US3298817A - Method of combating weeds - Google Patents

Method of combating weeds Download PDF

Info

Publication number
US3298817A
US3298817A US806779A US80677959A US3298817A US 3298817 A US3298817 A US 3298817A US 806779 A US806779 A US 806779A US 80677959 A US80677959 A US 80677959A US 3298817 A US3298817 A US 3298817A
Authority
US
United States
Prior art keywords
mole
found
yield
calculated
chloroethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US806779A
Inventor
Tilles Harry
Antognini Joe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US806779A priority Critical patent/US3298817A/en
Application granted granted Critical
Publication of US3298817A publication Critical patent/US3298817A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C333/00Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C333/02Monothiocarbamic acids; Derivatives thereof

Definitions

  • This invention relates to certain chloroalkyl and bromoalkyl esters of disubstituted thiolcarbamic acids as herbicides, and as new compounds. More specifically, the invention relates to compounds of the general formula :1 R1S-ON wherein R is a lower chloroalkyl or bromoalkyl radical, R is a lower alkyl radical, a lower chloroalkyl radical, a lower alkenyl radical, a lower chloroalkenyl radical or an alkynyl radical, and R is a lower alkyl radical, a lower cycloalkyl radical, a lower chloroalkyl radical or a lower alkenyl radical.
  • R is a lower chloroalkyl or bromoalkyl radical
  • R is a lower alkyl radical, a lower chloroalkyl radical, a lower alkenyl radical, a lower chloroalkenyl radical or an alkynyl radical
  • R is a lower alky
  • Example I (R-2217).8.5 g. (0.048 mole) of 2-hydroxyethyl N,N-diethylthiolcarbamate was dissolved in 25 cc. of benzene and 1 drop of pyridine was added. The solution was cooled to 2 /2 C. and 7.2 g. (0.060 mole) of thionyl chloride was rapidly added. The temperature of the mixture rose rapidly to 24 C. while still in the ice 3,298,817 Patented Jan. 17, 1967 bath and slowly to 35 C. after removal from the ice'bat'h. The mixture was then brought to reflux, held at reflux for /2 hour, cooled to room temperature, diluted with cc. of ethyl ether and washed with three-25 cc.
  • Example II (R-2503).1.00 g. (6.29 10- moles) of 2-chloroethyl chlorothiolformate was dissolved in 10 cc. of ethyl ether and a solution of 1.40 g. (13.8 X 10- moles) of N-allyl-n-propylamine in 15 cc. of ethyl ether was added rapidly. An exothermic reaction ensued and N- allyl-n-propylamine hydrochloride precipitated. 10 cc. of water was added, the mixture was transferred to a separatory funnel, 25 cc. more ethyl ether was added and the aqueous layer was separated. The ether layer was then washed with two-10 cc.
  • Example 111 (R2505)When the general procedure of Example II was repeated except that 1.00 g. (6.29 10- moles) of 2-chloroethyl chlorothiolformate and 1.56 g. (13.8)(10 moles of N-allyl-i-butyl amine were employed, there was obtained 1.48 g. (63.5% yield) of Z-chloroethyl N--allyl-N-i-butylthiolcarbamate, #1 1.5018.
  • Example I V (R2507).When the general procedure of Example II was repeated except that 1.00 g. (6.29 10- moles) of 2-chloroethyl chlorothiolformate and 1.84 g. (13.8 10 moles) of N-Z-chloroallyl-n-propylamine were employed, there was obtained 1.40 g. (87% yield) of 2-chloroethyl N-Z-chloro-N-n-propylthiolcarbamate, n 1.5181.
  • Example V (R2508).When the general procedure of Example II was repeated except that 1.00 g. (6.29 10 moles) of Z-chloroethyl chlorothiolformate and 1.82 g. (13.8 10- moles) of N-Z-chloroallyl-allylamine were employed, there was obtained 1.46 g. (91.3% yield) of 2-chloroethyl N-2-chloroallyl-N-allylthiolcarbamate, n 1.5291.
  • Example VI (R2509).When the general procedure of Example II was repeated except that 1.00 g. (6.29 10 moles) of 2-chloroethyl chlorothiolformate and 1.65 g. (13.8 l0 moles) of N-3-chloroallyl-ethylamine were employed, there was obtained 1.39 g. (91.5% yield) of 2-chloroethyl N-3-chloroallyl-N-ethylthiocarbamate, 11 1.5283.
  • Example VII (R2215).When the general procedure 7 of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.82 g. (18.0 10- moles) of di-n-propylamine were Example IX (R-25I4).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.82 g. (18.0 10 moles) of N-ethyl-n-butylamine were employed, there was obtained 1.77 g. (96.8% yield) of 2-chloroethyl N-ethyl-N-n-butylthiolcarbamate, 11 1.4940.
  • Example X (R25I5).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 2.28 g. (18.0 10 moles) of N-ethylcyclohexylamine were employed, there was obtained 2.02 g. (99.0% yield) of 2-chloroethyl N-ethyl-N-cyclohexylthiolcarbamate, 11 1.5143.
  • Example XI (R25I6).When the general procedure of Example II was repeated except that 1.30 g. (8.l8 10' moles) of 2-chloroethyl chlorothiolformate and 1.75 g. (18.0 10 moles) of diallylamine were employed, there was obtained 1.65 g. (91.6% yield) of 2-chloroethyl N,N-diallylthiolcarbam-ate, n 1.5180.
  • Example XII (R25I7).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.78 g. (18 10 moles) of N-allyl-i-propylamine were employed, there was obtained 1.73 g. (95.5% yield) of 2-chloroethyl N-allyl-N-i-propylthiolcarbamate, n 1.5090.
  • Example XIII (R-25I8).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.78 g. (18x10 moles) of N-rnethallylethylamine were employed, there was obtained 1.28 g. (70.6% yield) of 2-chloroethyl N-methallyl-N-ethylthiolcarbamate, n 1.5080.
  • Example XIV (R25I9).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 2.04 g. (18.0 10 moles) of N-methallyl-n-propylamine were employed, there was obtained 1.77 g. (91.7% yield) of 2-chloroethyl N-methallyl-N-n-propylthiolcarbamate, n1 1.5029.
  • Example XVIII (R-2526).1.30 g. (818x10- moles) of 2-chloroethyl chlorothiolformate was dissolved in 25 cc. of ethyl ether and 1.75 g. (9.81 10 moles) of bis (2-chloroethylamine hydrochloride) was added. The mixture was cooled to 3 C. in an ice bath and then 10 cc. of aqueous sodium hydroxide solution containing 0.67 g. (16.8 10 moles) of sodium hydroxide was slowly added. After the addition was complete, the reaction mixture was allowed to warm up to room temperature and was then worked up in the same manner 218 Example II. There was obtained 1.96 g. (90.3% yield) of 2-chloroethyl N,N-bis(2-chloroethyl)thiolcarbamate, 11 1.5381.
  • Example XIX (R2527).When the eneral proce dure of Example XVIII was repeated except that 1.30 g. (8.l8 10 moles) of 2-chloroethyl chlorothiolformate, 2.03 g. (9.81 x 10" moles) of his (2-chloropropylamine) hydrochloride and 0.67 g. (16.8 10" moles) of sodium hydroxide were employed, there was obtained 2.19 g. (91.3% yield) of 2-chloroethyl N,N-bis (2-chloropropyl) thiolcarbamate, n 1.5196.
  • Example XX (R-2626).-3.8 g. (0.052 mole) of (llethylamine dissolved in 50 cc. of ethyl ether was added to 2.0 g. (0.05 mole) of sodium hydroxide dissolved irl 50 cc. of water. The mixture was cooled to 5 C. and then 8.7 g. (0.05 mole) of 3-chlor0propyl chlorothiolformate was added dropwise with stirring maintaining the temperature between 5l0 C. The mixture was then allowed to warm up to room temperature and was then worked up in the same manner as Example II. There was obtained 7.5 g. (71.3% yield) of 3-chloropropyl' N,N-di-ethylthiolcarbamate, RP. (10 mm.) 1420-1428 C., 11 1.4989.
  • Example XXI (R-2629).When the general proce dure of Example XX was repeated except that 5.3 g. (0.052 mole) of di-n-propylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.4 g. (54.0% yield) of 3-chloropropyl N,N-di-n-propylthiolcarbamate, B.P. (10 mm.) 158.5159.0 C., n 1.4925.
  • Example XXII (R-2632).-When the general procedure of Example XX was repeated except that 5.3 g. (0.052 mole) of N-ethyl-n-butylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 7.5 g. (63% yield) of 3-chloropropyl N-ethyl-N-nbutylthiolcarbamate, B.P. (10 mm.) 161.5162.0 C., n 1.4929
  • Example XXIII (R2630).-When the general procedure of Example XX was repeated except that 5.1 g. (0.052 mole) of diallylamine, 8.7 g. (0.05 mole) of 3- chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 8.9 g. (76.5% yield) of 3-chl0ropropyl N,N-diallylthiolcarbamate, B.P. mm.) 159.0-l59.5 C., n 1.5147.
  • Example XXIV (R2634).When the general procedure of Example XX was repeated except that 11.8 g. (0.103 moles) of N-methallyl-n-propylamine, 17.3 g.
