US3285942A - Preparation of glycol molybdate complexes - Google Patents
Preparation of glycol molybdate complexes Download PDFInfo
- Publication number
- US3285942A US3285942A US177738A US17773862A US3285942A US 3285942 A US3285942 A US 3285942A US 177738 A US177738 A US 177738A US 17773862 A US17773862 A US 17773862A US 3285942 A US3285942 A US 3285942A
- Authority
- US
- United States
- Prior art keywords
- reaction
- molybdenum
- glycol
- group
- nitrogen base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 title claims description 31
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 title claims description 15
- -1 glycol molybdate complexes Chemical class 0.000 title description 5
- 238000002360 preparation method Methods 0.000 title description 4
- 238000006243 chemical reaction Methods 0.000 claims description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 239000005078 molybdenum compound Substances 0.000 claims description 14
- 150000002752 molybdenum compounds Chemical class 0.000 claims description 14
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 7
- 239000011609 ammonium molybdate Substances 0.000 claims description 7
- 229940010552 ammonium molybdate Drugs 0.000 claims description 7
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 150000004982 aromatic amines Chemical class 0.000 claims description 5
- 150000004893 oxazines Chemical class 0.000 claims description 5
- 150000003973 alkyl amines Chemical class 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Inorganic materials O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims 1
- 239000003054 catalyst Substances 0.000 description 13
- 239000011733 molybdenum Substances 0.000 description 12
- 229910052750 molybdenum Inorganic materials 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 11
- 239000010687 lubricating oil Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 150000002334 glycols Chemical class 0.000 description 6
- 125000001477 organic nitrogen group Chemical group 0.000 description 6
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 150000003464 sulfur compounds Chemical class 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- GVPWHKZIJBODOX-UHFFFAOYSA-N dibenzyl disulfide Chemical compound C=1C=CC=CC=1CSSCC1=CC=CC=C1 GVPWHKZIJBODOX-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002898 organic sulfur compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- RHLWQEFHFQTKNT-UHFFFAOYSA-N (2z)-1-cyclooctyl-2-diazocyclooctane Chemical compound [N-]=[N+]=C1CCCCCCC1C1CCCCCCC1 RHLWQEFHFQTKNT-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- DCTMXCOHGKSXIZ-UHFFFAOYSA-N (R)-1,3-Octanediol Chemical class CCCCCC(O)CCO DCTMXCOHGKSXIZ-UHFFFAOYSA-N 0.000 description 1
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- AROCLDYPZXMJPW-UHFFFAOYSA-N 1-(octyldisulfanyl)octane Chemical compound CCCCCCCCSSCCCCCCCC AROCLDYPZXMJPW-UHFFFAOYSA-N 0.000 description 1
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical group CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 1
- CCNSVURUCGIWPV-UHFFFAOYSA-N 2,4-diethyloctane-1,3-diol Chemical compound CCCCC(CC)C(O)C(CC)CO CCNSVURUCGIWPV-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- 241001279686 Allium moly Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- 101100513046 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) eth-1 gene Proteins 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- LMZSPXZNYGLPAV-UHFFFAOYSA-N butoxy-dihydroxy-sulfanylidene-$l^{5}-phosphane Chemical compound CCCCOP(O)(O)=S LMZSPXZNYGLPAV-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940113088 dimethylacetamide Drugs 0.000 description 1
- ZITKDVFRMRXIJQ-UHFFFAOYSA-N dodecane-1,2-diol Chemical compound CCCCCCCCCCC(O)CO ZITKDVFRMRXIJQ-UHFFFAOYSA-N 0.000 description 1
- KVWNBLWRKRPOEP-UHFFFAOYSA-N ethyl hexanedithioate Chemical compound CCCCCC(=S)SCC KVWNBLWRKRPOEP-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- INPZIMSQNZGLHQ-JTQLQIEISA-N n-[(2s)-1-hydroxybutan-2-yl]-3-(4-oxo-1h-quinazolin-2-yl)propanamide Chemical compound C1=CC=C2C(=O)NC(CCC(=O)N[C@H](CO)CC)=NC2=C1 INPZIMSQNZGLHQ-JTQLQIEISA-N 0.000 description 1
- JACMPVXHEARCBO-UHFFFAOYSA-N n-pentylpentan-1-amine Chemical compound CCCCCNCCCCC JACMPVXHEARCBO-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- RUOPINZRYMFPBF-UHFFFAOYSA-N pentane-1,3-diol Chemical compound CCC(O)CCO RUOPINZRYMFPBF-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- PZQSQRCNMZGWFT-QXMHVHEDSA-N propan-2-yl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC(C)C PZQSQRCNMZGWFT-QXMHVHEDSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- PTISTKLWEJDJID-UHFFFAOYSA-N sulfanylidenemolybdenum Chemical class [Mo]=S PTISTKLWEJDJID-UHFFFAOYSA-N 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- DUYAAUVXQSMXQP-UHFFFAOYSA-M thioacetate Chemical compound CC([S-])=O DUYAAUVXQSMXQP-UHFFFAOYSA-M 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F11/00—Compounds containing elements of Groups 6 or 16 of the Periodic Table
- C07F11/005—Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
Definitions
- a lubricating oil composition by adding to such a composition a combination of a particular type of organic sulfur compound and a complex or ester that is derived by the reaction of molybdic acid or a related material such as M ammonium molybdate, ammonium paramolybdate, or a molybdenum halide such as MoCl with an alphaor beta-alkane diol.
