to impinge on the interior interstitial surface 30.
  • An exterior nozzle 40 is used to direct the exterior abrasive pressurized blast 42 to impinge on the exterior interstitial surface 31.
  • the nozzles 39 and 40 are positioned at substantially right angles to the matrix 19 to insure most effective abrading.
  • the matrix 19 and the nozzles 39 and 40 are caused to experience a controlled lateral relative motion such that the abrasive blasts 41 and 42 will uniformly clean and abrade the matrix surfaces and 31.
  • the abrasion operational conditions concerning pressure, duration of abrasion, and rate of relative motion are mutually dependent such that no one pressure, time, or rate can be specified as optimum independently of the others.
  • the pressurized abrasive blast abrades the terminal portions of conductor elements 25 so that they are free of burrs and with essentially rounded exterior terminal portions 51 extending one half to two conductor element diameters beyond the roughened exterior interstitial surface 53.
  • the rounded terminal portions 51 extending one half to two element diameters beyond the exterior surface 53 are sufliciently protruding to effectively contact the moving paper belt 21 to impart thereon the desired electrostatic charges, but as such are not overly protruding so as to impede the travel of the belt 21 as it moves over the exterior surface 53.
  • the roughened surface 53 provides a clean and lengthened leakage path between adjacent conductive elements 25.
  • the removal of burrs 33 from the terminal portions of the conductive elements reduces arcing between adjacent elements and also eliminates destructive abrasion of the coated paper belt 21 as it .passes over the exterior terminal portions 51 of conductor elements 25.
  • the interior terminal portions 57 of conductors 25 are also cleaned of burrs 33 and films of insulative materials which inhibit the reception of current from the electron beam.
  • the interior terminal portions 57 of the conductor elements 25 are abraded so as to be substantially rounded and essentially flush with the roughened interior interstitial surface 55 which is cleaned and roughened to enhance insulative capabilities between adjacent conductors 25.
  • Terminal portions 57 are cleaned of contamination and films of ceramic and metallic oxides so as to make the conductors 25 ready receptors of current from the electrom beam 17.
  • the abrasives used in this abrading process should preferably be electrically nonconductive and have a minimum hardness rating of at least 5.5 on Mohs scale of scratch hardness. This degree of minimum hardness is specified to provide particles which will effectively abrade the insulative materials 27 normally used, such as borosilicate glasses having a range of 5.0-5.5 on Mohs scale of scratch hardness. Also the refractory metals forming conductive elements 25, which have more abrasion resistance than the aforementioned glass, must be sufficiently abraded by particles of a given hardness to adequately clean and remove burrs 33 as required of this process.
  • the nominal particle size is less than the 0.003 inch spacing between adjacent conductor elements 25 to per- -mit the particles to facilely enter there-between and achieve the desired abrasion and cleaning of the interstitial surfaces 53 and 55 and the conductor element terminal portions 51 and 57.
  • abrasive materials are aluminurn oxide, silicon carbide, cerium oxide, and boron nitride. While a dry abrasive is preferred, a wet slurry type abrasive may be used with success. After the abrasion operation, the envelope 13 is cleaned in preparation for subsequent manufacturing operations.
  • an electrostatic printing tube having an improved printing matrix that eliminates dead or skip areas of copy.
  • the roughened surfaces of the improved matrix provide increased insulation areas between adjacent round-ended conductive elements to effect a drastic reduction in leakage and arcing therebetween.
  • the abrasive processing removes inherent burrs from the terminal portions of the conductors, eradicates undesirable insulative and conductive surface contaminants, roughens the interstitial surface, and provides substantially rounded terminal portions on the conductive elements thereby assuring improved printing efficiency and reliability. These factors result in a printing matrix that exhibits a degree of superior performance heretofore unattained.
  • An electrostatic printing cathode ray tube having a face portion and an electron target printing matrix comprising:
  • a plurality of spaced electrically conductive elements hermetically sealed in spaced parallel array into said insulative matrix material to extend interiorly to exteriorly therethrough to provide a conductive matrix array having insulative interstitial areas with roughened interior and exterior surfaces therein, said elements having substantially rounded exterior and interior terminal portions.