  • Example XXV (R2636).When the general procedure of Example XX was repeated except 5.8 g. (0.052 mole) of N-methallylallylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. of sodium hydroxide were employed, there was obtained 8.9 g. (71.6% yield) of 3-chloropropyl N-Inethallyl-N-allylthiolcarbamate, B.P. (10 mm.) 163.5-164.0C., 11 1.5113.
  • Example XX VI (R2640).When the general procedure of Example XX was repeated except 4.0 g. (0.03 mole) of N-2-chloroallyl-n-propylamine, 5.0 g. (0.029 mole) of 3-chloropropyl chlorothiolformate 'and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.9 g. (87.5% yield) of 3-chloropropyl N-2- chloroallyl-N-n-propylthiolcarbamate, 11 1.5148.
  • Example XX VII (R-264I).-When the general procedure of Example XX was repeated except that 3.9 g. (0.03 mole) of N-3-chloroallylallylamine, 5.0 g. (0.029 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.8 g. (87.2% yield) of 3-chloropropyl N-3- chloroallyl-N-allylthiolcarbamate, 21 1.5312.
  • Example XX VIII (R2643).-When the general procedure of Example XX was repeated except that 5.1 g. (0.052 mole) of N-propargyl-n-propylarnine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate, and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.2 g. (53.1% yield) of 3-chloropropy1 N-propargyl-N-n-propylthiolcarbamate, B.P. (10 mm.) 167.0167.5 C., 11 1.5117.
  • Example XXIX (R2644).When the general procedure of Example XVIII was repeated except that 5.4 g. (0.03 mole) of bis(2-chloroethylamine) hydrochloride, 5.0 g. (0.029 mole) of 3-chloropropyl chlorothiolformate and 2.4 g. (0.06 mole) of sodium hydroxide were employed, there was obtained 7.7 g. (95% yield) of 3-chloropropyl N,N-bis(2-chloroethyl) thiolcarbamate, 11 1.5330.
  • Example XXX (R2633).When the general procedure of Example XX was repeated except that 5.2 g. (0.052 mole) of N-allyl-n-propylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g.
  • Example XXXI (R-2939).-A 500 cc. 4 neck flask was provided with stirrer, thermometer, condenser and gas inlet tube. A solution of 7.3 g. (0.10 mole) of diethylamine and 10.1 g. (0.10 mole) of triethyla-mine in 150 cc. of tert. butyl alcohol was changed to the flask and then 10 -g. (0.17 mole) of carbonyl sulfide was bubbled into the amine solution with rapid stirring maintaining the temperature between 15-20 C. with ice cooling. To this solution at 15 C. was then added rapidly 56.4 g. (0.30 mole) of 1,2-di bromoethane.
  • Example XXXII (R-294I ).--When the general procedure of Example XXXI was repeated except that 10.1 g. (0.10 mole) of di-n-propylamin-e, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-di bromoethane and cc. of tert. butyl alcohol were employed, there was obtained 13.5 g. (50.2% yield) of 2 bromoethyl N,N-di-n-propylthiolcarbamate, B.P. (10 mm.) 155.5156.0 C., 11 1.5122.
  • Example XXXIII (IQ-2946) .
  • Example XXXI IQ-2946
  • Example XXXIII IQ-2946
  • 10.1 g. (0.10 mole) of N-ethyl-n-butylamine 10.1 g. (0.10 mole) of triethylamine
  • 10 g. (0.17 mole) of carbonyl sulfide 56.4 .g. (0.30 mole) of. l,2-dibrornoethane and 150 cc. of tert. butyl alcohol
  • 9.6 'g. (35.8% yield) of 2a-bromoethyl N-ethyl-N-n-butylthiocarbamate B.P. (10 mm.) 157.0159.5 C., n 1.5118.
  • Example XXXI V (R-2948) .
  • diallylaimine 9.7 g. (0.10 mole) of diallylaimine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 5 6.4 g. (0.30 mole) of 1,2-dibromoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 9.8 g. (37.0% yield) of Z-bromoethyl N,Ndiallylthiolcarlbamate, B.P. (10 mm.) l54.0156.5 C., n 1.5368.
  • Example XXX V (R2949).-When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of N-allyl-n-propylarnine, 10ml g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-dibromoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 14.7 g. (55.3% yield) of Z-bromcethyl N-allyl-N-n-propylthiocarbamate, B.P. (10 mm.) l55.0156.5 C., n 1.5270.
  • Example XXXVI (R-2952).-When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of Namethallylethylamine, 10.1 g. (0.10 mole) of trietliylamirie, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-dibr-moethane and 150 cc. of. tert. butyl alcohol were employed, there was obtained 12.8 g. (48.0% yield) of 2-brom0ethyl N- methallyl-N-ethylthiolcarbamate, B.P. mm.) 151.0- 153.0 C., n 1.5267.
  • Example XXX VII (R2958).When the general procedure of Example XXXI was repeated except that 11.1 g. (0.10 mole) of N-methallylallylamine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-d-ibromoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 12.6 g. (45.3% yield) of Z-brornoethyl N-methallyl-N-allylthiolcarbamate, B.P. (10 mm.) 160.016l.0 C., n 1.5320.
  • Example XXX VIII (R2962).When the general procedure of Example XXXI was repeated except that 7.3 g. (0.10 mole) of diethylamine, 10.1 g. (0.10 mole) of triethylarnine, 10 g. (0.17 mole) of carbonyl sulfide, 60. 6 g. (0.30 mole) of 1,3-di'bromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 15.3 g. (60.2% yield) of. 3-brom-opropyl N,N-diethylthiolca-rbarnate, B.P. (10 mm.) 152.5153.5 C., n 1.5166.
  • Example XXXIX (R-2969) .
  • Example XXXIX (R-2969) .
  • Example XL (R2978).When the general procedure of Example XXXI was repeated except that 8.7 g. (0.10 mole) of N-methyl-n-butylamine, 10.1 g. (0.10 mole) of triethylarnine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 :g. (0.30 mole) of 1,3-dibromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 14.7 g. (54.8% yield) of 3-br0mopropyl N-nbutyl-N-methylthiolcanba mate, B.P. (10 mm.) 164.5- 167.0" C., n 1.5111.
  • Example XLI (R2984).When the general procedure of Example XXXI was repeated except that 9.7 g. (0.10 mole) of diallylamine, 10.1 g. (0.10 mole) of triethyla-mine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.17 mole) of 1,3-dibromopropane and 150cc. of tert. butyl alcohol were employed, there was obtained 12.2 g. (43.4% yield) of 3-bromopropyl N,N-diallylthiolcarbamate, B.P. (10 mm.) 165.0-167.0 C., 11 1.5283.
  • Example XLII (R2987).When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of N-allyl-n-propylarnine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.30 mole) of 1,3-dibromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 17.8 g. (63.6% yield) of 3-bromopropyl N-allyl- N-n-propllthiocarbama-te, B. P. (10 mm.) 169.0-170.0 C., n 1.5190.
  • Example XLIII (R2990).When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of N-niethallylethylamine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.30 mole) of 1,3-dibromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 15.4 g, (55.0% yield) of 3-bromopropyl N-metha1lyl-N-ethylthiolcarbamate, B.P. (10 min.) 164.0 165.5 C., n 1.5200.
  • the compounds of the present invention have been tested as herbicides and found very effective as the following typical tests show. Some of the compounds are quite selective in their action and can be used to eradicate or control one type of plant, while another type of plant is relatively unaffected.
  • the method of cornbatlng weeds comprising applybe applled 1n a varlety of Ways at var1ous concentratlons.
  • mg a phytotox1c amount to the 8011 of a compound They may be combmed wlth sultable earners and apphed 0 R2 as dusts, sprays or drenches.
  • the amount apphed w1ll 7 Al depend on the nature of the seeds or plants to be con- S N trolled and the rate of apphcanon may vary from 1 to Rs 500 pounds per acre.
  • R 1s selected from lower chloroalkyl and bromoway of apply mg the compounds 1s as a narrow band alkyl radlcals
  • R 1s a member selected from the group along arow crop, straddling the row.
  • R is a member of the group consisting of a lower alkyl radical, a lower cycloalkyl radical, a lower chloroalkyl radical and a lower alkenyl radical.
  • a herbicidal composition comprising a major proportion of a herbicidal adjuvant as carrier and a minor but phytotoxic concentration of a phytotoxic compound of the structure l /N-s-A RI where R and R represent lower alkyl and A represents halogen substituted lower alkyl.
  • the method of destroying vegetation which comprises applying to germinating seedlings a phytotoxic amount of a phytotoxic composition containing as the essential active ingredient a compound of the structure where R and R represent lower alkyl and A represents halogen-substituted lower alkyl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

