US3300409A - Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids - Google Patents

Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids Download PDF

Info

Publication number
US3300409A
US3300409A US387171A US38717164A US3300409A US 3300409 A US3300409 A US 3300409A US 387171 A US387171 A US 387171A US 38717164 A US38717164 A US 38717164A US 3300409 A US3300409 A US 3300409A
Authority
US
United States
Prior art keywords
acid
mixture
phosphorus
moles
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US387171A
Inventor
Thomas A Butler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to US387171A priority Critical patent/US3300409A/en
Priority to GB29689/65A priority patent/GB1081311A/en
Priority to FR26926A priority patent/FR1460613A/en
Priority to DEP1271A priority patent/DE1271878B/en
Priority to US579224A priority patent/US3376221A/en
Application granted granted Critical
Publication of US3300409A publication Critical patent/US3300409A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/025Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/061Metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • C10M2223/121Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy of alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • C10M2225/041Hydrocarbon polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/16Groups 8, 9, or 10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/17Electric or magnetic purposes for electric contacts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • This invention relates to metal salts of phosphorus acids.
  • metal salts of phosphorus acids which are soluble in oils and are useful as additives in oils such as lubricating oils, metal working oils, transformer oils, fuels, power transmitting fluids, etc.
  • Oil-soluble metal salts of phosphorus acids are useful for a variety of purposes.
  • a principal utility of such metal salts is as additives in oils to impart extreme pressure properties and to reduce the tendency of the oil to undergo degradation and form harmful corrosive degradation products.
  • a metal salt of a phosphorus acid mixture comprising (A) a dihydrocarbon phosphorothioic acid having at least 3 aliphatic carbon atoms in each hydrocarbon radical and (B) a diaryl phosphinothioic acid wherein the aryl group is selected from the class consisting of phenyl, halophenyl, and alkylphenyl having up to about 6 carbon atoms in the alkyl substituent; wherein the molar ratio of (A) to (B) is within the range of from 1:2 to 1:005 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 6.
  • the metal of the metal salts of this invention is a polyvalent metal and may be a metal of Group II of the periodic table such as calcium, barium, magnesium, strontium, zinc, or cadmium. It may likewise be lead, iron manganese, copper, cobalt, nickel, chromium, or molybdenum.
  • the salts of Zinc, barium, calcium, and lead are especially preferred.
  • the dihydrocarbon phosphorothioic acid of (A) may be a phosphoromonothioic or phosphorodithioic acid.
  • the hydrocarbon groups must contain at least three aliphatic carbon atoms and may be alkyl, cycloalkyl, alkaryl, or aralkyl radicals. Especially useful as the hydrocarbon group is an alkyl radical having up to about 30 carbon atoms.
  • cycloalkyl radicals such as alkylsubstituted cyclohexyl and cyclopentyl radicals in which the alkyl substituent has up to about 30 carbon atoms
  • alkaryl radicals such as alkyl-substituted phenyl and naphthyl radicals in which the alkyl substituent has up to about 200 carbon atoms
  • aralkyl radicals such as phenylor naphthyl-substituted alkyl radicals having up to about 30 carbon atoms as well as derivatives thereof in which the phenyl and naphthyl groups are substituted with alkyl groups.
  • hydrocarbon groups are illustrated by propyl, butyl, cyclohexyl, cyclopentyl, n-hexyl, 4-methylpentyl, iso-octyl, dodecyl, behenyl, octadecyl, S-nonyldecyl, heptyl, Z-phenyl-hexyl, dodecylphenyl, 3-butylphenyl, 2,6-dibutylphenyl, polypropene (molecular weight of 1000)-substituted phenyl, polybutene (molecular weight of 300)-substituted phenyl, and 4-cyclohexyl-dodecyl.
  • dihydrocarbon phosphorothioic acid of (A) include diisopropyl phosphorodithioic acid, dihexyl phosphorodithioic acid, de-(hexylphenyl) phosphorodithioic acid, dibehenyl phosphorodithioic acid, di(polypropylene (molecular weight of 350)-substituted phenyl) phosphorodithioic acid, cyclohexyl iso-octyl phosphorodithioic acid, di-primary-pentyl phosphorodithioic acid, dihexyl phosphoromonothioic acid, di-primary-octyl phosphoromonothioic acid, and dodecyl heptyl phosphorothioic acid.
  • the dihydrogen phosphorodithioic acid is obtained most conveniently by the reaction of phosphorus pentasulfide with an alcohol or an alkylphenol.
  • the reaction involves four moles of the alcohol or alkylphenol per mole of phosphorus pentasulfide and may be carried out within the temperature range of from about 50 to about 250 C.
  • the preparation of dihexyl phosphorodithioic acid involves the reaction at about C. of phosphorus pentasulfide with four moles of a hexyl alcohol. Hydrogen sulfide is liberated and the residue is the defined acid.
  • Phosphoromonothioic acids can be obtained by treating the corresponding dithioic acid with steam or water under controlled conditions so as to replace one sulfur atom from the dithioic acid with an oxygen atoms.
  • the diaryl phosphinothioic acid of (B) likewise may be a phosphinomonothioic or phosphinodithioic acid.
  • the aryl group of the phosphino thioic acid is phenyl, halophenyl, or alkylphenyl having up to about 6 carbon atoms in the alkyl substituent.
  • diphenyl phosphinodithioic acid diphenyl phosphinomonothioic acid, di(chlorophenyl) phosphinomonothioic acid, di(dichlorophenyl) phosphinodithioic acid, phenyl bromophenyl phosphinodithioic acid, ditolyl phosphinodithioic acid, di(hexylphenyl) phosphinodithioic acid, di(cyclopentylphenyl) phosphinodithioic acid, di(iodophenyl) phosphinodithioic acid, di (dimethylphenyl) phosphinodithioic acid, di(trimethylphenyl) phosphinodithioic acid, and di(2-bromo-6-ethylphenyl) phosphinodithioic acid.
  • the diaryl phosphinothioic acid of (B) can be obtained by the reaction of an aromatic hydrocarbon with phosphorus pentasulfide, preferably in the presence of a Friedel-Crafts catalyst such as aluminum chloride, ferric chloride, Zinc chloride, boron trifiuoride, or aluminum bromide.
  • the reaction is usually carried out at a temperature of from about 60 C. to 250 C.
  • the product of the reaction is a complex of the phosphinodithioic acid and the catalyst.
  • the acid is conveniently recovered from the complex by treating the latter with water or ice at relatively low temperatures such as 050 C.
  • a commonly used procedure for preparing the acid is described in US. Patent No. 2,797,238.
  • the metal salt of this invention is obtained by neutralizing a mixture of the phosphorothioic acid of (A) and the phosphinothioic acid of (B) with a metal reactant such as the elemental metal or the hydroxide, oxide, carbonate, bicarbonate, hydride, rnercaptide, or sulfide of the metal.
  • a metal reactant such as the elemental metal or the hydroxide, oxide, carbonate, bicarbonate, hydride, rnercaptide, or sulfide of the metal.
  • the conditions under which the neutralization can be carried out usually include a temperature within the range of from about 25 C. to about 250 C., more often from about 80 C. to about 200 C. Although temperatures above about 250 C. are rarely necessary, they may be used provided that they are below the decomposition point of the reaction mixture.
  • the neutralization can be effected simply by preparing a mixture of the phosphorothioic acid and the phosphino-thioic acid and then contacting the acid mixture with a stoichiometric amount (or a slight excess) of the metal reactant or by contacting the metal reactant with one of the two acid reactants and then with the other.
  • a solvent or diluent may be used in the process to facilitate mixing and control of temperature.
  • the solvent or diluent may be mineral oil, xylene, naphtha, benzene, chlorobenzene, hexane, dioxane, cellosolve, ether, or the like.
  • a critical aspect of the metal salt of the invention is that it contains within its molecular structure an average of at least about 6 aliphatic carbon atoms per phosphorus atom. Unless this minimum requirement with respect to the number of aliphatic carbon atoms is met, the metal salt will not be sufliciently soluble in a hydrocarbon oil to be useful as an additive therein nor will it have the improved effectiveness necessary for the purposes of this invention. Metal salts in which the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 8 are especially preferred.
  • the acid mixture from which the metal salt is derived must contain the phosphorothioic acid of (A) and the phosphinothioic acid of (B) in a molar ratio within the range of from about 1:2 to 110.05, preferably from about 1:1 to 1:02.
  • Example I A mixture of 0.9 mole of di-(chlorophenyl) phosphinodithioic acid and 1.1 moles of di-isooctyl phosphorodithioic acid is heated to 60 C. and mixed with 1.05 moles of zinc oxide. To this mixture there is added 1.6 moles of diisooctyl pho-sphorodithioic acid at 90 C. and then there is added 0.82 mole of zinc oxide. The resulting mixture is heated at 90 C. for 1 hour and then to 150 C./20 mm. The residue is filtered. The filtrate is is the desired metal salt composition having a zinc content of 9.5%, a phosphorus content of 7.9%, a sulfur content of 15.5% and a chlorine content of 3.4%.
  • Example 2 To a mixture of 0.4 mole of di(chlorophenyl) phosphinodithioic acid and 0.6 mole of a dialkyl phosphorodithioic acid (prepared by the reaction of 1 mole of phosphorus pentasulfide with 4 moles of a commercial primary alcohol mixture consisting essentially of C and C alcohols), there is added 0.625 mole of zinc oxide at 65 C. within a period of 1 hour. The resulting mixture is heated at 65-85 C. for 2 hours and then at 117 C. for 1.2 hours. The residue is filtered. The filtrate is a metal salt composition having a zinc content of 7.2%, a phosphorus content of 6.9%, a sulfur content of 14.1% and a chlorine content of 5.9%.
  • Example 3 A mixture of isopropyl benzene (52.8 parts by weight), phosphorus, pentasulfide (22.2 parts), and aluminum chloride (33.3 parts) is maintained at 120 C. for 8 hours. Hydrogen sulfide is evolved. The mixture is diluted with toluene and hydrolyzed with water (420 parts) at 50- 70 C. The organic layer is recovered and heated to 115 C./ 100 mm. in 5 hours whereupon water and toluene are distilled oil. The residue is di(isopropylphenol) phosphinodithioic acid.
  • a mixture of 40 mole percent of this acid and 60 mole percent of diisooctyl phosphorodithioic acid is neutralized with a slight stoichiometric excess of zinc oxide at 6070 C.
  • the neutralized product is filtered and the filtrate is treated with water and then stripped by heating it to 100 C./100 mm. It is then diluted with mineral oil to an 85.7% oil concentrate.
  • the concentrate is filtered and the filtrate has a phosphorus content of 6.7%, a zinc content of 6.8%, and a sulfur content of 14%.
  • Example 4 A mixture of 0.45 mole of di(isopropylphenyl) phosphinodithioic acid, 0.55 mole of the dialkyl phosphorodithioic acid of Example 2, and 0.62 mole of zinc oxide is heated at 40 C. for 2 hours, then at 90-120 C. for 1.5 hours and filtered. The filtrate is heated to C./ 22 mm. The residue is a metal salt composition having a zinc content of 6.3%, a phosphorus content of 6.4%, and a sulfur content of 12.3%.
  • Example 5 A phosphorodithioic acid is prepared by reacting 1 mole of phosphorus pentasulfide with 4 moles of an alcohol mixture consisting of 65 mole percent of isobutyl alcohol and 35 mole percent of primary-pentyl alcohol.
  • the phosphorodithioic acid has an acid number of 198.
  • To a mixture of 1075 grams (3.8 moles) of the phosphorodithioic acid and 149 grams (0.2 mole) of di(isopropylphenyl) phosphinodithioic acid there is added 179 grams (2.2 moles) of zinc oxide at 60-90 C. The reaction is exothermic.
  • the resulting mixture is heated at 80- 90 C. for 1 hour and then at C./15 mm.
  • the residue is filtered.
  • the filtrate is a metal salt composition having a zinc content of 11.9%, a sulfur content of 20.6% and a phosphorus content of 10.6%.
  • Example A metal salt composition is prepared by the procedure of Example 5 except that the amount of the phosphorodithioic acid used is 1020 grams (3.6 moles) and the amount of the di(isopropylphenyl) phosphinodithioic acid used is 299 grams (0.4 mole).
  • the resulting metal salt composition has a zinc content of 11.6%, a sulfur content of 20%, and a phosphorus content of 10.8%.
  • Example 7 A metal salt composition is prepared by the procedure of Example 5 except that the amount of the phosphorodithioic acid used is 850 grams (3 moles) and the amount of the di(isopropylphenyl) phosphinodithioic acid used is 750 grams (1 mole); The resulting metal salt composition has a zinc content of 11.3%, a sulfur content of 19%, and a phosphorus content of 10.3
  • Example 8 A metal salt composition is prepared by the procedure of Example 1 except that the amount of the phosphorodithioic acid used is 907 grams (2.4 moles) and the amount of the di(isopropylphenyl) phosphinodithioic acid used is 450 grams (0.6 mole).
  • the resulting metal salt composition has a Zinc content of 9%, a sulfur content of 15%, and a phosphorus content of 8%.