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

Feb; 21, 1967 A, DRAKE 3,305,743
CATHODE RAY TUBE MATRIX STRUCTURE Filed Oct. 1, 1965 INVENTOR Oscar A. Drake ATTORNEY United States latent Cfiflce 3,305,743 CATHODE RAY TUBE MATRIX STRUCTURE Oscar A. Drake, Seneca Falls, N.Y., assignor to Sylvania Electric Products Inc., a corporation of Delaware Filed Oct. 1, 1963, Ser. No. 312,903 4 Claims. (Cl. 31373) This invention relates to electrostatic printing cathode ray tubes in general and more particularly to an improved matrix structure for electrostatic printing tubes and a method for achieving the same.
Electrostatic printing cathode ray tubes are well known devices having found use in many rapid printing applications such as address label printing and facsimile transmission of intelligence.
A typical printing tube is constructed of a glass envelope containing an electron beam generating source at one endand a printing matrix array hermetically sealed or bonded to the opposite end. The printing matrix comprises a discrete array of a plurality of microminiature electrical conductors sealed parallel in spaced relationship to each other in a substrate of insulative material with the conductors extending interi-orly to exteriorly therethrough. Typically such conductors may be tungsten wires having diameters of 0.001 inch sealed in a borosilicate glass on centers of 0.004 inch thereby giving a density of 62,500 conductors per square inch.
A printing tube of this nature is conventionally operated at relatively high voltages, as for example, minus 18 kilovolts cathode voltage with reference to zero anode voltage and small electron beam currents. A regulated electron beam emanating from the electron beam or gun source within the tube is caused to scan the interior surface of the matrix so as to impart a small electron beam current to selected conductor elements in the matrix array. Present arrays require a 300-400 volt conductor element buildup, acquired from the electron beam, to impart a sufficient electrostatic negative charge for printing purposes. A moving paper belt having a coating thereon receptive to electrostatic charge deposition, is drawn across the exterior surface'of the matrix, thereby acquiring a latent image composed of negative electrostatic charge patterns from the conductor elements. Subsequent processing of the latent image on the paper belt produces a printed copy of the electrically transmitted information.
In some cases electrostatic printing tubes have exhibited serious flaws or defect such as areas of dead or no copy, and areas of skip or intermittent copy. Dead" copy manifests itself as completely non-printing areas of the matrix and is caused by undesirable insulative films of glass or metallic oxide over the matrix conductor elements. Skip copy manifests itself as intermittent printing areas of the matrix and is caused by arcing and leakage between the conductors of the matrix array. Yet another prevalent type of defect is that of conductor elements snagging or abrading the moving paper belt as it passes over the exterior surface of the printing matrix.
Attempts have been made to remove the undesirable insulative films, burrs, and contaminants by chemical cleaning. These attempts have proven unsatisfactory as chemical cleaning is selective and will remove only those materials which are affected by the particular chemical in use.
Accordingly, an object of this invention is to provide an improved electrostatic printing tube which does not exhibit dead areas of copy resulting from insulative films over the conductor elements.
Another object of this invention is to provide an improved electrostatic printing tube which does not exhibit skip areas of copy resulting from arcing and leakage between conductor elements.
Yet another object of this invention is to provide an Patented Feb. 21, 1967 improved electrostatic printing tube having a printing matrix surface which does not abrade the coated paper belt moved contiguously thereover.
The foregoing objects are achieved in one aspect of the invention by providing an improved matrix structure for an electrostatic printing tube and through the use of a processing procedure wherein a pressurized blast of abrasive material is directed against the surfaces of the printing matrix to clean and de-burr the conductor elements, and abrade and roughcn the matrix glass surfaces.
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims in connection with the accompanying drawings in which:
FIG. 1 is a cross-sectional view of a typical electrostatic printing cathode ray tube;
printing tube matrix; and
FIG. 4 is an enlarged cross-sectional view of a printing matrix after abrasive processing. a
For a better understanding of the invention there is shown in FIG. 1 a typical electrostatic printing cathode ray tube 11 comprising an envelope 13 containing an electron beam source or gun 15 from which issues an electron beam 17 directed to impinge on the printing matrix 19 which is integrally bonded to the envelope. The paper belt 21, coated to be receptive to electrostatic charge deposition, is caused to move over the matrix 19 during operation in a prescribed manner by means not shown.
In greater detail FIG. 2 illustrates the construction of a typical printing matrix 19 wherein the electrically conductive elements 25 having diameters of 0.001 inch are hermetically sealed on centers of 0.004 inch in an insulative material 27 to extend in-teriorly to exteriorly therethrough to form parallel arrays having insulating interstitial spaces 29 separating them one from the other. The conductor elements 25 are preferably selected from the group of refractory metals including such representative metals as tungsten, molybdenum, tantalum, rhenium, hafnium, and niobium.
The insulative material 27 used to seal the conductor elements 25 is a ceramic material chosen to facilitate the formation of an optimum bond with the metal selected for the conductor elements and at the same time exhibit the desired electrical properties especially relating to resistivity and dielectric constant. Suitable ceramic materials 27 to form such an optimum bond with the above stated refractory metals can be found in glasses having a dielectric constant of less than 7.0 of Which the borosilicate family of glasses is an example.
The interior interstitial surface 30 and the exterior interstitial surface 31 of the matrix 19 are initially relatively smooth, and since there are interstitial spacings of only 0.003 inch separating adjacent conductors 25 these surface areas need to be made free of all contaminationor bulb manufacturing residues. Many of the conductor elements 25 are apt to have protruding burrs 33 on the ends thereof. In addition these conductor elements may be coated with an undesirable insulative film 35 of glass or oxide residue from the bulb manufacturing operation. It is quite evident that if the burrs 33 are not removed they are apt to abrade the coated paper belt 21 as it passes over the matrix 19. Further the burrs reduce the surface interstitial spacing or area between adjacent conductorsZS whereby arcing or leakage is promoted therebetween. The aggravating insulative films 35 cause continuity malfunctions which result in dead areas of printed copy on .the treated paper belt.