United States Patent 6 3,298,817 METHOD OF COMBATING WEEDS Harry Tilles, 703 Balra Drive, El Cerrito, Calif. 94530, and Joe Antognini, 22362 Freemont Drive, Mountain View, Calif. 94040 No Drawing. Filed Apr. 16, 1959, Ser. No. 806,779 9 Claims. (Cl. 712.6)
This application is a continuation-in-part of our application Serial No. 753,891, filed August 8, 1958, now abandoned.
This invention relates to certain chloroalkyl and bromoalkyl esters of disubstituted thiolcarbamic acids as herbicides, and as new compounds. More specifically, the invention relates to compounds of the general formula :1 R1S-ON wherein R is a lower chloroalkyl or bromoalkyl radical, R is a lower alkyl radical, a lower chloroalkyl radical, a lower alkenyl radical, a lower chloroalkenyl radical or an alkynyl radical, and R is a lower alkyl radical, a lower cycloalkyl radical, a lower chloroalkyl radical or a lower alkenyl radical. Typical non-limiting examples of the various substituents are as follows:
R1 R2 R3 ClCHgCHz CQHE CzHs (It-2217) ClCHzCHz 11-0 117 IlC:;H1 (13-2215) ClCHgCHz CH3 I1-O4Ho (Rx-2513) ClCHzCHg CzHs I1-C4Hn (It-2514) ClCH2CH2 C2115 eyelohexyl (11-2515) ClCHzCIL CH2=CHCHz CHZ=CHCH2 11-2516) ClCHzCHz CHz= CHCHz Il-C3H7 (R-2503) CICHgCHz CI'I2=CHCHz i-C3H7 (IX-2517) CICI'IZCHZ CH2= CHCHz l-CAHU (18-2505) ClCHzCHz CH2=C(C1)CH2 n-C3H7 (IR-2507) ClCHzCHz CHz=C(C1)CH2 CH2=CHCH2 (R-2508) C1CH2CH2 ClCH= CHCHZ C2115 (lit-2509) ClCHzCHz CICH CHCHz n-CaH-r (R-2525) ClCHzCHz CH2=C(CH3) CH2 CzHs (Ii-2518) ClCHzCHg CI-Iz= C (CH3) CH2 Il-C3Hl (It-2519) CICHzCHz CH2=C(CH:;) CH3 CH2=CHOH2 (IR-2520) ClCHzCHz HC CCH: n-C3H1 (It-2523) ClCHzCH2 C1CH2CH9 ClCHzCHz (R-2526) ClCHzCI-Iz CHaCHClCHz CH3CHC1CH2 (R-2527) CICHzCHzCHz C2115 C2135 (RZ626) ClCHzCHzCHz D-CaH- n-CaH7 (It-2629) C1CH2CH2CH2 C2115 11-C1H9 (11-2632) ClCHzCHzCHa CH2= CHCHz CH2= CHCH: (It-2630) ClCHzCHzCHz CHz=CHCH2 11-03117 (11-2633) ClCHzCHzCI-Iz CHz=C-(CH3) CH2 Il-C3H7 (B-2634) C1CH2CH2C1'I2 CHz=C(CH3)CHz CH2=CHCH2 (It-2636) CICHzCHzCHz CHz=C(Cl)CH2 Il-Ca (R-2G40) ClCHzCHzCHz C1CH=CHCH2 CH2=CHCH2 (R-2641) ClCH2CH2CH2 HC CCHZ n-C H1 (Ii-2643) CICHQCI'IZCH2 ClCHzCHz ClCHzCHi R-2644) BrCHgCHz @2115 1-15 (It-2939) BrCHzCHz 11-C5H7 n-CaH7 (IR-2941) BICHzCHz n-CrHa CzH (It-Z946) BrCHzCHg CHz=CHCH5 OHz=CHCH5 (R-2948) :BI'CH2CH2 CH2=OHCH2 Il-C3H7 (Ii-2949) BICHQCHQ CHz=C(CH3)CH2 CzH (R2952) BICHzOHz CHz=C(CHa) CH2 CH=CHCH2 (R-2958) BrCHzCHzCHg C H5 2 5 (Br-2962) BrCH2CHzCI-I2 n-C3H7 11-C3H7 (It-2969) BICHzCHzCHz 11 C411 CH3 (R-2978) BrCHzCHzCHz CHz=CHCHz CHz=CHCHg (IR-2984) BrcHzcHzCHz CHz= CH CH2 lit-03H! (R-2987) BICHzCHzCHz CH2=C(CH3) CH3 C 11 (It-2990) The novel compounds of the present invention may be made in accordance with the following non-limiting examples. Code numbers have been assigned to each compound and are used throughout the balance of the application.
Example I (R-2217).8.5 g. (0.048 mole) of 2-hydroxyethyl N,N-diethylthiolcarbamate was dissolved in 25 cc. of benzene and 1 drop of pyridine was added. The solution was cooled to 2 /2 C. and 7.2 g. (0.060 mole) of thionyl chloride was rapidly added. The temperature of the mixture rose rapidly to 24 C. while still in the ice 3,298,817 Patented Jan. 17, 1967 bath and slowly to 35 C. after removal from the ice'bat'h. The mixture was then brought to reflux, held at reflux for /2 hour, cooled to room temperature, diluted with cc. of ethyl ether and washed with three-25 cc. portions of water. The ether solution was dried over anhydrous magnesium sulfate, filtered and the filtrate was concentrated on the steam bath. The residual liquid was fractionally distilled. There was obtained 6.8 g. (72.2% yield) of 2-chloroethyl N,N-diethylthiolcarbamate, B.P. (20 mm.) 144-145 C., n 1.5011.
Analysis.Calculated for C H ClNOS: N=7.16%; Cl=18.1%. Found: N=7.05%; Cl=18.06%.
Example II (R-2503).1.00 g. (6.29 10- moles) of 2-chloroethyl chlorothiolformate was dissolved in 10 cc. of ethyl ether and a solution of 1.40 g. (13.8 X 10- moles) of N-allyl-n-propylamine in 15 cc. of ethyl ether was added rapidly. An exothermic reaction ensued and N- allyl-n-propylamine hydrochloride precipitated. 10 cc. of water was added, the mixture was transferred to a separatory funnel, 25 cc. more ethyl ether was added and the aqueous layer was separated. The ether layer was then washed with two-10 cc. portions of dilute hydrochloric acid (1 cc. of concentrate hydrochloric acid made up to a volume of 10 cc. with water) and one-10 cc. portion of water. The ether solution was then dried over anhydrous magnesium sulfate, filtered and evaporated on a warm hot plate under a stream of argon. There was obtained as a residual liquid 1.24 g. (89% yield) of 2-chloroethyl N- allyl-N-n-propylthiolcarbamate, 11 1.5068.
Analysis.-Calculated for C H ClNOS: N=6.32%. Found: N=6.30%.
Example 111 (R2505)When the general procedure of Example II was repeated except that 1.00 g. (6.29 10- moles) of 2-chloroethyl chlorothiolformate and 1.56 g. (13.8)(10 moles of N-allyl-i-butyl amine were employed, there was obtained 1.48 g. (63.5% yield) of Z-chloroethyl N--allyl-N-i-butylthiolcarbamate, #1 1.5018.
Analysis.-Calculated for C H ClNOS: Found: N=6.04%.
Example I V (R2507).When the general procedure of Example II was repeated except that 1.00 g. (6.29 10- moles) of 2-chloroethyl chlorothiolformate and 1.84 g. (13.8 10 moles) of N-Z-chloroallyl-n-propylamine were employed, there was obtained 1.40 g. (87% yield) of 2-chloroethyl N-Z-chloro-N-n-propylthiolcarbamate, n 1.5181.
Analysis.Calculated for C H Cl NOS: N=5.47%. Found: N=5.71%.
Example V (R2508).When the general procedure of Example II was repeated except that 1.00 g. (6.29 10 moles) of Z-chloroethyl chlorothiolformate and 1.82 g. (13.8 10- moles) of N-Z-chloroallyl-allylamine were employed, there was obtained 1.46 g. (91.3% yield) of 2-chloroethyl N-2-chloroallyl-N-allylthiolcarbamate, n 1.5291.