  • Example 9 A mixture of 0.8 mole of di(isopropylphenyl) phosphinodithioic acid and 1.2 moles of the dialkyl phosphorodithioic acid of Example 2 is heated to 50 C. T 0 this mixture there is added 1 mole of lead oxide. An exothermic reaction occurs. The resulting mixture is heated to 125 C./ 25 mm. and filtered. The filtrate has a lead content of 17.2%, a sulfur content of 11.7%, and a phosphorus content of 5.6%.
  • Example 10 To a mixture of 0.8 mole of di(chlorophenyl) phosphinodithioic acid and 1.2 moles of diisooctyl phosphorodithioic acid at 55 C. there is added 1 mole of lead oxide. An exothermic reaction occurs. The resulting mixture is heated at 120 C. for 0.5 hour, mixed with onefourth its Weight of mineral oil, heated to 120 C./20 mm. and filtered. The filtrate has a lead content of 16.8%, a chlorine content of 4.0%, a sulfur content of 10%, and a phosphorus content of 5.1%.
  • Example 11 Zinc oxide (1 mole) is added at 50-60 C. to diisooctyl phosphorodithioic acid (1.2 moles) and bis-(dichlorophenyl) phosphinodithioic acid (0.8 mole) and the resulting mixture is heated at 95 C. for 0.5 hour, then at 125 C./25 mm. and diluted with one-fourth its weight of mineral oil. The residue is filtered. The filtrate is a metal salt composition having a Zinc content of 5.4%, a chlorine content of 9.8%, a sulfur content of 12.6%, and a phosphorus content of 5.8%.
  • Example 12 Zinc oxide (2.5 moles) is added to a mixture of di(4- methyl-Z-pentyl) phosphorodithioic acid (2.6 moles) and di(chlorophenyl) phosphinodithioic acid (1.4 moles) at 6080 C. An exothermic reaction occurs. The mixture is heated at 8085 C. for 2.5 hours and then at 100 C./43 mm. and filtered. The filtrate is mixed with 19% of its Weight of mineral oil. The resulting oil solution of the metal salt composition has a zinc content of 8.7%, a chlorine content of 5.2%, a sulfur content of 14.8%, and a phosphorus content of 7.2%.
  • Example 13 A mixture of 3 moles of di(n-hexyl) phosphorodithioic acid and 2 moles of di(chlorophenyl) phosphinodithioic acid is heated to 60 C. and mixed slowly With 3.1 moles of zinc oxide at 60-80 C. An exothermic reaction occurs. The resulting mixture is heated at 8085 C. for 2 hours and filtered. The filtrate is heated to 85 C./ 30 mm., mixed With 29% of its Weight of mineral oil and again filtered. The filtrate is an oil solution of the metal salt composition having a zinc content of 7.5%, a chlorine content of 4.1%, a sulfur content of 12.6%, and a phosphorus content of 6.2%.
  • Example 14 To a mixture of 3 moles of di-isooctyl phosphorodithioic acid and 2 moles of di(chlorophenyl) phosphinodithioic acid there is added 5.7 moles of copper at 60 C. The mixture is heated at 80-90 C. for 30 hours. The residue is mixed With 33% of its Weight of mineral oil, heated to 120 C./ 10 mm. and filtered. The filtrate has a copper content of 6.2%, a chlorine content of 2.4%, a sulfur content of 7.5%, and a phosphorus content of 4.7%.
  • Example 15 Iron (52 grams, 0.93 mole) is added to a mixture of 1.5 moles of di-isooctyl phosphorodithioic acid and 1 mole of di(chlorophenyl) phosphinodithioic acid.
  • the filtrate is the metal salt composition having an iron content of 5.9%, a chlorine content of 1.9%, a sulfur content of 13.5%, and a phosphorus content of 8.6%.
  • Example 16 A phosphorodithioic acid is prepared by the reaction of 1 mole of phosphorus sulfide with 4 moles of propylene tetramer-substituted phenol.
  • the phosphorodithioic acid has an acid number of 93.
  • the resulting mixture is heated at 8085 C.
  • the filtrate is a 50% oil solution of the metal salt composition and is found to have a zinc content of 2.9%, a chlorine content of 2.4%, a sulfur content of 5.1%, and a phosphorus content of 2.5%.
  • Example 17 To a mixture of di(isopropylphenyl) phosphinodithioic acid (1 mole), di-isooctyl phosphorodithioic acid (1.5 moles), and Water (1.5 moles), there is added at 50- 80 C. manganese carbonate (MgCO (1.49 moles). The mixture is heated at 80 C. for 2 hours, then to 95 C./ 25 mm., and filtered. The filtrate is the manganese salt having a manganese content of 4.25%, a sulfur content of 15.8%, and a phosphorus content of 7.92%.
  • MgCO manganese carbonate
  • Example 18 To a mixture of 2 moles of di(4-methy1-2-pentyl) phosphorodithioic acid and 1.1 moles of di(chlorophenyl) phosphinodithioic acid at 50-70 (3., there is added 10 grams of Water and 202 grams of cobalt carbonate (CoCO Within a period of 30 minutes. The resulting mixture is heated at 70 C. for 1 hour, mixed with 10 grams of cobalt carbonate, again heated at C. for 1 hour and then to C./ 10 mm. The residue is mixed with 600 grams of mineral oil and filtered. The filtrate is an oil solution of a metal salt composition having a cobalt content of 4.2%, a chlorine content of 3.5%, a sulfur content of 12.8%, and a phosphorus content of 5.7%.
  • a metal salt composition having a cobalt content of 4.2%, a chlorine content of 3.5%, a sulfur content of 12.8%, and a phosphorus content of 5.7%.
  • Example 19 To a mixture of 1.5 moles of di-isooctyl phosphorodithioic acid and 1 mole of di(chlorophenyl) phosphinodithioic acid there is added at 6070 C., 1.4 moles of iron. The resulting mixture is heated at 80 C. for 10 hours and then to 120 C./20 mm. The residue is filtered. The filtrate is the metal salt composition having an iron content of 6.4%, a chlorine content of 7.4%, a sulfur content of 15.1%, and a phosphorus content of 8.3%.
  • Example 20 To a mixture of 0.4 mole of di-cyclohexyl phosphinomonothioic acid and 1.6 moles of didodecyl phosphorodithioic acid, there is added at 6070 C. 1 mole of calcium hydroxide. The mixture is heated at 80 C. for 10 hours, then heated to 120 C./ 20 mm., and filtered. The filtrate is the desired calcium salt.
  • Example 21 To an equimolar mixture of ditolyl phosphinodithioic acid and di(polyisobutene (molecular Weight of 1000)- substituted phenol) phosphorodithioic acid there is added a stoichiometric amount of barium in small increments at 25 -80 C. The mixture is heated at C. for 5 hours and filtered. The filtrate is the metal salt.
  • Example 22 Magnesium methoxide is formed by adding magnesium turnings (2 moles) to 20 moles of methyl alcohol at reflux temperature. To this mixture there is added 1.6 moles of di(propylphenyl) phosphinodithioic acid and 2.4 moles of dibehenyl phosphoromonot-hioic acid at 5070 C. The mixture is held at this temperature for 10 hours and then heated under reduced pressure to distill ofi' methanol. The residue is the metal salt.
  • Example 23 A mixture of 0.4 mole of dixylyl phosphinodithioic acid and 0.6 mole of dioctadecyl phosphorodithioic acid is dissolved in times its volume of xylene. The mixture is then neutralized with 0.6 mole of nickel carbonate (NiCO at100l20 C. The residue is then heated under reduced pressure to distill off xylene and filtered. The filtrate is the metal salt.
  • NiCO nickel carbonate
  • Example 24 Di(2,4,6-trimethylphenyl) phosphinodithioic acid (0.8 mole) is mixed with chromic oxide (0.7 mole) in the presence of dioxane and water at 80-0 C. To this mixture there is added 1.2 moles of didodecyl phosphorodithioic acid. The resulting mixture is heated at 8090 C. for 6 hours and then heated under reduced pressure to remove water and dioxane. The residue is filtered. The filtrate is the chromium salt.
  • Example 25 A mixture of 0.4 mole of di(2-methyl-6-butylphenyl) phosphinodithioic acid and 0.6 mole of (didodecylphenyl) phosphorodithioic acid is dissolved in toluene and then treated with 1 mole of sodium molybdate at 60-120 C. The mixture is heated at this temperature for 8 hours and then heated under reduced pressure to remove toluene. The residue is filtered and the filtrate is the molybdenum salt.
  • Example 26 Zinc oxide (1 mole) is added to 0.4 mole of di(bromophenyl) phosphinodithioic acid and 1.6 moles of di(polyisobutene (molecular weight of 50,000)-substituted phenyl) phosphorodithioic acid at 50 80 C. The mixture is diluted with mineral oil and heated at 120 C. for 6 hours and filtered. The filtrate is diluted further to an oil content of 60% (by weight).
  • Example 27 A mixture of 0.6 mole of di(2,4,6-trichlorophenyl) phosphinodithioic acid and 1.4 moles of dicyclohexyl phosphorodithioic acid in benzene is neutralized with 1.2 moles of zinc oxide at 80 C. The residue is heated under reduced pressure to distill off benzene and filtered. The filtrate is the metal salt.
  • Example 28 A mixture of 0.2 mole of diphenyl phosphinodithioic acid and 1.8 moles of di(octylphenyl) phosphorodithioic acid in an equal volume of mineral oil is neutralized with 1.2 moles of zinc oxide. The neutralized product is then filtered.
  • Example 29 A phosphorodithioic acid is obtained by reacting 1 mole of phosphorus pentasulfide with an alcohol mixture consisting of 20 mole percent of isobutyl alcohol and 80 mole percent of decyl alcohol at 100 C. To a mixture of 1.6 moles of the phosphorodithioic acid and 0.4 mole of di(neopentylphenyl) phosphinodithioic acid in an equal volume of mineral oil there is added 1.2 moles of zinc oxide. The mixture is then heated at 80120 C. for 4 hours and filtered. The filtrate is the desired zinc salt.
  • the metal salts of this invention are principally useful as additives for use inhydrocarbon oils, especially lubricating oils. In such use 8 they are effective to improve the oxidation resistance and the thermal stability of lubricating oils. For most applications, the presence of a small amount, i.e., from about 0.01% to 1% by weight as phosphorus, of the metal salt, is sufficient to impart the desirable properties to a lubricating oil.
  • lubricants for use in gasoline internal combustion engines and transmissions of automotive vehicles may contain from about 0.01% to about 0.2% by Weight of phosphorus of the metal salt
  • lubricants for use in gears and diesel engines may contain as much as 1% or even more of phosphorus as the metal salt.
  • Other hydrocarbon compositions such as gasolines and fuel oils likewise may contain the metal salt as an additive, usually at a concentration from about 0.001% to about 0.1%.
  • the lubricating oils in which the metal salts of this invention are useful as additives may be of synthetic, animal, vegetable or mineral origin. Ordinarily mineral lubricating oils are preferred for reasons of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other groups may be preferred. For instance, poly alkylene glycol) oils and synthetic polyester oils such as didodecyl adipate and dioctyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at F. to about 200 Saybolt Universal seconds at 210 F.
  • additives include, for example, supplemental detergents of the ash-containing type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents (e.g., sulfurized fatty acid esters, polysulfides, phosphosulfurized fatty acid esters), rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents (e.g., hindered phenols, phosphites, or metal phenates).
  • supplemental detergents of the ash-containing type include, for example, supplemental detergents of the ash-containing type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents (e.g., sulfurized fatty acid esters, polysulfides, phosphosulfurized fatty acid esters), rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents (e.g., hindered phenols, phosphites, or metal phenates
  • the ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
  • olefin polymer e.g., polyisobutene having a molecular weight of 1000
  • a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide,
  • the term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical.
  • the commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass.
  • a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide
  • Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenols, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenylbeta-naphthylamine, and dodecylamine.
  • a particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60 200 C.
  • a basic sulfonate detergent is illustrated as follows: a mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
  • the preparation of a calcium sulfonate is illustrated by the following process: a mixture of 520 parts (by weight) of a mineral oil, 480 parts of a sodium petroleum sulfonate (molecular weight of 480), and 84 parts of water is heated at 100 C. for 4 hours. The mixture is then heated with 86 parts of a 76% aqueous solution of calcium chloride and 72 parts of lime (90% purity) at 100 C. for 2 hours, dehydrated by heating to a water content of less than 0.5%, cooled to 50 C., mixed with 130 parts of methyl alcohol, and then blown with carbon dioxide at 50 C. until substantially neutral. The mixture is then heated to 150 C.
  • the filtrate has a calcium sulfate ash content of 16% and a metal ratio of 2.5.
  • a mixture of 1305 grams of the above carbonated calcium sulfonate, 930grams of mineral oil, 220 grams of methyl alcohol, 72 grams of isobutyl alcohol, and 38 grams of amyl alcohol is prepared, heated to 35 C., and subjected to the following operating cycle 4 times: mixing with 143 grams of 90% calcium hydroxide and treating the mixture with carbon dioxide until it has a base member of 32-39.
  • the resulting product is then heated to 155 C. during a period of 9 hours to remove the alcohols and then filtered through a siliceous filter aid at this temperature.
  • the filtrate has a calcium sulfate ash content of 39.5%, and a metal ratio of 12.2.