Processing of the printing tube matrix is shown in FIG. 3. The interior pressurized blast nozzle 39 being inserted into the envelope 13 is positioned to direct the interior abrasive pressurized blast 41 issuing from the nozzle 39 to impinge on the interior interstitial surface 30. An exterior nozzle 40 is used to direct the exterior abrasive pressurized blast 42 to impinge on the exterior interstitial surface 31. The nozzles 39 and 40 are positioned at substantially right angles to the matrix 19 to insure most effective abrading. In operation, the matrix 19 and the nozzles 39 and 40 are caused to experience a controlled lateral relative motion such that the abrasive blasts 41 and 42 will uniformly clean and abrade the matrix surfaces and 31. The abrasion operational conditions concerning pressure, duration of abrasion, and rate of relative motion are mutually dependent such that no one pressure, time, or rate can be specified as optimum independently of the others.
As shown in FIG. 4 the pressurized abrasive blast abrades the terminal portions of conductor elements 25 so that they are free of burrs and with essentially rounded exterior terminal portions 51 extending one half to two conductor element diameters beyond the roughened exterior interstitial surface 53. Experience has demonstrated that the rounded terminal portions 51 extending one half to two element diameters beyond the exterior surface 53 are sufliciently protruding to effectively contact the moving paper belt 21 to impart thereon the desired electrostatic charges, but as such are not overly protruding so as to impede the travel of the belt 21 as it moves over the exterior surface 53. The roughened surface 53 provides a clean and lengthened leakage path between adjacent conductive elements 25. The removal of burrs 33 from the terminal portions of the conductive elements reduces arcing between adjacent elements and also eliminates destructive abrasion of the coated paper belt 21 as it .passes over the exterior terminal portions 51 of conductor elements 25. The interior terminal portions 57 of conductors 25 are also cleaned of burrs 33 and films of insulative materials which inhibit the reception of current from the electron beam. The interior terminal portions 57 of the conductor elements 25 are abraded so as to be substantially rounded and essentially flush with the roughened interior interstitial surface 55 which is cleaned and roughened to enhance insulative capabilities between adjacent conductors 25. Terminal portions 57 are cleaned of contamination and films of ceramic and metallic oxides so as to make the conductors 25 ready receptors of current from the electrom beam 17.
The abrasives used in this abrading process should preferably be electrically nonconductive and have a minimum hardness rating of at least 5.5 on Mohs scale of scratch hardness. This degree of minimum hardness is specified to provide particles which will effectively abrade the insulative materials 27 normally used, such as borosilicate glasses having a range of 5.0-5.5 on Mohs scale of scratch hardness. Also the refractory metals forming conductive elements 25, which have more abrasion resistance than the aforementioned glass, must be sufficiently abraded by particles of a given hardness to adequately clean and remove burrs 33 as required of this process. The nominal particle size is less than the 0.003 inch spacing between adjacent conductor elements 25 to per- -mit the particles to facilely enter there-between and achieve the desired abrasion and cleaning of the interstitial surfaces 53 and 55 and the conductor element terminal portions 51 and 57. Examples of satisfactory abrasive materials, though not restricted to such, are aluminurn oxide, silicon carbide, cerium oxide, and boron nitride. While a dry abrasive is preferred, a wet slurry type abrasive may be used with success. After the abrasion operation, the envelope 13 is cleaned in preparation for subsequent manufacturing operations.
Thus, there is provided an electrostatic printing tube having an improved printing matrix that eliminates dead or skip areas of copy. The roughened surfaces of the improved matrix provide increased insulation areas between adjacent round-ended conductive elements to effect a drastic reduction in leakage and arcing therebetween.
The abrasive processing removes inherent burrs from the terminal portions of the conductors, eradicates undesirable insulative and conductive surface contaminants, roughens the interstitial surface, and provides substantially rounded terminal portions on the conductive elements thereby assuring improved printing efficiency and reliability. These factors result in a printing matrix that exhibits a degree of superior performance heretofore unattained.
While there has been shown and described what is at present considered the preferred embodiment of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein Without departing from the scope of the invention as defined by the appended claims.
What is claimed is:
1. An electrostatic printing cathode ray tube having a face portion and an electron target printing matrix comprising:
a discrete matrix area of insulative material integrally attached to the face portion of said tube, said material having roughened interior and exterior surfaces free of electrical conductive surface materials thereon; and
a plurality of spaced electrically conductive elements hermetically sealed in spaced parallel array into said insulative matrix material to extend interiorly to exteriorly therethrough to provide a conductive matrix array having insulative interstitial areas with roughened interior and exterior surfaces therein, said elements having substantially rounded exterior and interior terminal portions.
2. An electrostatic printing cathode ray tube according to claim 1 wherein said exterior terminal portions are of a sufficient length to protrude exteriorly one half to two element diameters beyond said roughened exterior surface of said matrix.
3. An electrostatic printing cathode ray tube according to claim 1 wherein said rounded interior terminal portions are substantially flush with said roughened interior surface.
4. An electrostatic printing cathode ray tube according to claim 1 wherein said matrix area is of roughened borosilicate glass having properties to compatibly match and hermetically bond with conductive elements of tungsten material.
References Cited by the Examiner UNITED STATES PATENTS 2,650,191 8/1953 Teal 3l3-329 X 2,758,423 8/1956 Lande 5ll1 2,984,535 5/1961 Traite et al. 3l373 X JAMES W. LAWRENCE, Primary Examiner.
DAVID J. GALVIN, Examiner.
V. LAFRANCHI, Assistant Examiner.