Analysis.Calculated for C H Cl NOS: N=5.51%. Found: N=5.51%.
Example VI (R2509).When the general procedure of Example II was repeated except that 1.00 g. (6.29 10 moles) of 2-chloroethyl chlorothiolformate and 1.65 g. (13.8 l0 moles) of N-3-chloroallyl-ethylamine were employed, there was obtained 1.39 g. (91.5% yield) of 2-chloroethyl N-3-chloroallyl-N-ethylthiocarbamate, 11 1.5283.
Analysis.Calculated for C H Cl NOS; N=5.78%. Found: N=5.93%.
Example VII (R2215).When the general procedure 7 of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.82 g. (18.0 10- moles) of di-n-propylamine were Example IX (R-25I4).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.82 g. (18.0 10 moles) of N-ethyl-n-butylamine were employed, there was obtained 1.77 g. (96.8% yield) of 2-chloroethyl N-ethyl-N-n-butylthiolcarbamate, 11 1.4940.
Analysis.Calculated for C H ClNOS: N=6.27%. Found: N=6.55%.
Example X (R25I5).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 2.28 g. (18.0 10 moles) of N-ethylcyclohexylamine were employed, there was obtained 2.02 g. (99.0% yield) of 2-chloroethyl N-ethyl-N-cyclohexylthiolcarbamate, 11 1.5143.
Aaalysis.Calculated for C H ClNOS: N=5.61%. Found: N=5.50%.
Example XI (R25I6).When the general procedure of Example II was repeated except that 1.30 g. (8.l8 10' moles) of 2-chloroethyl chlorothiolformate and 1.75 g. (18.0 10 moles) of diallylamine were employed, there was obtained 1.65 g. (91.6% yield) of 2-chloroethyl N,N-diallylthiolcarbam-ate, n 1.5180.
Analysis.Calculated for C H CINOS: N=6.38%. Found: N=6.23%.
Example XII (R25I7).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.78 g. (18 10 moles) of N-allyl-i-propylamine were employed, there was obtained 1.73 g. (95.5% yield) of 2-chloroethyl N-allyl-N-i-propylthiolcarbamate, n 1.5090.
Analysia-Calculated for C H CINOS: N=6.32%. Found: N=6.36%.
Example XIII (R-25I8).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.78 g. (18x10 moles) of N-rnethallylethylamine were employed, there was obtained 1.28 g. (70.6% yield) of 2-chloroethyl N-methallyl-N-ethylthiolcarbamate, n 1.5080.
Analysis.Calculated for C H ClNOS: N=6.32%. Found: N=6.48%.
Example XIV (R25I9).When the general procedure of Example II was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 2.04 g. (18.0 10 moles) of N-methallyl-n-propylamine were employed, there was obtained 1.77 g. (91.7% yield) of 2-chloroethyl N-methallyl-N-n-propylthiolcarbamate, n1 1.5029.
Analysis.Calculated for C H ClNOS: N=5.94%. Found: N=5.82%.
Example XV (R2520).When the general proce- Example XVI (R2523).-When the general procedure of Example 11 was repeated except that 1.30 g. (8.18 10 moles) of 2-chloroethyl chlorothiolformate and 1.75 g. (l8.0 10 moles) of N-propargyl-n-propylamine were employed, there was obtained 1.74 g. (96.7% yield) of 2-chloroethyl N-propargyl-N-n-propylthiolcarbamate, r1 1.5123. g r U Analysis.-Calculated for C H CINOS: N=6.38%. Found: N=6.19%. 7
Example XVII (R2525).When the general proce= dure of Example II was repeated except that 1.30 g.- (8.18 10- moles) of 2-chloroethlyl chlorothiolformate and 2.40 g. (18 10 moles) of 3-chloroal-lyln-propylamine were employed, there was obtained 2.03 g. (96.6% yield) 2-chloroethyl N-3-chloroallyl-n-propylthiolcarba= mate, n 1.5196.
Analysis.Calculated for C I-I Cl NOS: N:5.47%. Found: N=5.38%.
Example XVIII (R-2526).1.30 g. (818x10- moles) of 2-chloroethyl chlorothiolformate was dissolved in 25 cc. of ethyl ether and 1.75 g. (9.81 10 moles) of bis (2-chloroethylamine hydrochloride) was added. The mixture was cooled to 3 C. in an ice bath and then 10 cc. of aqueous sodium hydroxide solution containing 0.67 g. (16.8 10 moles) of sodium hydroxide was slowly added. After the addition was complete, the reaction mixture was allowed to warm up to room temperature and was then worked up in the same manner 218 Example II. There was obtained 1.96 g. (90.3% yield) of 2-chloroethyl N,N-bis(2-chloroethyl)thiolcarbamate, 11 1.5381.
Analysis.Calculated for C H C-l NOS: N=5.29%. Found: N=5.49%.
Example XIX (R2527).When the eneral proce dure of Example XVIII was repeated except that 1.30 g. (8.l8 10 moles) of 2-chloroethyl chlorothiolformate, 2.03 g. (9.81 x 10" moles) of his (2-chloropropylamine) hydrochloride and 0.67 g. (16.8 10" moles) of sodium hydroxide were employed, there was obtained 2.19 g. (91.3% yield) of 2-chloroethyl N,N-bis (2-chloropropyl) thiolcarbamate, n 1.5196.
Analysis.-Calculated for C H Cl NOS: N=4.78%. Found: N=4.92%.
Example XX (R-2626).-3.8 g. (0.052 mole) of (llethylamine dissolved in 50 cc. of ethyl ether was added to 2.0 g. (0.05 mole) of sodium hydroxide dissolved irl 50 cc. of water. The mixture was cooled to 5 C. and then 8.7 g. (0.05 mole) of 3-chlor0propyl chlorothiolformate was added dropwise with stirring maintaining the temperature between 5l0 C. The mixture was then allowed to warm up to room temperature and was then worked up in the same manner as Example II. There was obtained 7.5 g. (71.3% yield) of 3-chloropropyl' N,N-di-ethylthiolcarbamate, RP. (10 mm.) 1420-1428 C., 11 1.4989.
Analysls.-Calculated for C H ClNOS: Cl=16.90%; N=6.68%. Found: Cl=17.01%; N=6.66%.
Example XXI (R-2629).When the general proce dure of Example XX was repeated except that 5.3 g. (0.052 mole) of di-n-propylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.4 g. (54.0% yield) of 3-chloropropyl N,N-di-n-propylthiolcarbamate, B.P. (10 mm.) 158.5159.0 C., n 1.4925.
Analysis-Calculated for C H CINOS: Cl=14.91%; N=5.89%. Found: Cl=15.12%; N=5.78%.