  • a basic barium salt of a phosphorus acid is illustrated as follows: a polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
  • a basic metal detergent especially useful with the metal salt of this invention is derived from a fatty acid or ester having at least about 12, preferably up to about 30, aliphatic carbon atoms in the fatty radical.
  • Such metal detergent may be obtained by carbonating a fatty acid or ester in the presence of from 0.1 to 10 equivalents (per equivalent of the acid or ester) of a phenolic promoter and a stoichiometric excess of a metal base such as calcium hydroxide, barium hydroxide, or strontium oxide.
  • a metal base such as calcium hydroxide, barium hydroxide, or strontium oxide.
  • Such metal detergent is a basic barium detergent derived from a fatty ester and prepared by the following procedure: a mixture of 423 grams (1 equivalent) of sperm oil, 123 grams (0.602 equivalent) of heptylphenol, 1214 grams of mineral oil and 452 grams of water is treated at 70 C. with 612 grams (8 equivalents) of barium oxide. The mixture is stirred at the reflux temperature for 1 hour and then at 150 C. while carbon dioxide is bubbled into the mixture beneath its surface. The carbonated product is filtered and the filtrate has a sulfate ash content of 35%.
  • additives useful in lubricating compositions containing the metal salt of this invention include hindered phenols, sulfurized fatty acid esters, phosphosulfurized fatty acid esters, polysulfides, phosphites, metal phenates, etc.
  • the hindered phenols are those in which the carbon atoms at both ortho positions to the phenolic group con tain substantially large substituents so as to cause hinderance of the phenolic group.
  • the common substituents are the secondary and tertiary alkyl radicals such as isopropyl, tert-butyl, tert-pentyl, sec-pentyl, cyclohexyl, and tert-octyl radicals. They likewise may be aryl radicals or large polar radicals such as bromo or nitro radicals.
  • hindered phenols examples include 2,6-di-sec-butylphenol, 2,4-di-tert butylphenol, 2,6-di-tert octyl 4 secpentylphenol, Z-tert-pentyl-6-tert-hexylphenol, 2-tert-butyl- 4-cyclohexyl-6-heptylphenol, 4,4-bis-methylene (2,6-ditert-butylphenol) 4,4'-methylene-bis(2 tert butyl-6-secbutylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tertbutyl-6-methylphenol, and bis-(3,5-di-tertbutyl-4-hydroxybenzyl) sulfide.
  • the sulfurized esters of the fatty acids are obtained by the treatment of the esters with a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride.
  • a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride.
  • the esters are exemplified by methyl oleate, methyl stearate, allyl stearate, isopropyl myristate, cyclohexyl ester of tall oil acid, ethyl palmitate, iso-octyl laurate, diester of ethylene glycol with steari acid, tetraester of pentaerythritol with stearic acid, etc.
  • esters of higher alcohols or commercial alcohol mixtures such as octadecyl alcohol and sperm oil alcohol, and phenols such as phenol, naphthol, p-cresol, and o,p-dihexylphenol.
  • the sulfurization is effected most conveniently at temperatures between C. and 250 C. More than one atom of sulfur can be incorporated into the ester by the use of an excess of the sulfurizing agent.
  • sulfurized esters having as many as 4 or 5 atoms of sulfur per molecule have been found to be useful.
  • Examples include sulfurized sperm oil having a sulfur content of 5%, sulfurized tall oil having a sulfur content of 9%, sulfurized methyl oleate having a sulfur content of 3%, and sulfurized stearyl stearate having a sulfur content of 15%.
  • Still another class of the fatty compounds consists of the phosphosulfurized fatty acid ester mentioned above. They are obtained by the treatment of the esters with a phosphorus sulfide, such as phosphorus pentasulfide, phosphorus sesquisulfide, or phosphorus heptasulfide. The treatment is illustrated by mixing an ester with from about 0.5% to 25% of a phosphorus sulfide at a temperature within the range from about 100 C. to 250 C. The product contains both phosphorus and sulfur but the pre cise chemical constitution of such a product is not clearly understood. These and other methods for preparing the sulfurized esters and phosphosulfurized esters are known in the art.
  • the polysulfides include principally aliphatic and cycloaliphatic disulfides, trisulfides, tetrasulfides, pentasulfides, or higher polysulfides.
  • the term polysulfide designates a compound in which two substantially hydrocarbon radicals are joined to a group consisting of at least 2 sulfur atoms. It is represented for the most part by any of the structural formulas below:
  • polysulfides are diisobutyl trisulfide, diisopentyl trisulfide, di-n-butyl tetrasulfide, di-cyclopentyl disulfide, di-methylcyclohexyl tetrasulfide, di-Z-ethylhexylpentyl disulfide, dipentyl trisulfide, di-beta-pinyl pentasulfide, cyclohexyl cyclopentyl trisulfide, diparaflin wax trisulfide, di-terpenyl disulfide, didodecyl trisulfide, dibehenyl trisulfide, and diisobutyl hexa-sulfide.
  • cluding polar-substituted sulfides are exemplified by di- (omegabromopentyl) trisulfide.
  • the preparation of the polysulfide may be accomplished by any of the various processes which are known and disclosed in the art including, for example, the reaction of a chlorohydrocarbon with an alkaline earth polysulfide, the reaction of a mercaptan with sulfur and/ or sulfur halide, the reaction of saturated and unsaturated hydrocarbons with sulfur and/ or sulfur halides, the reaction of a hydrocarbon monosulfide with sulfur, etc.
  • the phosphites useful herein are the diand tri-hydrocarbon esters of phosphorus acid.
  • Examples of the phosphites are: dibutyl phosphi te, diheptylphosphite, dicyclohexylphosphite, tri-(pentylphenyl) phosphite, tris-(dipentylphenyl) phosphite, didecyl phosphite, di-stearyl phosphite, tris-(hexa-propylene-substituted phenyl) phosphite, tri-hexyl phosphiite, di-heptyl phenyl phosphite, and tri- (m-chloro-p-heptylphenyl) phosphite.
  • the alkaline earth metal salts of the alkylated phenols include principally the salts of magnesium, barium, calcium, and strontium with phenolic substances containing an alkyl substiuent having at least about 7 carbon atoms.
  • the phenols are exemplified by alkyl phenols, alkyl naphthols, sulfurized alkyl phenols, and the condensation products of alkyl pheno'ls with an aldehyde.
  • magnesium octylphenate, barium polypropylene-substituted phenate in which the polypropylene substituent has a molecular weight of 500, calcium salt of alpha-dodecyl-beta-naphthyl, barium salt of bis(heptylphenol)su'lfide, calcium salt of 'bis(nonylphenol)sulfide, calcium salt of the condensation product of two moles of heptylphenol with formaldehyde, barium dodecylphenate, rand strontium polyisobutene-substituted phenate in Which the polyisobutene substituent has a molecular weight of 350.
  • the metal salt of this invention is unusually stable to thermal degradation. Because of this high thermal stability, the metal salt is especially desirable as a lubricant additive in instances where the additive, an oil concentrate containing it, or a lubricant containing it is likely to be subjected to relatively high temperatures under storage conditions or service conditions.
  • the thermal stability of the metal salt of this invention is shown by the test results shown in Table I below. The tecst consists of maintaining an oil concentrate of the additive at 202 C. for a specified period and measuring the amount of gaseous decomposition products formed during the test. A small amount of gaseous decomposition products indicates a high thermal stability of the additive and the concentrate.
  • Oil concentrate cannot be prepared because of oil-insolubility.
  • the metal salt of this invention is especially effective to impart oxidation resistance to lubricants. Its effectiveness is demonstrated by the results of an oxidation test shown in Table II below. The test consists of bubbling air at a rate of 1.251.3 cubic feet per hour into 350 grams of a lubricant sample having immersed therein an oxidation catalyst (consisting of 120 grams of iron, 120 gr-ams of iron, 120 grams of copper, and 31 grams of lead) at 302 F.
  • the transmission lubricant of the test is obtained by incorporating the metal salt of this invention in a lubricant consisting of a mineral lubricating oil having a viscosity value of 38-40 Saybolt Universal seconds at 210 F. and containing 4.25% (by weight) of a polyacrylate viscosity improving additives, 3 of a barium carboxylate detergent, and 1.33% of a barium sulfonate detergent.
  • transmission lubricant cannot be prepared from a zinc salt of di(isopropylphenyl) phosphinodithioa-te acid (present as a component in the metal salt of lubricant B), nor from a zinc salt of -di(chlorophenyl) phosphinodithioic acid (present as a component in lubricants C and E) because of the oil-insolubility of such zinc salts.
  • the effectiveness of the metal salt of this invention as an additive in transmission lubricants is shown by a Powerglide transmission lubricant test.
  • the test results are shown in Table III.
  • the lubricant used in the test is an automatic transmission lubricant base oil (having a viscosity within the range of 45-55 Saybolt Universal seconds at 210 F.
  • a viscosity index within the range of from to and prepared from a mineral lubricating oil having incorporated therein a suitable amount of a commercial viscosity index improver) containing 3% (by weight) of a barium carboxylate detergent, 0.5% of barium sulfate ash as a basic barium sulfonate detergent, 20 parts per million of a silicone anti-foam agent and 0.1% of phosphorus as the metal salt of this invention.
  • This test measures particularly the effectiveness of a lubricant in preventing wear and deterioration of the clutch plates of automobile transmissions. It consists in operating a Powerglide transmission driven by a Chevrolet engine for 5000 cycles, each cycle consisting of 6 seconds of open throttle operation followed by 6 seconds closed throttle operation.
  • a cycle begins with the transmission in low range.
  • the engine is accelerated to 4100 r.p.m. and 370 ft. lb. torque; at this point, up shift occurs.
  • the throttle is then closed allowing the engine to decelerate and the transmission to shift back to low range.
  • the operating conditions for the transmission and the engine are as follows:
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a metal salt of a phosphorus acid mixture comprising (A) a dihydrocarbon phosphorothioic acid having at least 3 aliphatic carbon atoms in each hydrocarbon radical and '(B) a diaryl phosphinothioic acid wherein the aryl group is selected from the class consisting of phenyl, halophenyl, and alkylphenyl having up to about 6 carbon atoms in the alkyl su'bstituent; wherein the molar ratio of (A) to (B) is within the range of from about 1:2 to 1:0.05 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 6.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a metal salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from 3 to about 30' carbon atoms in each alkyl radical and (B) a di(alkylphenyl) phosphinodithioic acid having up to about 6 carbon atoms in the alkyl substituent; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 120.05 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 8.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a metal salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from 3 to about 30 carbon atoms in each alky-l radical and (B) a di('halophenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 1:005 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 8.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from 3 to about'30' carbon atoms in each alkyl radical and (B) a di(alkylphenyl) phosphinodithioic acid having up to about 6 carbon atoms in the alkyl substituent; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 110.2 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 6.
  • each alkyl radical of the dialkyl phos-phorodithioic acid of (A) has from about 6 to 12 carbon atoms.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from about 6 to 12 carbon atoms in each alkyl radical and (B) di(chlorophenyl) phosphorodithioic acid; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 1:02.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufiicient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid and (B) di(isopropylphenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:0.2.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, suflicient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid and (B) d-i(ch-lorophenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:02.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a lead salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid and (B) di(isopropylphenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:02.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a barium salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid (B) di(isopropylphenyl) phosp-hinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:0.2.
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) diisoctyl phosphorodithioic acid and (B) -di(isopro.pylphenyl) phospinodithioic acid; wherein the molar ratio of (A) to (B) is about 1:0.7
  • a lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) diisoctyl phosphorodithioie acid and '(B) di(c-hlorophenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is about 1:0.7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Lubricants (AREA)