Claims (1)

1. AN ELECTROSTATIC PRINTING CATHODE RAY TUBE HAVING A FACE PORTION AND AN ELECTRON TARGET PRINTING MATRIX COMPRISING: A DISCRETE MATRIX AREA OF INSULATIVE MATERIAL INTEGRALLY ATTACHED TO THE FACE PORTION OF SAID TUBE, SAID MATERIAL HAVING ROUGHENED INTERIOR AND EXTERIOR SURFACES FREE OF ELECTRICAL CONDUCTIVE SURFACE MATERIAL THEREON; AND
US312903A 1963-10-01 1963-10-01 Cathode ray tube matrix structure Expired - Lifetime US3305743A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US312903A US3305743A (en) 1963-10-01 1963-10-01 Cathode ray tube matrix structure
US596569A US3427644A (en) 1963-10-01 1966-11-23 Process of forming a matrix structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US312903A US3305743A (en) 1963-10-01 1963-10-01 Cathode ray tube matrix structure
US59656966A 1966-11-23 1966-11-23

Publications (1)

Publication Number Publication Date
US3305743A true US3305743A (en) 1967-02-21

Family

ID=26978601

Family Applications (2)

Application Number Title Priority Date Filing Date
US312903A Expired - Lifetime US3305743A (en) 1963-10-01 1963-10-01 Cathode ray tube matrix structure
US596569A Expired - Lifetime US3427644A (en) 1963-10-01 1966-11-23 Process of forming a matrix structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US596569A Expired - Lifetime US3427644A (en) 1963-10-01 1966-11-23 Process of forming a matrix structure

Country Status (1)