Example XXII (R-2632).-When the general procedure of Example XX was repeated except that 5.3 g. (0.052 mole) of N-ethyl-n-butylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 7.5 g. (63% yield) of 3-chloropropyl N-ethyl-N-nbutylthiolcarbamate, B.P. (10 mm.) 161.5162.0 C., n 1.4929
.Analysis.Calculated for C I-I ClNOS: C1=14.91%; N=5.89%. Found: Cl:14.91%; N=5.81%.
Example XXIII (R2630).-When the general procedure of Example XX was repeated except that 5.1 g. (0.052 mole) of diallylamine, 8.7 g. (0.05 mole) of 3- chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 8.9 g. (76.5% yield) of 3-chl0ropropyl N,N-diallylthiolcarbamate, B.P. mm.) 159.0-l59.5 C., n 1.5147.
Analysis.Calculated for C H ClNOS: Cl=15.17%; N=5.99%. Found: C1=15.08%;N=5.85%.
Example XXIV (R2634).When the general procedure of Example XX was repeated except that 11.8 g. (0.103 moles) of N-methallyl-n-propylamine, 17.3 g.
(0.10 mole) of 3-chloropropyl chlorothiolformate and 4.0
g. (0.10 mole) of sodium hydroxide were employed, there was obtained 19.7 g. (78.8% yield) of 3-chloropropyl N-methallyl-N-n-propylthiolcarbamate, B.P. (10 mm.) 164.0-164.1 C., n 1.5013.
Analysis.-Calculated for C I-I CINOS: Cl: 14.19%; N=5.61%. Found:Cl=13.94%;N=5.53%.
Example XXV (R2636).When the general procedure of Example XX was repeated except 5.8 g. (0.052 mole) of N-methallylallylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. of sodium hydroxide were employed, there was obtained 8.9 g. (71.6% yield) of 3-chloropropyl N-Inethallyl-N-allylthiolcarbamate, B.P. (10 mm.) 163.5-164.0C., 11 1.5113.
Analysis.-Calculated for C I-I ClNOS: Cl=14.31%; N=5.65%. Found: Cl=14.51%; N=5.69%.
Example XX VI (R2640).When the general procedure of Example XX was repeated except 4.0 g. (0.03 mole) of N-2-chloroallyl-n-propylamine, 5.0 g. (0.029 mole) of 3-chloropropyl chlorothiolformate 'and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.9 g. (87.5% yield) of 3-chloropropyl N-2- chloroallyl-N-n-propylthiolcarbamate, 11 1.5148.
Analysis.-Calculated for C H Cl NOS: Cl=26.24%. Found: Cl=26.47%. Molar refraction: Calcd.: 69.52. Found: 69.56.
Example XX VII (R-264I).-When the general procedure of Example XX was repeated except that 3.9 g. (0.03 mole) of N-3-chloroallylallylamine, 5.0 g. (0.029 mole) of 3-chloropropyl chlorothiolformate and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.8 g. (87.2% yield) of 3-chloropropyl N-3- chloroallyl-N-allylthiolcarbamate, 21 1.5312.
Analysis.Calculated for C H Cl NOS: C1=26.44%. Found: Cl=26.64%. Molar refraction: Calcd: 69.20. Found: 68.70.
Example XX VIII (R2643).-When the general procedure of Example XX was repeated except that 5.1 g. (0.052 mole) of N-propargyl-n-propylarnine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate, and 2.0 g. (0.05 mole) of sodium hydroxide were employed, there was obtained 6.2 g. (53.1% yield) of 3-chloropropy1 N-propargyl-N-n-propylthiolcarbamate, B.P. (10 mm.) 167.0167.5 C., 11 1.5117.
Analysis.-Calculated for C H ClN-OS: Cl=15.17%; N=5.99%. Found: Cl=15.31%; N=5.83%.
Example XXIX (R2644).When the general procedure of Example XVIII was repeated except that 5.4 g. (0.03 mole) of bis(2-chloroethylamine) hydrochloride, 5.0 g. (0.029 mole) of 3-chloropropyl chlorothiolformate and 2.4 g. (0.06 mole) of sodium hydroxide were employed, there was obtained 7.7 g. (95% yield) of 3-chloropropyl N,N-bis(2-chloroethyl) thiolcarbamate, 11 1.5330.
Analysis.Calculated for C H Cl NOS: Cl=38.17%. Found: Cl=38.39%.
Example XXX (R2633).When the general procedure of Example XX was repeated except that 5.2 g. (0.052 mole) of N-allyl-n-propylamine, 8.7 g. (0.05 mole) of 3-chloropropyl chlorothiolformate and 2.0 g.
6 (0.05 mole) of sodium hydroxide were employed, there was obtained 8.47 g. (71.8% yield) of 3-chloropropyl N allyl N n propylthiolcarbamate, B.P. (10. mm.) 159.5-160.0 C., 12 1.5037.
Analysis.Calculated for C H ClNOS: Cl=15.04%; N=5.94%. Found: Cl=15.13%; N=5.96%.
Example XXXI (R-2939).-A 500 cc. 4 neck flask was provided with stirrer, thermometer, condenser and gas inlet tube. A solution of 7.3 g. (0.10 mole) of diethylamine and 10.1 g. (0.10 mole) of triethyla-mine in 150 cc. of tert. butyl alcohol was changed to the flask and then 10 -g. (0.17 mole) of carbonyl sulfide was bubbled into the amine solution with rapid stirring maintaining the temperature between 15-20 C. with ice cooling. To this solution at 15 C. was then added rapidly 56.4 g. (0.30 mole) of 1,2-di bromoethane. The mixture was then heated slowly to 45 C. and was maintained at 4550 C. for 1 /2 hours. The thin slurry was then heated to reflux, cc. of solvent was distilled, the residual slurry was cooled to room temperature, diluted with 200 cc. of petroleum ether, B.P. 3060 C., and successively washed with 250 cc. portions of 5% hydrochloric acid and 2-50 cc. portions of water. The organic phase was then dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated on the steam bath. The residual liquid was then fractionally distilled through an 18 Pod-bielniak Hel-i-G-rid Fractional Distillation Column. There was obtained 12.6 g. (52.5% yield) of 2- bromoethyl N,N-diethylthiolcarbamate, B.P. (10 mm.) 139l40 C., n 1.5229.
Analysis.-Calculated tor CqHmBI'NOSI N, 5.83%. Found: N, 5.97%.
Example XXXII (R-294I ).--When the general procedure of Example XXXI was repeated except that 10.1 g. (0.10 mole) of di-n-propylamin-e, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-di bromoethane and cc. of tert. butyl alcohol were employed, there was obtained 13.5 g. (50.2% yield) of 2 bromoethyl N,N-di-n-propylthiolcarbamate, B.P. (10 mm.) 155.5156.0 C., 11 1.5122.
Analysis.-Calculated tor C H BrNOS: N, 5.22%. Found: N, 4.95%.