Description

United States Patent 3,300,409 LUBRICANTS CONTAINENG METAL SALTS OF MIXED PHOSPHOROTHIOIC AND PHOSPHINO- THIGIC ACIDS Thomas A. Butler, Cleveland, Ohio, assignor to The Lubrizol Corporation, Wicklifie, Ohio, a corporation of Ohio No Drawing. Filed Aug. 3, 1964, Ser. No. 387,171 18 Claims. (Cl. 25232.7)
This invention relates to metal salts of phosphorus acids. In a more particular sense it relates to metal salts of phosphorus acids which are soluble in oils and are useful as additives in oils such as lubricating oils, metal working oils, transformer oils, fuels, power transmitting fluids, etc.
Oil-soluble metal salts of phosphorus acids are useful for a variety of purposes. A principal utility of such metal salts is as additives in oils to impart extreme pressure properties and to reduce the tendency of the oil to undergo degradation and form harmful corrosive degradation products.
Accordingly, it is an object of this invention to provide novel compositions of matter.
It is also an object of this invention to provide metal salts of phosphorus acids.
It is also an object of this invention to provide compositions useful as additives in oils.
It is also an object of this invention to provide stabilized oil compositions.
It is further an object of this invention to provide improved lubricating compositions.
These and other objects are obtained in accordance with this invention by providing a metal salt of a phosphorus acid mixture comprising (A) a dihydrocarbon phosphorothioic acid having at least 3 aliphatic carbon atoms in each hydrocarbon radical and (B) a diaryl phosphinothioic acid wherein the aryl group is selected from the class consisting of phenyl, halophenyl, and alkylphenyl having up to about 6 carbon atoms in the alkyl substituent; wherein the molar ratio of (A) to (B) is within the range of from 1:2 to 1:005 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 6.
The metal of the metal salts of this invention is a polyvalent metal and may be a metal of Group II of the periodic table such as calcium, barium, magnesium, strontium, zinc, or cadmium. It may likewise be lead, iron manganese, copper, cobalt, nickel, chromium, or molybdenum. The salts of Zinc, barium, calcium, and lead are especially preferred.
The dihydrocarbon phosphorothioic acid of (A) may be a phosphoromonothioic or phosphorodithioic acid. The hydrocarbon groups must contain at least three aliphatic carbon atoms and may be alkyl, cycloalkyl, alkaryl, or aralkyl radicals. Especially useful as the hydrocarbon group is an alkyl radical having up to about 30 carbon atoms. Also useful are cycloalkyl radicals such as alkylsubstituted cyclohexyl and cyclopentyl radicals in which the alkyl substituent has up to about 30 carbon atoms; alkaryl radicals such as alkyl-substituted phenyl and naphthyl radicals in which the alkyl substituent has up to about 200 carbon atoms; and aralkyl radicals such as phenylor naphthyl-substituted alkyl radicals having up to about 30 carbon atoms as well as derivatives thereof in which the phenyl and naphthyl groups are substituted with alkyl groups. The' hydrocarbon groups are illustrated by propyl, butyl, cyclohexyl, cyclopentyl, n-hexyl, 4-methylpentyl, iso-octyl, dodecyl, behenyl, octadecyl, S-nonyldecyl, heptyl, Z-phenyl-hexyl, dodecylphenyl, 3-butylphenyl, 2,6-dibutylphenyl, polypropene (molecular weight of 1000)-substituted phenyl, polybutene (molecular weight of 300)-substituted phenyl, and 4-cyclohexyl-dodecyl.
Specific examples of the dihydrocarbon phosphorothioic acid of (A) include diisopropyl phosphorodithioic acid, dihexyl phosphorodithioic acid, de-(hexylphenyl) phosphorodithioic acid, dibehenyl phosphorodithioic acid, di(polypropylene (molecular weight of 350)-substituted phenyl) phosphorodithioic acid, cyclohexyl iso-octyl phosphorodithioic acid, di-primary-pentyl phosphorodithioic acid, dihexyl phosphoromonothioic acid, di-primary-octyl phosphoromonothioic acid, and dodecyl heptyl phosphorothioic acid.
The dihydrogen phosphorodithioic acid is obtained most conveniently by the reaction of phosphorus pentasulfide with an alcohol or an alkylphenol. The reaction involves four moles of the alcohol or alkylphenol per mole of phosphorus pentasulfide and may be carried out within the temperature range of from about 50 to about 250 C. For instance, the preparation of dihexyl phosphorodithioic acid involves the reaction at about C. of phosphorus pentasulfide with four moles of a hexyl alcohol. Hydrogen sulfide is liberated and the residue is the defined acid. Phosphoromonothioic acids can be obtained by treating the corresponding dithioic acid with steam or water under controlled conditions so as to replace one sulfur atom from the dithioic acid with an oxygen atoms.
The diaryl phosphinothioic acid of (B) likewise may be a phosphinomonothioic or phosphinodithioic acid. As indicated previously, the aryl group of the phosphino thioic acid is phenyl, halophenyl, or alkylphenyl having up to about 6 carbon atoms in the alkyl substituent. Examples of such acid are diphenyl phosphinodithioic acid, diphenyl phosphinomonothioic acid, di(chlorophenyl) phosphinomonothioic acid, di(dichlorophenyl) phosphinodithioic acid, phenyl bromophenyl phosphinodithioic acid, ditolyl phosphinodithioic acid, di(hexylphenyl) phosphinodithioic acid, di(cyclopentylphenyl) phosphinodithioic acid, di(iodophenyl) phosphinodithioic acid, di (dimethylphenyl) phosphinodithioic acid, di(trimethylphenyl) phosphinodithioic acid, and di(2-bromo-6-ethylphenyl) phosphinodithioic acid.
The diaryl phosphinothioic acid of (B) can be obtained by the reaction of an aromatic hydrocarbon with phosphorus pentasulfide, preferably in the presence of a Friedel-Crafts catalyst such as aluminum chloride, ferric chloride, Zinc chloride, boron trifiuoride, or aluminum bromide. The reaction is usually carried out at a temperature of from about 60 C. to 250 C. The product of the reaction is a complex of the phosphinodithioic acid and the catalyst. The acid is conveniently recovered from the complex by treating the latter with water or ice at relatively low temperatures such as 050 C. A commonly used procedure for preparing the acid is described in US. Patent No. 2,797,238. The following procedure is illustrative: aluminum chloride (2.5 moles) is added to a mixture of isopropyl benzene (4.4 moles) and phosphorus pentasulfide (1 mole) at 9095 C. in 2 hours. The resulting mixture is heated to 120 C. and then held at that temperature for 5 hours. The residue is diluted with toluene and then treated with water at 50-70 C. The orgainc layer is heated at 115 C./1 mm. to distill off toluene. The residue is di(isopropylphenyl) phosphinodithioic acid. The corresponding phosphinomonothioic acid may be prepared by treating the dithioic acid with water or steam under controlled conditions to effect a partial hydrolysis.
The metal salt of this invention is obtained by neutralizing a mixture of the phosphorothioic acid of (A) and the phosphinothioic acid of (B) with a metal reactant such as the elemental metal or the hydroxide, oxide, carbonate, bicarbonate, hydride, rnercaptide, or sulfide of the metal. The conditions under which the neutralization can be carried out usually include a temperature within the range of from about 25 C. to about 250 C., more often from about 80 C. to about 200 C. Although temperatures above about 250 C. are rarely necessary, they may be used provided that they are below the decomposition point of the reaction mixture. The neutralization can be effected simply by preparing a mixture of the phosphorothioic acid and the phosphino-thioic acid and then contacting the acid mixture with a stoichiometric amount (or a slight excess) of the metal reactant or by contacting the metal reactant with one of the two acid reactants and then with the other. A solvent or diluent may be used in the process to facilitate mixing and control of temperature. The solvent or diluent may be mineral oil, xylene, naphtha, benzene, chlorobenzene, hexane, dioxane, cellosolve, ether, or the like.
A critical aspect of the metal salt of the invention is that it contains within its molecular structure an average of at least about 6 aliphatic carbon atoms per phosphorus atom. Unless this minimum requirement with respect to the number of aliphatic carbon atoms is met, the metal salt will not be sufliciently soluble in a hydrocarbon oil to be useful as an additive therein nor will it have the improved effectiveness necessary for the purposes of this invention. Metal salts in which the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 8 are especially preferred.
Another critical element of the metal salt of the invention is that the acid mixture from which the metal salt is derived must contain the phosphorothioic acid of (A) and the phosphinothioic acid of (B) in a molar ratio within the range of from about 1:2 to 110.05, preferably from about 1:1 to 1:02. This critically likewise is based on considerations of oil-solubility, thermal stability, and effectiveness of the metal salts as oil additives.
The following examples illustrate the metal salt compositions of this invention:
Example I A mixture of 0.9 mole of di-(chlorophenyl) phosphinodithioic acid and 1.1 moles of di-isooctyl phosphorodithioic acid is heated to 60 C. and mixed with 1.05 moles of zinc oxide. To this mixture there is added 1.6 moles of diisooctyl pho-sphorodithioic acid at 90 C. and then there is added 0.82 mole of zinc oxide. The resulting mixture is heated at 90 C. for 1 hour and then to 150 C./20 mm. The residue is filtered. The filtrate is is the desired metal salt composition having a zinc content of 9.5%, a phosphorus content of 7.9%, a sulfur content of 15.5% and a chlorine content of 3.4%.
Example 2 To a mixture of 0.4 mole of di(chlorophenyl) phosphinodithioic acid and 0.6 mole of a dialkyl phosphorodithioic acid (prepared by the reaction of 1 mole of phosphorus pentasulfide with 4 moles of a commercial primary alcohol mixture consisting essentially of C and C alcohols), there is added 0.625 mole of zinc oxide at 65 C. within a period of 1 hour. The resulting mixture is heated at 65-85 C. for 2 hours and then at 117 C. for 1.2 hours. The residue is filtered. The filtrate is a metal salt composition having a zinc content of 7.2%, a phosphorus content of 6.9%, a sulfur content of 14.1% and a chlorine content of 5.9%.
Example 3 A mixture of isopropyl benzene (52.8 parts by weight), phosphorus, pentasulfide (22.2 parts), and aluminum chloride (33.3 parts) is maintained at 120 C. for 8 hours. Hydrogen sulfide is evolved. The mixture is diluted with toluene and hydrolyzed with water (420 parts) at 50- 70 C. The organic layer is recovered and heated to 115 C./ 100 mm. in 5 hours whereupon water and toluene are distilled oil. The residue is di(isopropylphenol) phosphinodithioic acid. A mixture of 40 mole percent of this acid and 60 mole percent of diisooctyl phosphorodithioic acid is neutralized with a slight stoichiometric excess of zinc oxide at 6070 C. The neutralized product is filtered and the filtrate is treated with water and then stripped by heating it to 100 C./100 mm. It is then diluted with mineral oil to an 85.7% oil concentrate. The concentrate is filtered and the filtrate has a phosphorus content of 6.7%, a zinc content of 6.8%, and a sulfur content of 14%.
Example 4 A mixture of 0.45 mole of di(isopropylphenyl) phosphinodithioic acid, 0.55 mole of the dialkyl phosphorodithioic acid of Example 2, and 0.62 mole of zinc oxide is heated at 40 C. for 2 hours, then at 90-120 C. for 1.5 hours and filtered. The filtrate is heated to C./ 22 mm. The residue is a metal salt composition having a zinc content of 6.3%, a phosphorus content of 6.4%, and a sulfur content of 12.3%.