Country Link
US (2) US3305743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453710A (en) * 1966-06-07 1969-07-08 Stromberg Carlson Corp Method of manufacturing pin faceplate
US3460930A (en) * 1967-06-08 1969-08-12 Federal Tool Eng Co Back reflector for radiant energy glass-to-metal sealing means

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7213022A (en) * 1972-09-27 1974-03-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650191A (en) * 1948-12-29 1953-08-25 Bell Telephone Labor Inc Preparation of two-sided mosaic
US2758423A (en) * 1952-12-03 1956-08-14 Rca Corp Nozzle for removing adherent materials
US2984535A (en) * 1957-12-30 1961-05-16 Gulton Ind Inc Recorder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA659176A (en) * 1963-03-12 Zack Albert Method of removing imperfections in coils
US2200587A (en) * 1937-02-25 1940-05-14 Hydroblast Corp Method and apparatus for sand blasting
US2189985A (en) * 1938-01-20 1940-02-13 Rca Corp Electrode structure
US2710286A (en) * 1953-02-25 1955-06-07 Rca Corp Method of removing and salvaging adherent materials
US3040124A (en) * 1956-06-25 1962-06-19 Armour Res Found Transducer head system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650191A (en) * 1948-12-29 1953-08-25 Bell Telephone Labor Inc Preparation of two-sided mosaic
US2758423A (en) * 1952-12-03 1956-08-14 Rca Corp Nozzle for removing adherent materials
US2984535A (en) * 1957-12-30 1961-05-16 Gulton Ind Inc Recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453710A (en) * 1966-06-07 1969-07-08 Stromberg Carlson Corp Method of manufacturing pin faceplate
US3460930A (en) * 1967-06-08 1969-08-12 Federal Tool Eng Co Back reflector for radiant energy glass-to-metal sealing means

Also Published As

Publication number Publication date
US3427644A (en) 1969-02-11

Similar Documents

Publication Publication Date Title
US3789278A (en) Corona charging device
US5285129A (en) Segmented electron emission device
US2409514A (en) Cathode-ray tube
US3305743A (en) Cathode ray tube matrix structure
US5272414A (en) Discharge element, method of producing the same and apparatus comprising the same
Van Atta et al. A new design for a high-voltage discharge tube
US2572497A (en) Making fine mesh silica screens
US2179097A (en) Cathode ray tube electrode structures
US4124540A (en) Resistive electrical conductive coating for use in a cathode ray tube
CN102915903A (en) Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment
US2545120A (en) Cathode-ray tube arc-over preventive
Little et al. Electrical breakdown in vacuum
US3959686A (en) Cathode ray tube construction having defined processing and operational means incorporated therein
US2870366A (en) Electric discharge tube of the kind comprising a cathode of the indirectly heated type
US5385761A (en) Discharge element, method of producing the same and apparatus comprising the same
US4063991A (en) Method of increasing voltage withstanding capability of vacuum interrupters
JP5238376B2 (en) Electron tube
CN102672298A (en) Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment
CN100489679C (en) AC corona charging arrangement
EP0111129B1 (en) Ion beam source
WO2009036218A1 (en) Apparatus and method for cleaning wafer edge using energetic particle beams
Al-Arainy et al. Influence of sand/dust contamination on the breakdown of asymmetrical air gaps under switching impulses
US3323489A (en) Apparatus for coating glass bulbs
US3585447A (en) Static discharge apparatus
US3731095A (en) Electron gun device of field emission type

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP.

Free format text: ASSIGNS ITS ENTIRE RIGHT TITLE AND INTEREST, UNDER SAID PATENTS AND APPLICATIONS, SUBJECT TO CONDITIONS AND LICENSES EXISTING AS OF JANUARY 21, 1981.;ASSIGNOR:GTE PRODUCTS CORPORATION A DE CORP.;REEL/FRAME:003992/0284

Effective date: 19810708

Owner name: NORTH AMERICAN PHILIPS CONSUMER ELECTRONICS CORP.,

Free format text: ASSIGNS ITS ENTIRE RIGHT TITLE AND INTEREST, UNDER SAID PATENTS AND APPLICATIONS, SUBJECT TO CONDITIONS AND LICENSES EXISTING AS OF JANUARY 21, 1981.;ASSIGNOR:GTE PRODUCTS CORPORATION A DE CORP.;REEL/FRAME:003992/0284

Effective date: 19810708