Example XXXIII (IQ-2946) .When the general procedure of Example XXXI was repeated except that 10.1 g. (0.10 mole) of N-ethyl-n-butylamine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 .g. (0.30 mole) of. l,2-dibrornoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 9.6 'g. (35.8% yield) of 2a-bromoethyl N-ethyl-N-n-butylthiocarbamate, B.P. (10 mm.) 157.0159.5 C., n 1.5118.
Analysis.--Calculated for C H BINOS: N, 5.22%. Found: N, 5.44%.
Example XXXI V (R-2948) .When the general procedure of Example XXXI was repeated except that 9.7 g. (0.10 mole) of diallylaimine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 5 6.4 g. (0.30 mole) of 1,2-dibromoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 9.8 g. (37.0% yield) of Z-bromoethyl N,Ndiallylthiolcarlbamate, B.P. (10 mm.) l54.0156.5 C., n 1.5368.
Analysis.-Calculated for C H BINOS: N, 5.30%. Found: N, 5.51%.
Example XXX V (R2949).-When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of N-allyl-n-propylarnine, 10ml g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-dibromoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 14.7 g. (55.3% yield) of Z-bromcethyl N-allyl-N-n-propylthiocarbamate, B.P. (10 mm.) l55.0156.5 C., n 1.5270.
Analysis.Calcula-ted for C H BrNOS: N, 5.26%.. Found: N, 5.22%.
Example XXXVI (R-2952).-When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of Namethallylethylamine, 10.1 g. (0.10 mole) of trietliylamirie, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-dibr-moethane and 150 cc. of. tert. butyl alcohol were employed, there was obtained 12.8 g. (48.0% yield) of 2-brom0ethyl N- methallyl-N-ethylthiolcarbamate, B.P. mm.) 151.0- 153.0 C., n 1.5267.
Analysis.Calculated for C H B rNOS: N, 5.26%. Found: N, 5.45%.
Example XXX VII (R2958).When the general procedure of Example XXXI was repeated except that 11.1 g. (0.10 mole) of N-methallylallylamine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 56.4 g. (0.30 mole) of 1,2-d-ibromoethane and 150 cc. of tert. butyl alcohol were employed, there was obtained 12.6 g. (45.3% yield) of Z-brornoethyl N-methallyl-N-allylthiolcarbamate, B.P. (10 mm.) 160.016l.0 C., n 1.5320.
Analysis.Calculated for C H BrNOS: N, 5.03%. Found: N, 5.25%.
Example XXX VIII (R2962).When the general procedure of Example XXXI was repeated except that 7.3 g. (0.10 mole) of diethylamine, 10.1 g. (0.10 mole) of triethylarnine, 10 g. (0.17 mole) of carbonyl sulfide, 60. 6 g. (0.30 mole) of 1,3-di'bromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 15.3 g. (60.2% yield) of. 3-brom-opropyl N,N-diethylthiolca-rbarnate, B.P. (10 mm.) 152.5153.5 C., n 1.5166.
Anaheim-Calculated for C H BrNOS: N, 5.51%. Found: N, 5.57%.
Example XXXIX (R-2969) .When the general procedure of Example XXXI was repeated except that 10.1 g. (0.10 mole) of di-n-propylamine, 10.1 'g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.30 mole) of 1,3-di br0mopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 18.4 g. (65.4% yield) of 3-bromopr=opyl N,N-di-n-propylthiolca-rbamate, B.P. (10 mm.) 169.5171.0 C., n 1.5078.
Analysis.-Calculated for C H BrNOS: N, 4.96%. Found: N, 5.05%.
Example XL (R2978).When the general procedure of Example XXXI was repeated except that 8.7 g. (0.10 mole) of N-methyl-n-butylamine, 10.1 g. (0.10 mole) of triethylarnine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 :g. (0.30 mole) of 1,3-dibromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 14.7 g. (54.8% yield) of 3-br0mopropyl N-nbutyl-N-methylthiolcanba mate, B.P. (10 mm.) 164.5- 167.0" C., n 1.5111.
Analysis.Calc-ulated for C H BrNOS: N, 5.22%. Found: N, 5.13%.
Example XLI (R2984).When the general procedure of Example XXXI was repeated except that 9.7 g. (0.10 mole) of diallylamine, 10.1 g. (0.10 mole) of triethyla-mine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.17 mole) of 1,3-dibromopropane and 150cc. of tert. butyl alcohol were employed, there was obtained 12.2 g. (43.4% yield) of 3-bromopropyl N,N-diallylthiolcarbamate, B.P. (10 mm.) 165.0-167.0 C., 11 1.5283.
Analysis.Calculated for C H BrNOS: N, 5.03%. Found: N, 5.00%.
Example XLII (R2987).When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of N-allyl-n-propylarnine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.30 mole) of 1,3-dibromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 17.8 g. (63.6% yield) of 3-bromopropyl N-allyl- N-n-propllthiocarbama-te, B. P. (10 mm.) 169.0-170.0 C., n 1.5190.
Analysis.Calculated for C H BrNOS: N, 5.00%. Found: N, 4.95%.
Example XLIII (R2990).When the general procedure of Example XXXI was repeated except that 9.9 g. (0.10 mole) of N-niethallylethylamine, 10.1 g. (0.10 mole) of triethylamine, 10 g. (0.17 mole) of carbonyl sulfide, 60.6 g. (0.30 mole) of 1,3-dibromopropane and 150 cc. of tert. butyl alcohol were employed, there was obtained 15.4 g, (55.0% yield) of 3-bromopropyl N-metha1lyl-N-ethylthiolcarbamate, B.P. (10 min.) 164.0 165.5 C., n 1.5200.
Analysis.Calculated for C H BrNOS: N, 5.00%. Found: N, 4.99%.
The compounds of the present invention have been tested as herbicides and found very effective as the following typical tests show. Some of the compounds are quite selective in their action and can be used to eradicate or control one type of plant, while another type of plant is relatively unaffected.
In making the following tests, seeds were planted in 3" pots and shortly thereafter the compound under test was applied to the pots in :a drench at the rate of 365 pounds per acre. The pots were placed in a greenhouse and Watered at suitable intervals and the germination and growth of the seeds was compared with similarly planted seeds to which no herbicide was added. In each case, germination was reported on the scale of 0'100%, while growth was reported on a scale of 010, based on the seeds which germinated. Thus, -10 indicates norman germination and normal growth.