Example 5 A phosphorodithioic acid is prepared by reacting 1 mole of phosphorus pentasulfide with 4 moles of an alcohol mixture consisting of 65 mole percent of isobutyl alcohol and 35 mole percent of primary-pentyl alcohol. The phosphorodithioic acid has an acid number of 198. To a mixture of 1075 grams (3.8 moles) of the phosphorodithioic acid and 149 grams (0.2 mole) of di(isopropylphenyl) phosphinodithioic acid there is added 179 grams (2.2 moles) of zinc oxide at 60-90 C. The reaction is exothermic. The resulting mixture is heated at 80- 90 C. for 1 hour and then at C./15 mm. The residue is filtered. The filtrate is a metal salt composition having a zinc content of 11.9%, a sulfur content of 20.6% and a phosphorus content of 10.6%.
Example A metal salt composition is prepared by the procedure of Example 5 except that the amount of the phosphorodithioic acid used is 1020 grams (3.6 moles) and the amount of the di(isopropylphenyl) phosphinodithioic acid used is 299 grams (0.4 mole). The resulting metal salt composition has a zinc content of 11.6%, a sulfur content of 20%, and a phosphorus content of 10.8%.
Example 7 A metal salt composition is prepared by the procedure of Example 5 except that the amount of the phosphorodithioic acid used is 850 grams (3 moles) and the amount of the di(isopropylphenyl) phosphinodithioic acid used is 750 grams (1 mole); The resulting metal salt composition has a zinc content of 11.3%, a sulfur content of 19%, and a phosphorus content of 10.3
Example 8 A metal salt composition is prepared by the procedure of Example 1 except that the amount of the phosphorodithioic acid used is 907 grams (2.4 moles) and the amount of the di(isopropylphenyl) phosphinodithioic acid used is 450 grams (0.6 mole). The resulting metal salt composition has a Zinc content of 9%, a sulfur content of 15%, and a phosphorus content of 8%.
Example 9 A mixture of 0.8 mole of di(isopropylphenyl) phosphinodithioic acid and 1.2 moles of the dialkyl phosphorodithioic acid of Example 2 is heated to 50 C. T 0 this mixture there is added 1 mole of lead oxide. An exothermic reaction occurs. The resulting mixture is heated to 125 C./ 25 mm. and filtered. The filtrate has a lead content of 17.2%, a sulfur content of 11.7%, and a phosphorus content of 5.6%.
Example 10 To a mixture of 0.8 mole of di(chlorophenyl) phosphinodithioic acid and 1.2 moles of diisooctyl phosphorodithioic acid at 55 C. there is added 1 mole of lead oxide. An exothermic reaction occurs. The resulting mixture is heated at 120 C. for 0.5 hour, mixed with onefourth its Weight of mineral oil, heated to 120 C./20 mm. and filtered. The filtrate has a lead content of 16.8%, a chlorine content of 4.0%, a sulfur content of 10%, and a phosphorus content of 5.1%.
Example 11 Zinc oxide (1 mole) is added at 50-60 C. to diisooctyl phosphorodithioic acid (1.2 moles) and bis-(dichlorophenyl) phosphinodithioic acid (0.8 mole) and the resulting mixture is heated at 95 C. for 0.5 hour, then at 125 C./25 mm. and diluted with one-fourth its weight of mineral oil. The residue is filtered. The filtrate is a metal salt composition having a Zinc content of 5.4%, a chlorine content of 9.8%, a sulfur content of 12.6%, and a phosphorus content of 5.8%.
Example 12 Zinc oxide (2.5 moles) is added to a mixture of di(4- methyl-Z-pentyl) phosphorodithioic acid (2.6 moles) and di(chlorophenyl) phosphinodithioic acid (1.4 moles) at 6080 C. An exothermic reaction occurs. The mixture is heated at 8085 C. for 2.5 hours and then at 100 C./43 mm. and filtered. The filtrate is mixed with 19% of its Weight of mineral oil. The resulting oil solution of the metal salt composition has a zinc content of 8.7%, a chlorine content of 5.2%, a sulfur content of 14.8%, and a phosphorus content of 7.2%.
Example 13 A mixture of 3 moles of di(n-hexyl) phosphorodithioic acid and 2 moles of di(chlorophenyl) phosphinodithioic acid is heated to 60 C. and mixed slowly With 3.1 moles of zinc oxide at 60-80 C. An exothermic reaction occurs. The resulting mixture is heated at 8085 C. for 2 hours and filtered. The filtrate is heated to 85 C./ 30 mm., mixed With 29% of its Weight of mineral oil and again filtered. The filtrate is an oil solution of the metal salt composition having a zinc content of 7.5%, a chlorine content of 4.1%, a sulfur content of 12.6%, and a phosphorus content of 6.2%.
Example 14 To a mixture of 3 moles of di-isooctyl phosphorodithioic acid and 2 moles of di(chlorophenyl) phosphinodithioic acid there is added 5.7 moles of copper at 60 C. The mixture is heated at 80-90 C. for 30 hours. The residue is mixed With 33% of its Weight of mineral oil, heated to 120 C./ 10 mm. and filtered. The filtrate has a copper content of 6.2%, a chlorine content of 2.4%, a sulfur content of 7.5%, and a phosphorus content of 4.7%.
Example 15 Iron (52 grams, 0.93 mole) is added to a mixture of 1.5 moles of di-isooctyl phosphorodithioic acid and 1 mole of di(chlorophenyl) phosphinodithioic acid. The
mixture is heated at -85 C. for 14 hours at 120 C./ 10 mm. and filtered. The filtrate is the metal salt composition having an iron content of 5.9%, a chlorine content of 1.9%, a sulfur content of 13.5%, and a phosphorus content of 8.6%.
Example 16 A phosphorodithioic acid is prepared by the reaction of 1 mole of phosphorus sulfide with 4 moles of propylene tetramer-substituted phenol. The phosphorodithioic acid has an acid number of 93. To a mixture of 722 grams (1.2 moles) of the phosphorodithioic acid and 650 grams (0.8mole) of di(chlorophenyl) phosphinodithioic acid there is added, at 6075 C., 45 grams (0.55 mole) of zinc oxide and then there is added at 75 -85 C. another portion, 45 grams, of zinc oxide. The resulting mixture is heated at 8085 C. for 1 hour, mixed with 1060 grams of mineral oil, heated to 120 C./ 10 mm., mixed With a filter aid and filtered. The filtrate is a 50% oil solution of the metal salt composition and is found to have a zinc content of 2.9%, a chlorine content of 2.4%, a sulfur content of 5.1%, and a phosphorus content of 2.5%.
Example 17 To a mixture of di(isopropylphenyl) phosphinodithioic acid (1 mole), di-isooctyl phosphorodithioic acid (1.5 moles), and Water (1.5 moles), there is added at 50- 80 C. manganese carbonate (MgCO (1.49 moles). The mixture is heated at 80 C. for 2 hours, then to 95 C./ 25 mm., and filtered. The filtrate is the manganese salt having a manganese content of 4.25%, a sulfur content of 15.8%, and a phosphorus content of 7.92%.
Example 18 To a mixture of 2 moles of di(4-methy1-2-pentyl) phosphorodithioic acid and 1.1 moles of di(chlorophenyl) phosphinodithioic acid at 50-70 (3., there is added 10 grams of Water and 202 grams of cobalt carbonate (CoCO Within a period of 30 minutes. The resulting mixture is heated at 70 C. for 1 hour, mixed with 10 grams of cobalt carbonate, again heated at C. for 1 hour and then to C./ 10 mm. The residue is mixed with 600 grams of mineral oil and filtered. The filtrate is an oil solution of a metal salt composition having a cobalt content of 4.2%, a chlorine content of 3.5%, a sulfur content of 12.8%, and a phosphorus content of 5.7%.
Example 19 To a mixture of 1.5 moles of di-isooctyl phosphorodithioic acid and 1 mole of di(chlorophenyl) phosphinodithioic acid there is added at 6070 C., 1.4 moles of iron. The resulting mixture is heated at 80 C. for 10 hours and then to 120 C./20 mm. The residue is filtered. The filtrate is the metal salt composition having an iron content of 6.4%, a chlorine content of 7.4%, a sulfur content of 15.1%, and a phosphorus content of 8.3%.
Example 20 To a mixture of 0.4 mole of di-cyclohexyl phosphinomonothioic acid and 1.6 moles of didodecyl phosphorodithioic acid, there is added at 6070 C. 1 mole of calcium hydroxide. The mixture is heated at 80 C. for 10 hours, then heated to 120 C./ 20 mm., and filtered. The filtrate is the desired calcium salt.
Example 21 To an equimolar mixture of ditolyl phosphinodithioic acid and di(polyisobutene (molecular Weight of 1000)- substituted phenol) phosphorodithioic acid there is added a stoichiometric amount of barium in small increments at 25 -80 C. The mixture is heated at C. for 5 hours and filtered. The filtrate is the metal salt.
7 Example 22 Magnesium methoxide is formed by adding magnesium turnings (2 moles) to 20 moles of methyl alcohol at reflux temperature. To this mixture there is added 1.6 moles of di(propylphenyl) phosphinodithioic acid and 2.4 moles of dibehenyl phosphoromonot-hioic acid at 5070 C. The mixture is held at this temperature for 10 hours and then heated under reduced pressure to distill ofi' methanol. The residue is the metal salt.
Example 23 A mixture of 0.4 mole of dixylyl phosphinodithioic acid and 0.6 mole of dioctadecyl phosphorodithioic acid is dissolved in times its volume of xylene. The mixture is then neutralized with 0.6 mole of nickel carbonate (NiCO at100l20 C. The residue is then heated under reduced pressure to distill off xylene and filtered. The filtrate is the metal salt.
Example 24 Di(2,4,6-trimethylphenyl) phosphinodithioic acid (0.8 mole) is mixed with chromic oxide (0.7 mole) in the presence of dioxane and water at 80-0 C. To this mixture there is added 1.2 moles of didodecyl phosphorodithioic acid. The resulting mixture is heated at 8090 C. for 6 hours and then heated under reduced pressure to remove water and dioxane. The residue is filtered. The filtrate is the chromium salt.
Example 25 A mixture of 0.4 mole of di(2-methyl-6-butylphenyl) phosphinodithioic acid and 0.6 mole of (didodecylphenyl) phosphorodithioic acid is dissolved in toluene and then treated with 1 mole of sodium molybdate at 60-120 C. The mixture is heated at this temperature for 8 hours and then heated under reduced pressure to remove toluene. The residue is filtered and the filtrate is the molybdenum salt.
Example 26 Zinc oxide (1 mole) is added to 0.4 mole of di(bromophenyl) phosphinodithioic acid and 1.6 moles of di(polyisobutene (molecular weight of 50,000)-substituted phenyl) phosphorodithioic acid at 50 80 C. The mixture is diluted with mineral oil and heated at 120 C. for 6 hours and filtered. The filtrate is diluted further to an oil content of 60% (by weight).
Example 27 A mixture of 0.6 mole of di(2,4,6-trichlorophenyl) phosphinodithioic acid and 1.4 moles of dicyclohexyl phosphorodithioic acid in benzene is neutralized with 1.2 moles of zinc oxide at 80 C. The residue is heated under reduced pressure to distill off benzene and filtered. The filtrate is the metal salt.
Example 28 A mixture of 0.2 mole of diphenyl phosphinodithioic acid and 1.8 moles of di(octylphenyl) phosphorodithioic acid in an equal volume of mineral oil is neutralized with 1.2 moles of zinc oxide. The neutralized product is then filtered.
Example 29 A phosphorodithioic acid is obtained by reacting 1 mole of phosphorus pentasulfide with an alcohol mixture consisting of 20 mole percent of isobutyl alcohol and 80 mole percent of decyl alcohol at 100 C. To a mixture of 1.6 moles of the phosphorodithioic acid and 0.4 mole of di(neopentylphenyl) phosphinodithioic acid in an equal volume of mineral oil there is added 1.2 moles of zinc oxide. The mixture is then heated at 80120 C. for 4 hours and filtered. The filtrate is the desired zinc salt.
The metal salts of this invention, as indicated previously, are principally useful as additives for use inhydrocarbon oils, especially lubricating oils. In such use 8 they are effective to improve the oxidation resistance and the thermal stability of lubricating oils. For most applications, the presence of a small amount, i.e., from about 0.01% to 1% by weight as phosphorus, of the metal salt, is sufficient to impart the desirable properties to a lubricating oil. For instance, lubricants for use in gasoline internal combustion engines and transmissions of automotive vehicles may contain from about 0.01% to about 0.2% by Weight of phosphorus of the metal salt Whereas lubricants for use in gears and diesel engines may contain as much as 1% or even more of phosphorus as the metal salt. Other hydrocarbon compositions such as gasolines and fuel oils likewise may contain the metal salt as an additive, usually at a concentration from about 0.001% to about 0.1%.
The lubricating oils in which the metal salts of this invention are useful as additives may be of synthetic, animal, vegetable or mineral origin. Ordinarily mineral lubricating oils are preferred for reasons of their availability, general excellence, and low cost. For certain applications, oils belonging to one of the other groups may be preferred. For instance, poly alkylene glycol) oils and synthetic polyester oils such as didodecyl adipate and dioctyl sebacate are often preferred as jet engine lubricants. Normally, the lubricating oils preferred will be fluid oils ranging in viscosity from about 40 Saybolt Universal seconds at F. to about 200 Saybolt Universal seconds at 210 F.
The invention contemplates also the presence of other additives in the lubricating compositions. Such additives include, for example, supplemental detergents of the ash-containing type, viscosity index improving agents, pour point depressing agents, anti-foam agents, extreme pressure agents (e.g., sulfurized fatty acid esters, polysulfides, phosphosulfurized fatty acid esters), rust-inhibiting agents, and supplemental oxidation and corrosion-inhibiting agents (e.g., hindered phenols, phosphites, or metal phenates).
The ash-containing detergents are exemplified by oilsoluble neutral and basic salts of alkali or alkaline earth metals with sulfonic acids, carboxylic acids, or organic phosphorus acids characterized by at least one direct carbon-to-phosphorus linkage such as those prepared by the treatment of an olefin polymer (e.g., polyisobutene having a molecular weight of 1000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride. The most commonly used salts of such acids are those of sodium, potassium, lithium, calcium, magnesium, strontium, and barium.
The term basic salt is used to designate the metal salts wherein the metal is present in stoichiometrically larger amounts than the organic acid radical. The commonly employed methods for preparing the basic salts involves heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature about 50 C. and filtering the resulting mass. The use of a promoter in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkylphenol, thiophenol, sulfurized alkylphenols, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octyl alcohol, cellosolve, carbitol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; amines such as aniline, phenylenediamine, phenothiazine, phenylbeta-naphthylamine, and dodecylamine. A particularly effective method for preparing the basic salts comprises mixing an acid with an excess of a basic alkaline earth metal neutralizing agent, a phenolic promoter compound, and a small amount of water and carbonating the mixture at an elevated temperature such as 60 200 C.
The preparation of a basic sulfonate detergent is illustrated as follows: a mixture of 490 parts (by weight) of a mineral oil, 110 parts of water, 61 parts of heptylphenol, 340 parts of barium mahogany sulfonate, and 227 parts of barium oxide is heated at 100 C. for 0.5 hour and then to 150 C. Carbon dioxide is then bubbled into the mixture until the mixture is substantially neutral. The mixture is filtered and the filtrate found to have a sulfate ash content of 25%.
The preparation of a calcium sulfonate is illustrated by the following process: a mixture of 520 parts (by weight) of a mineral oil, 480 parts of a sodium petroleum sulfonate (molecular weight of 480), and 84 parts of water is heated at 100 C. for 4 hours. The mixture is then heated with 86 parts of a 76% aqueous solution of calcium chloride and 72 parts of lime (90% purity) at 100 C. for 2 hours, dehydrated by heating to a water content of less than 0.5%, cooled to 50 C., mixed with 130 parts of methyl alcohol, and then blown with carbon dioxide at 50 C. until substantially neutral. The mixture is then heated to 150 C. to distill off methyl alcohol and water and the resulting oil solution of the basic calcium sulfonate is filtered. The filtrate is found to have a calcium sulfate ash content of 16% and a metal ratio of 2.5. A mixture of 1305 grams of the above carbonated calcium sulfonate, 930grams of mineral oil, 220 grams of methyl alcohol, 72 grams of isobutyl alcohol, and 38 grams of amyl alcohol is prepared, heated to 35 C., and subjected to the following operating cycle 4 times: mixing with 143 grams of 90% calcium hydroxide and treating the mixture with carbon dioxide until it has a base member of 32-39. The resulting product is then heated to 155 C. during a period of 9 hours to remove the alcohols and then filtered through a siliceous filter aid at this temperature. The filtrate has a calcium sulfate ash content of 39.5%, and a metal ratio of 12.2.
The preparation of a basic barium salt of a phosphorus acid is illustrated as follows: a polyisobutene having a molecular weight of 50,000 is mixed with by weight of phosphorus pentasulfide at 200 C. for 6 hours. The resulting product is hydrolyzed by treatment with steam at 160 C. to produce an acidic intermediate. The acidic intermediate is then converted to a basic salt by mixing with twice its volume of mineral oil, 2 moles of barium hydroxide and 0.7 mole of phenol and carbonating the mixture at 150 C. to produce a fluid product.
A basic metal detergent especially useful with the metal salt of this invention is derived from a fatty acid or ester having at least about 12, preferably up to about 30, aliphatic carbon atoms in the fatty radical. Such metal detergent may be obtained by carbonating a fatty acid or ester in the presence of from 0.1 to 10 equivalents (per equivalent of the acid or ester) of a phenolic promoter and a stoichiometric excess of a metal base such as calcium hydroxide, barium hydroxide, or strontium oxide. The preparation of such metal detergent is described in US. Patent No. 2,971,014.
An example of such metal detergent is a basic barium detergent derived from a fatty ester and prepared by the following procedure: a mixture of 423 grams (1 equivalent) of sperm oil, 123 grams (0.602 equivalent) of heptylphenol, 1214 grams of mineral oil and 452 grams of water is treated at 70 C. with 612 grams (8 equivalents) of barium oxide. The mixture is stirred at the reflux temperature for 1 hour and then at 150 C. while carbon dioxide is bubbled into the mixture beneath its surface. The carbonated product is filtered and the filtrate has a sulfate ash content of 35%.
Other additives useful in lubricating compositions containing the metal salt of this invention include hindered phenols, sulfurized fatty acid esters, phosphosulfurized fatty acid esters, polysulfides, phosphites, metal phenates, etc.
The hindered phenols are those in which the carbon atoms at both ortho positions to the phenolic group con tain substantially large substituents so as to cause hinderance of the phenolic group. The common substituents are the secondary and tertiary alkyl radicals such as isopropyl, tert-butyl, tert-pentyl, sec-pentyl, cyclohexyl, and tert-octyl radicals. They likewise may be aryl radicals or large polar radicals such as bromo or nitro radicals. Examples of the hindered phenols include 2,6-di-sec-butylphenol, 2,4-di-tert butylphenol, 2,6-di-tert octyl 4 secpentylphenol, Z-tert-pentyl-6-tert-hexylphenol, 2-tert-butyl- 4-cyclohexyl-6-heptylphenol, 4,4-bis-methylene (2,6-ditert-butylphenol) 4,4'-methylene-bis(2 tert butyl-6-secbutylphenol), 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tertbutyl-6-methylphenol, and bis-(3,5-di-tertbutyl-4-hydroxybenzyl) sulfide.
The sulfurized esters of the fatty acids are obtained by the treatment of the esters with a sulfurizing agent such as sulfur or a sulfur halide, e.g., sulfur monochloride or sulfur dichloride. The esters are exemplified by methyl oleate, methyl stearate, allyl stearate, isopropyl myristate, cyclohexyl ester of tall oil acid, ethyl palmitate, iso-octyl laurate, diester of ethylene glycol with steari acid, tetraester of pentaerythritol with stearic acid, etc. Likewise useful are esters of higher alcohols or commercial alcohol mixtures such as octadecyl alcohol and sperm oil alcohol, and phenols such as phenol, naphthol, p-cresol, and o,p-dihexylphenol. The sulfurization is effected most conveniently at temperatures between C. and 250 C. More than one atom of sulfur can be incorporated into the ester by the use of an excess of the sulfurizing agent. For the purpose of this invention sulfurized esters having as many as 4 or 5 atoms of sulfur per molecule have been found to be useful. Examples include sulfurized sperm oil having a sulfur content of 5%, sulfurized tall oil having a sulfur content of 9%, sulfurized methyl oleate having a sulfur content of 3%, and sulfurized stearyl stearate having a sulfur content of 15%.
Still another class of the fatty compounds consists of the phosphosulfurized fatty acid ester mentioned above. They are obtained by the treatment of the esters with a phosphorus sulfide, such as phosphorus pentasulfide, phosphorus sesquisulfide, or phosphorus heptasulfide. The treatment is illustrated by mixing an ester with from about 0.5% to 25% of a phosphorus sulfide at a temperature within the range from about 100 C. to 250 C. The product contains both phosphorus and sulfur but the pre cise chemical constitution of such a product is not clearly understood. These and other methods for preparing the sulfurized esters and phosphosulfurized esters are known in the art.
The polysulfides include principally aliphatic and cycloaliphatic disulfides, trisulfides, tetrasulfides, pentasulfides, or higher polysulfides. The term polysulfide designates a compound in which two substantially hydrocarbon radicals are joined to a group consisting of at least 2 sulfur atoms. It is represented for the most part by any of the structural formulas below:
]s n R3SSHR4; R3--R4 R3?R4 S n S n wherein R and R are alkyl or cycloalkyl radicals and n is an integer usually less than 6. The nature of the linkage between the sulfur atoms is not clearly understood. It is believed, however, that such linkage may be described by a single covalent bond, 21 double bond, or a coordinate covalent bond. The polysulfides containing at least about 6 carbon atoms per molecule have greater oilsolubility and are generally preferred. Specific examples of such polysulfides are diisobutyl trisulfide, diisopentyl trisulfide, di-n-butyl tetrasulfide, di-cyclopentyl disulfide, di-methylcyclohexyl tetrasulfide, di-Z-ethylhexylpentyl disulfide, dipentyl trisulfide, di-beta-pinyl pentasulfide, cyclohexyl cyclopentyl trisulfide, diparaflin wax trisulfide, di-terpenyl disulfide, didodecyl trisulfide, dibehenyl trisulfide, and diisobutyl hexa-sulfide. Other polysulfides, in-
cluding polar-substituted sulfides, are exemplified by di- (omegabromopentyl) trisulfide.