The following data were obtained.
The above tests were then repeated using application rates of 10 and 40 pounds per acre with the following results:
Peas Com Radish Rye Cucumber Compound Lbs./ Acre Ge. Gr. Ge. Gr. Ge. Gr. Ge. Gr. Ge. Gr.
10 100 7 100 10 100 10 40 100 3 100 10 100 10 10 100 5 100 100 10 48 100 4 100 10 100 10 $8 DEPLETED 40 10 100 8 100 10 100 10 40 100 4 100 8 100 7 0 100 7 100 10 100 10 15 40 100 4 75 6 75 7 0 10 100 9 100 10 100 10 15 40 100 6 100 8 100 7 0 10 100 8 100 10 100 10 0 40 75 4 100 10 50 3 0 10 100 7 100 10 100 10 0 40 3 100 10 100 10 0 10 100 8 100 10 100 10 0 75 4 100 9 100 8 0 10 100 6 100 10 100 10 0 40 3 100 10 100 10 0 10 100 6 100 10 100 10 0 40 50 3 100 9 100 9 0 8 DEPLETED 10 100 3 100 10 100 3 0 40 100 2 100 9 100 7 0 10 100 4 100 10 100 10 15 40 100 2 100 10 100 10 0 10 100 4 100 10 100 9 0 40 100 2 100 8 25 2 0 10 100 7 100 10 100 10 15 0+ 100 10 40 100 7 100 10 100 7 0 25 3 10 100 9 100 10 100 10 25 0+ 100 10 40 100 8 100 6 100 8 100 6 10 100 10 100 10 100 10 100 3 100 8 40 '100 10 100 4 100 10 50 3 100 8 10 100 4 100 10 100 9 0 75 7 40 50 2 100 7 100 9 0 1 15 0+ 10 100 4 100 10 100 9 0 75 7 40 50 2 100 10 100 9 0 50 3 10 100 4 100 8 100 10 0 100 9 40 25 2 100 6 100 10 0 15 1 10 100 4 100 10 100 10 0 50 5 40 50 2 100 10 100 10 0 15 0+ 10 75 3 100 10 100 9 0 25 7 40 25 1 100 7 100 9 0 15 1 10 100 3 100 10 100 10 0 75 7 40 100 2 100 10 100 10 0 75 7 10 100 3 100 9 100 10 0 50 4 40 75 2 75 5 100 10 o 25 2 10 100 8 100 10 100 10 15 100 10 40 100 7 100 8 100 10 0 25 5 10 100 8 100 10 100 10 75 100 10 40 100 7 100 6 100 10 5 75 8 10 100 6 100 10 100 10 15 100 10 40 25 2 100 8 25 8 0 15 0+ 10 100 10 100 10 100 10 25 100 10 40 100 10 100 10 100 10 10 100 10 10 100 10 100 10 100 10 100 100 8 40 100 7 100 7 100 9 100 10 10 100 7 100 9 100 9 100 100 10 40 100 5 100 8 100 8 100 100 8 10 100 8 100 10 100 9 100 100 10 40 100 5 100 8 100 8 100 8 10 100 8 100 10 100 9 100 2 100 10 40 100 6 100 10 100 8 100 1 100 7 100 8 100 10 100 10 100 1 100 10 40 100 4 100 10 100 8 100 1 100 6 10 100 8 100 10 100 10 100 1 100 10 40 100 5 100 10 100 9 100 0+ 100 10 10 100 7 100 10 100 9 100 1 100 9 40 100 4 100 10 100 7 100 1 100 0 10 100 6 100 10 100 8 100 0+ 70 3 40 100 4 100 9 100 8 25 0+ 15 1 10 100 5 100 10 100 9 0 100 10 40 100 2 100 10 100 8 0 100 3 10 100 8 100 10 100 10 100 0+ 100 7 40 100 5 100 10 100 7 20 0+ 100 4 10 100 6 100 10 100 9 100 0+ 100 10 40 100 2 100 10 100 6 0 50 3 10 100 6 100 10 100 9 20 0+ 100 8 40 100 3 100 10 100 6 10 0+ 100 3 10 100 5 100 10 100 10 10 0+ 100 5 40 100 3 100 10 100 7 0 100 3 1 Percent germination. 2 Growth.
The compounds of the present 1nvent1on may be used We claun: 1n pre-emergence =or post-emergence herb1c1des and may 1. The method of cornbatlng weeds comprising applybe applled 1n a varlety of Ways at var1ous concentratlons. mg a phytotox1c amount to the 8011 of a compound: They may be combmed wlth sultable earners and apphed 0 R2 as dusts, sprays or drenches. The amount apphed w1ll 7 Al depend on the nature of the seeds or plants to be con- S N trolled and the rate of apphcanon may vary from 1 to Rs 500 pounds per acre. One partlcularly advantageous wherem R 1s selected from lower chloroalkyl and bromoway of applymg the compounds 1s as a narrow band alkyl radlcals, R 1s a member selected from the group along arow crop, straddling the row. (I consisting of a lower alkyl radical, a lower chloroalkyl radical, a lower alkenyl radical, a lower chloroalkenyl radical and an alkynyl radical, and R is a member of the group consisting of a lower alkyl radical, a lower cycloalkyl radical, a lower chloroalkyl radical and a lower alkenyl radical.
2. The method of claim 1 wherein the compound is applied at the rate of 1 to 500 pounds per acre.
3. The method of. claim 1 wherein the compound is 2-chloroethyl N,N-di-n-propylthiolcarbamate.
4. The method of claim 1 wherein the compound is 2-bromoethyl N,N-di-n-propylthiolcarbamate.
5. The method of claim 1 wherein the compound is 2-chloroethyl N-ethyl-N-cyclohexylthiolcarbamate.
6. The method of claim 1 wherein the compound is N-allyl-N-isopropylthiolcaroamate.
7. The method of claim 1 wherein the compound is 2-bromoethyl N-methallyl-N-ethylthiolcarbamate.
8. A herbicidal composition comprising a major proportion of a herbicidal adjuvant as carrier and a minor but phytotoxic concentration of a phytotoxic compound of the structure l /N-s-A RI where R and R represent lower alkyl and A represents halogen substituted lower alkyl.
9. The method of destroying vegetation which comprises applying to germinating seedlings a phytotoxic amount of a phytotoxic composition containing as the essential active ingredient a compound of the structure where R and R represent lower alkyl and A represents halogen-substituted lower alkyl.
References (Iited by the Examiner UNITED STATES PATENTS 2,060,733 11/1936 Hunt et al.
2,160,880 6/1939 Loane et a1.
2,562,011 7/1951 Baumgartner 712.7 2,642,451 6/1953 Weijlard et a1 260455 2,687,348 8/1954 Kosmin 712.7 2,901,498 8/1959 Tilles et a1. 712.7 XR 2,901,500 8/1959 Tilles et al. 260455 2,913,327 11/1959 Tilles et al. 71-2.7 2,916,369 12/1959 Tilles et a1. 712.7 2,916,370 12/1959 Tilles et a1. 712.7 2,992,091 7/1961 Harman et al 712.6 2,984,559 5/1961 DAmico 712.7 XR
OTHER REFERENCES Davies et al.: In Chemical Journal, vol. 40, 1946, pages 331334.
Gentner et al.: An Evaluation of Several Chemicals for Their Herbicidal Properties, January 1958, pages 5, 6, and 10, US. Agric. Research Service, Crops Research Div.
Tilles: J.A.C.S., vol. 81, Feb. 5, 1959, pages 714727.
LEWIS GOTTS, Primary Examiner.
M. A. BRINDISI, E. L. ROBERTS, Examiners.
J. P. BRUST, E. J. MEROS, J. O. THOMAS,
Assistant Examiners.