The preparation of the polysulfide may be accomplished by any of the various processes which are known and disclosed in the art including, for example, the reaction of a chlorohydrocarbon with an alkaline earth polysulfide, the reaction of a mercaptan with sulfur and/ or sulfur halide, the reaction of saturated and unsaturated hydrocarbons with sulfur and/ or sulfur halides, the reaction of a hydrocarbon monosulfide with sulfur, etc.
The phosphites useful herein are the diand tri-hydrocarbon esters of phosphorus acid. Examples of the phosphites are: dibutyl phosphi te, diheptylphosphite, dicyclohexylphosphite, tri-(pentylphenyl) phosphite, tris-(dipentylphenyl) phosphite, didecyl phosphite, di-stearyl phosphite, tris-(hexa-propylene-substituted phenyl) phosphite, tri-hexyl phosphiite, di-heptyl phenyl phosphite, and tri- (m-chloro-p-heptylphenyl) phosphite.
The alkaline earth metal salts of the alkylated phenols include principally the salts of magnesium, barium, calcium, and strontium with phenolic substances containing an alkyl substiuent having at least about 7 carbon atoms. The phenols are exemplified by alkyl phenols, alkyl naphthols, sulfurized alkyl phenols, and the condensation products of alkyl pheno'ls with an aldehyde. Specific examples include magnesium =octylphenate, barium polypropylene-substituted phenate in which the polypropylene substituent has a molecular weight of 500, calcium salt of alpha-dodecyl-beta-naphthyl, barium salt of bis(heptylphenol)su'lfide, calcium salt of 'bis(nonylphenol)sulfide, calcium salt of the condensation product of two moles of heptylphenol with formaldehyde, barium dodecylphenate, rand strontium polyisobutene-substituted phenate in Which the polyisobutene substituent has a molecular weight of 350.
The metal salt of this invention is unusually stable to thermal degradation. Because of this high thermal stability, the metal salt is especially desirable as a lubricant additive in instances where the additive, an oil concentrate containing it, or a lubricant containing it is likely to be subjected to relatively high temperatures under storage conditions or service conditions. The thermal stability of the metal salt of this invention is shown by the test results shown in Table I below. The tecst consists of maintaining an oil concentrate of the additive at 202 C. for a specified period and measuring the amount of gaseous decomposition products formed during the test. A small amount of gaseous decomposition products indicates a high thermal stability of the additive and the concentrate.
*Crystalline compound. Oil concentrate cannot be prepared because of oil-insolubility.
The metal salt of this invention is especially effective to impart oxidation resistance to lubricants. Its effectiveness is demonstrated by the results of an oxidation test shown in Table II below. The test consists of bubbling air at a rate of 1.251.3 cubic feet per hour into 350 grams of a lubricant sample having immersed therein an oxidation catalyst (consisting of 120 grams of iron, 120 gr-ams of iron, 120 grams of copper, and 31 grams of lead) at 302 F. and measuring the viscosity change of the lubricant at regular intervals until either a sharp increase in the viscosity occurs or sediment develops; The appearance of sediment indicates the formation of a significant quantity of oxidation products and the test period up to the appearance of such sediment is a measurement of the oxidation resistance of the lubricant. The transmission lubricant of the test is obtained by incorporating the metal salt of this invention in a lubricant consisting of a mineral lubricating oil having a viscosity value of 38-40 Saybolt Universal seconds at 210 F. and containing 4.25% (by weight) of a polyacrylate viscosity improving additives, 3 of a barium carboxylate detergent, and 1.33% of a barium sulfonate detergent. It should be noted that such transmission lubricant cannot be prepared from a zinc salt of di(isopropylphenyl) phosphinodithioa-te acid (present as a component in the metal salt of lubricant B), nor from a zinc salt of -di(chlorophenyl) phosphinodithioic acid (present as a component in lubricants C and E) because of the oil-insolubility of such zinc salts.
TABLE II Transmission Lubricant Oontaining Test Results Period of Concentration, Testing Before Metal Salt Additive Percent Weight Sedimentation,
as Phosphorus hours r 0 A. Zn salt of di-isooetyl phosphorg; odithioie acid.* 4 88 B. Zn salt of a mixture of di-isooctyl phosphorodithioic acid and di- 0.05 112 (isopropylphenyl) phosphinodi- 0.1 136 thioic acid, 60:40 molar ratio.
C. Zn salt of a mixture of di-isooctyl phosphorodithioie acid and di- 0.05 06 (chlorophenyl) phosphinodithioie 0.1 acid, 60:40 molar ratio.
D. Zn salt ofdi(pr0pylene tetramero 05 88 substituted phenyl) phosphorodithioic acid.*
E. Zn salt of a mixture of di(pro pylene tetramer-substituted phenyl) phospliorodithioie acid and di(ehlorophenyl) phosphinodithioic acid, 60:40 molar ratio 0.1 120 *B aseline lubricant.
The effectiveness of the metal salt of this invention as an additive in transmission lubricants is shown by a Powerglide transmission lubricant test. The test results are shown in Table III. The lubricant used in the test is an automatic transmission lubricant base oil (having a viscosity within the range of 45-55 Saybolt Universal seconds at 210 F. and a viscosity index within the range of from to and prepared from a mineral lubricating oil having incorporated therein a suitable amount of a commercial viscosity index improver) containing 3% (by weight) of a barium carboxylate detergent, 0.5% of barium sulfate ash as a basic barium sulfonate detergent, 20 parts per million of a silicone anti-foam agent and 0.1% of phosphorus as the metal salt of this invention. This test measures particularly the effectiveness of a lubricant in preventing wear and deterioration of the clutch plates of automobile transmissions. It consists in operating a Powerglide transmission driven by a Chevrolet engine for 5000 cycles, each cycle consisting of 6 seconds of open throttle operation followed by 6 seconds closed throttle operation. A cycle begins with the transmission in low range. The engine is accelerated to 4100 r.p.m. and 370 ft. lb. torque; at this point, up shift occurs. The throttle is then closed allowing the engine to decelerate and the transmission to shift back to low range. The operating conditions for the transmission and the engine are as follows:
Governor cavity pressure (minimum) p.s.i 1.
TABLE III Test Results Test Metal Salt Additive Duration,
cycles Plate Overall Wear Result Zn salt of a mixture of di-isooetyl phosphorodithioie acid and di(ispropylphenyl) phosphinodithioic acid (Example 3).
Zn salt of di-isooctyl phosphorodithioic acid (baseline).
5,000 Pass.... Pass.
*Failed at the end of 1112 cycles because of the loss of the necessary frlictional characteristics for permitting proper engagement of clutch p ates.
What is claimed is:
1. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a metal salt of a phosphorus acid mixture comprising (A) a dihydrocarbon phosphorothioic acid having at least 3 aliphatic carbon atoms in each hydrocarbon radical and '(B) a diaryl phosphinothioic acid wherein the aryl group is selected from the class consisting of phenyl, halophenyl, and alkylphenyl having up to about 6 carbon atoms in the alkyl su'bstituent; wherein the molar ratio of (A) to (B) is within the range of from about 1:2 to 1:0.05 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 6.
2. The lubricant of claim 1 wherein the acid of (A) is a dialkyl phosphorodithioic acid.
3. The lubricant of claim 1 wherein the acid of (B) is a =di(a'lkylpheny-l) phosphinodit-hioic acid.
4. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a metal salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from 3 to about 30' carbon atoms in each alkyl radical and (B) a di(alkylphenyl) phosphinodithioic acid having up to about 6 carbon atoms in the alkyl substituent; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 120.05 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 8.
5. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a metal salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from 3 to about 30 carbon atoms in each alky-l radical and (B) a di('halophenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 1:005 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 8.
6. The lubricant of claim wherein the metal is zinc.
7. The lubricant of claim 5 wherein the metal is barium.
-8. The lubricant of claim 5 wherein the metal is lead.
9. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from 3 to about'30' carbon atoms in each alkyl radical and (B) a di(alkylphenyl) phosphinodithioic acid having up to about 6 carbon atoms in the alkyl substituent; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 110.2 and the ratio of aliphatic carbon atoms to phosphorus atoms is at least about 6.
10. The lubricant of claim 9 wherein the acid of (A) is dioctyl phosphorodithioic acid.
11. The lubricant of claim 9 wherein each alkyl radical of the dialkyl phos-phorodithioic acid of (A) has from about 6 to 12 carbon atoms.
12. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) a dialkyl phosphorodithioic acid having from about 6 to 12 carbon atoms in each alkyl radical and (B) di(chlorophenyl) phosphorodithioic acid; wherein the molar ratio of (A) to (B) is within the range of from about 1:1 to 1:02.
13. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufiicient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid and (B) di(isopropylphenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:0.2.
14. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, suflicient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid and (B) d-i(ch-lorophenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:02.
15. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a lead salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid and (B) di(isopropylphenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:02.
16. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a barium salt of a phosphorus acid mixture comprising (A) dioctyl phosphorodithioic acid (B) di(isopropylphenyl) phosp-hinodithioic acid; wherein the molar ratio of (A) to (B) is within the range from about 1:1 to 1:0.2.
17. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) diisoctyl phosphorodithioic acid and (B) -di(isopro.pylphenyl) phospinodithioic acid; wherein the molar ratio of (A) to (B) is about 1:0.7
18. A lubricant comprising a major proportion of a mineral lubricating oil and a minor proportion, sufficient to inhibit oxidation thereof, of a zinc salt of a phosphorus acid mixture comprising (A) diisoctyl phosphorodithioie acid and '(B) di(c-hlorophenyl) phosphinodithioic acid; wherein the molar ratio of (A) to (B) is about 1:0.7
References Cited by the Examiner UNITED STATES PATENTS 2,797,238 6/1957 Miller et al 252-32] X 2,932,614 4/1960 Lynch et al 25232.7 3,000,822 9/1961 Higgins et al. 25232.7
DANIEL E. WYMAN, Primary Examiner.
P. P. GARVIN, Assistant Examiner.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,300,409 January 24, 1967 Thomas A. Butler It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below Column 2 line 12 for "de" read dilines 18 and 19, for "phosphorothioic" read phosphoromonothioic column 3, line 7, for "orgainc" read organic line 51, for "critically" read criticality column 11, line 44, for "tecst" read test, line 72, strike out "120 grams of iron"; column 12, line 10, for "additives" read --additive Signed and sealed this 17th day of December 1968.
(SEAL) Attest:
EDWARD J. BRENNER Commissioner of Patents Edward M. Fletcher, Jr.
Attesting Officer