Claims (1)

1. THE METHOD OF COMBATING WEEDS COMPRISING APPLYING A PHYTOTOXIC AMOUNT TO THE SOIL OF A COMPOUND:
US806779A 1959-04-16 1959-04-16 Method of combating weeds Expired - Lifetime US3298817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US806779A US3298817A (en) 1959-04-16 1959-04-16 Method of combating weeds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US806779A US3298817A (en) 1959-04-16 1959-04-16 Method of combating weeds

Publications (1)

Publication Number Publication Date
US3298817A true US3298817A (en) 1967-01-17

Family

ID=25194822

Family Applications (1)

Application Number Title Priority Date Filing Date
US806779A Expired - Lifetime US3298817A (en) 1959-04-16 1959-04-16 Method of combating weeds

Country Status (1)

Country Link
US (1) US3298817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441590A (en) * 1965-08-10 1969-04-29 Olin Mathieson Process for preparing s-(2-chloroethyl) thiocarbamates from s-(2-chloroethyl) isothiocarbamyl chlorides
US3687997A (en) * 1969-03-27 1972-08-29 Karl Kiehs Ethyl n-cyclohexyl n-propargyl-thiolcarbamate as a herbicide
US4004914A (en) * 1969-11-03 1977-01-25 Ciba-Geigy Ag Thiolcarbamates for combating undesired plant growth
US4029687A (en) * 1969-11-03 1977-06-14 Ciba-Geigy Ag Thiolcarbamates for combating undesired plant growth

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2060733A (en) * 1934-09-04 1936-11-10 Du Pont Process of treating cellulose and derivatives thereof
US2160880A (en) * 1936-11-02 1939-06-06 Standard Oil Co Lubricant
US2562011A (en) * 1948-12-10 1951-07-24 Goodrich Co B F Herbicidal compositions and application thereof
US2642451A (en) * 1953-06-16 Thiolurethanes and processes for
US2687348A (en) * 1952-09-17 1954-08-24 Monsanto Chemicals Herbicidal compositions
US2901500A (en) * 1957-02-13 1959-08-25 Stauffer Chemical Co Lower alkyl esters of n-cyanoalkyl-n-alkyl thiolcarbamic acids as compositions
US2901498A (en) * 1957-01-11 1959-08-25 Stauffer Chemical Co N-alkyl, n-allyl thiolcarbamate compositions
US2913327A (en) * 1956-01-17 1959-11-17 Stauffer Chemical Co Certain thiolcarbamates and use as herbicides
US2916369A (en) * 1956-09-26 1959-12-08 Stauffer Chemical Co Diallylthiolcarbamates and their use as herbicides
US2916370A (en) * 1957-04-02 1959-12-08 Stauffer Chemical Co Chlorinated thiolcarbamates and their use as herbicides
US2984559A (en) * 1958-03-10 1961-05-16 Monsanto Chemicals Controlling vegetation with haloalkyl thionocarbamates
US2992091A (en) * 1957-05-06 1961-07-11 Monsanto Chemicals Method of controlling undesirable vegetation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642451A (en) * 1953-06-16 Thiolurethanes and processes for
US2060733A (en) * 1934-09-04 1936-11-10 Du Pont Process of treating cellulose and derivatives thereof
US2160880A (en) * 1936-11-02 1939-06-06 Standard Oil Co Lubricant
US2562011A (en) * 1948-12-10 1951-07-24 Goodrich Co B F Herbicidal compositions and application thereof
US2687348A (en) * 1952-09-17 1954-08-24 Monsanto Chemicals Herbicidal compositions
US2913327A (en) * 1956-01-17 1959-11-17 Stauffer Chemical Co Certain thiolcarbamates and use as herbicides
US2916369A (en) * 1956-09-26 1959-12-08 Stauffer Chemical Co Diallylthiolcarbamates and their use as herbicides
US2901498A (en) * 1957-01-11 1959-08-25 Stauffer Chemical Co N-alkyl, n-allyl thiolcarbamate compositions
US2901500A (en) * 1957-02-13 1959-08-25 Stauffer Chemical Co Lower alkyl esters of n-cyanoalkyl-n-alkyl thiolcarbamic acids as compositions
US2916370A (en) * 1957-04-02 1959-12-08 Stauffer Chemical Co Chlorinated thiolcarbamates and their use as herbicides
US2992091A (en) * 1957-05-06 1961-07-11 Monsanto Chemicals Method of controlling undesirable vegetation
US2984559A (en) * 1958-03-10 1961-05-16 Monsanto Chemicals Controlling vegetation with haloalkyl thionocarbamates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441590A (en) * 1965-08-10 1969-04-29 Olin Mathieson Process for preparing s-(2-chloroethyl) thiocarbamates from s-(2-chloroethyl) isothiocarbamyl chlorides
US3687997A (en) * 1969-03-27 1972-08-29 Karl Kiehs Ethyl n-cyclohexyl n-propargyl-thiolcarbamate as a herbicide
US4004914A (en) * 1969-11-03 1977-01-25 Ciba-Geigy Ag Thiolcarbamates for combating undesired plant growth
US4029687A (en) * 1969-11-03 1977-06-14 Ciba-Geigy Ag Thiolcarbamates for combating undesired plant growth

Similar Documents

Publication Publication Date Title
DE2515091A1 (en) MICROBICIDAL AGENTS
PL167415B1 (en) Agent for fighting against attack of nematoda, insects and saprophytes on plants
JPS6021964B2 (en) Halofenoxybenzoic acid ester herbicide composition
GB1574477A (en) Benzenesulphonamide derivatives and their use as herbicide
US3298817A (en) Method of combating weeds
US4002662A (en) 2-Nitro-5-(cyano-trifluoromethyl-phenoxy)benzoic acids and esters
US3781327A (en) Meta-carbanilate ethers
US2916370A (en) Chlorinated thiolcarbamates and their use as herbicides
US2901498A (en) N-alkyl, n-allyl thiolcarbamate compositions
PL127425B1 (en) Herbicide and method of obtaining new substituted diphenylethers forming active substance of the herbicide
EP0024830A1 (en) Unsymmetrical thiophosphonate insecticides and nematocides
US2617818A (en) Thiocyanoalkyl carbanilates
US3055751A (en) Method for combatting weeds
US3654333A (en) 3 4 4-trifluoro-3-butenylthio methylidene compounds and their utility
US3126406A (en) Alkoxyalkyl estehs of tfflolcarbamates
US4111682A (en) N-(aminoalkylene thiomethyl)-N&#39;-(aryl) urea herbicides
US2916369A (en) Diallylthiolcarbamates and their use as herbicides
US3579525A (en) S-(pyridyl)methyl thio- and dithio-carbamates
US3624151A (en) Glyoxylanilideoximino carbamates
US3852348A (en) Ether and sulfide meta-substituted phenyl ureas
US3714230A (en) Dinitrophenyl ester pesticides
US3532488A (en) N-cyclo-hexyldithiocarbamates as selective herbicides in rice
US4529437A (en) Herbicides
US3493360A (en) Herbicides
US4548641A (en) Herbicides: N,N-dialkyl-2-(4-substituted-1-naphthoxy) propionamides