Claims (1)

1. A LUBRICANT COMPRISING A MAJOR PROPORTION OF A MINERAL LUBRICATING OIL AND A MINOR PROPORTION, SUFFICIENT TO INHIBIT OXIDATION THEREOF, OF A METAL SALT OF A PHOSPHORUS ACID MIXTURE COMPRISING (A) A DIHYDROCARBON PHOSPHOROTHIOIC ACID HAVING AT LEAST 3 ALIPHATIC CARBON ATOMS IN EACH HYDROCARBON RADICAL AND (B) A DIARYL PHOSPHINOTHIOIC ACID WHEREIN THE ARYL GROUP IS SELECTED FROM THE CLASS CONSISTING OF PHENYL, HALOPHENYL, AND ALKYLPHENYL HAVING UP TO ABOUT 6 CARBON ATOMS IN THE ALKYL SUBSTITUENT; WHEREIN THE MOLAR RATIO OF (A) TO (B) IS WITHIN THE RANGE OF FROM ABOUT 1:2 TO 1:0.05 AND THE RATIO OF ALIPHATIC CARBON ATOMS TO PHOSPHORUS ATOMS IS AT LEAST ABOUT 6.
US387171A 1964-08-03 1964-08-03 Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids Expired - Lifetime US3300409A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US387171A US3300409A (en) 1964-08-03 1964-08-03 Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids
GB29689/65A GB1081311A (en) 1964-08-03 1965-07-13 Metal salts of organic phosphorus acid mixtures
FR26926A FR1460613A (en) 1964-08-03 1965-08-02 Metal salts of phosphorus acids
DEP1271A DE1271878B (en) 1964-08-03 1965-08-03 Lubricating oil
US579224A US3376221A (en) 1964-08-03 1966-09-14 Metal salts of mixed phosphorothioic and phosphinothioic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US387171A US3300409A (en) 1964-08-03 1964-08-03 Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids

Publications (1)

Publication Number Publication Date
US3300409A true US3300409A (en) 1967-01-24

Family

ID=23528779

Family Applications (1)

Application Number Title Priority Date Filing Date
US387171A Expired - Lifetime US3300409A (en) 1964-08-03 1964-08-03 Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids

Country Status (1)

Country Link
US (1) US3300409A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360463A (en) * 1965-04-15 1967-12-26 Albright & Wilson Mfg Ltd Lubricants containing synergistic wear inhibitors
US3401185A (en) * 1965-07-01 1968-09-10 Lubrizol Corp Metal salts of phosphorus acids and process
US3428561A (en) * 1964-09-08 1969-02-18 Lubrizol Corp Mixed salts of phosphorus acids and hydrocarbon-substituted succinic acids
US3489682A (en) * 1968-03-01 1970-01-13 Lubrizol Corp Metal salt compositions
US4840740A (en) * 1986-01-16 1989-06-20 Ntn Toyo Bearing Co., Ltd. Grease for homokinetic joint
US5585336A (en) * 1994-10-05 1996-12-17 Showa Shell Sekiyu K.K. Grease composition for tripod type constant velocity joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797238A (en) * 1954-01-26 1957-06-25 Lubrizol Corp Method for preparing organic phosphinodithioic compounds
US2932614A (en) * 1958-01-07 1960-04-12 Exxon Research Engineering Co Manufacture of metal salts of dialkyl dithiophosphoric acids and concentrate in oil solution
US3000822A (en) * 1957-01-22 1961-09-19 Lubrizol Corp Phosphorodithioate inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2797238A (en) * 1954-01-26 1957-06-25 Lubrizol Corp Method for preparing organic phosphinodithioic compounds
US3000822A (en) * 1957-01-22 1961-09-19 Lubrizol Corp Phosphorodithioate inhibitors
US2932614A (en) * 1958-01-07 1960-04-12 Exxon Research Engineering Co Manufacture of metal salts of dialkyl dithiophosphoric acids and concentrate in oil solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3428561A (en) * 1964-09-08 1969-02-18 Lubrizol Corp Mixed salts of phosphorus acids and hydrocarbon-substituted succinic acids
US3360463A (en) * 1965-04-15 1967-12-26 Albright & Wilson Mfg Ltd Lubricants containing synergistic wear inhibitors
US3401185A (en) * 1965-07-01 1968-09-10 Lubrizol Corp Metal salts of phosphorus acids and process
US3489682A (en) * 1968-03-01 1970-01-13 Lubrizol Corp Metal salt compositions
US4840740A (en) * 1986-01-16 1989-06-20 Ntn Toyo Bearing Co., Ltd. Grease for homokinetic joint
US5585336A (en) * 1994-10-05 1996-12-17 Showa Shell Sekiyu K.K. Grease composition for tripod type constant velocity joint

Similar Documents

Publication Publication Date Title
US3282955A (en) Reaction products of acylated nitrogen intermediates and a boron compound
US3338832A (en) Lubricating oil containing reaction product of certain acylated nitrogen containing intermediates and a boron compound
US3533945A (en) Lubricating oil composition
US2409687A (en) Sulfur and metal containing compound
US3197405A (en) Phosphorus-and nitrogen-containing compositions and process for preparing the same
CA1148148A (en) Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines
US3281428A (en) Reaction product of certain acylated nitrogen containing intermediates and a boron compound
US2451345A (en) Compounded lubricating oil
US4034038A (en) Boron-containing esters
US3595790A (en) Oil soluble highly basic metal salts of organic acids
CA1208420A (en) Phosphorus-containing metal salts/sulfurized phenate compositions/aromatic substituted triazoles, concentrates, and functional fluids containing same
JPH01502674A (en) gear lubricating composition
US3267033A (en) Lubricating composition having desirable frictional characteristics
US3259579A (en) Esters of dithiophosphoric acids and lubricating oil compositions containing same
JPS62502199A (en) Hydrogen sulfide stabilized oil-soluble sulfurized organic composition
US2451346A (en) Compounded lubricating oil
US2783204A (en) Corrosion preventing agent
US2628941A (en) Extreme pressure lubricant
US3376221A (en) Metal salts of mixed phosphorothioic and phosphinothioic acids
US3300409A (en) Lubricants containing metal salts of mixed phosphorothioic and phosphinothioic acids
JP2552092B2 (en) Reaction product of phosphorus-containing metal salt / olefin composition and active sulfur
US3041279A (en) Lubricating oil compositions
GB748137A (en) Improvements in or relating to lubricating oil compositions
US3296137A (en) Lubricants containing aldehydohydrocarbon sulfides
US2689258A (en) Reaction of terpenes with thiophosphorous acid esters and products thereof