- the sulfur compounds are those that contain labile sulfur that can become available for reaction with the molybdenum to form molybdenum sulfide.
- glycols with molybdic acid yields complexes of the type wherein R R and R are hydrogen atoms or alkyl groups.
- Suitable glycols that may be used are selected from the group consisting of alphaand beta-alkane diols of from 2 to 18 carbon atoms.
- glycols that may be used include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-pentanediol, 2,3-butanediol, 1,2-hexanediol, 2-methyl-l,3-pentanediol, 2-ethylhexane-1,3-diol, other 1,2- or 1,3-octylene glycols, 1,2-dodecanediol, 2,4-diethyloctane-1,3-diol, and 2,4,6-trietl1yldecane-1,3-diol.
- organic nitrogen bases are very effective catalysts for the reaction of glycols with molybdic acid.
- bases are selected from the group consisting of alkyl amines of at least 6 carbon atoms, aryl amines, amides, azines and oxazines, having boiling points not exceeding about 300 C. at atmospheric pressure.
- the reaction can be carried further to completion and only a small excess of glycol is required.
- the nitrogen bases employed in the present invention include: N-dialkyl amides such as dimethyl. formamide, dimethyl acetamide, and diethyl formamide; dialkylamines such as diamyl amine, di-iso-octyl amine, and dibenzyl amine; trialkylamines such as triethylamine; aryl amines including aniline, toluidine, phenylene diamine, xylidine, and N-alkylated or N-arylated derivatives; azines such as pyridine, pyrazine, diazo bicyclo octane, piperidine and N-ethyl piperidine; and oxazines, including morpholine and N-ethyl morpholine.
- dialkylamines such as diamyl amine, di-iso-octyl amine, and dibenzyl amine
- trialkylamines such as triethylamine
- the reaction of the glycol with the molybdic acid or related compound is preferably conducted at a temperature in the range of from about to C. in an aromatic hydrocarbon solvent such as benzene, toluene, xylene or the like.
- the reaction is conveniently conducted under reflux and the water of reaction is separated from the reflux stream.
- the mole ratio of glycol to molybdic acid be within the range of from 1 to 1 to 1.25 to 1.
- the concentration of nitrogen base catalyst will be in the range of from 1 to 50 weight per cent, the preferred range being from about 10 to 40 Weight per cent.
- the catalyst is removed from the reaction product along with the solvent by distillation under reduced pressure.
- EXAMPLE 1 A typical preparation utilizing the catalyst of the invention is as follows. To a suitable reactor are charged 60 grams of ammonium molybdate, 124 grams of 2-ethyl- 1,3-hexanediol, 250 cc. of xylene and 25 cc. of dimethyl formamide. The reactants are heated under reflux with stirrring, and Water is separated from the reflux overhead. The reaction is continued until the rate of water production diminishes, which ordinarily requires from about 5 to 9 hours. The reaction mixture is then cooled, filtered under suction, and added to sufficient solvent neutral mineral oil to give a concentrate calculated to contain about 10 Wt. percent molybdenum. Solvent and catalyst are then removed by reduced pressure distillation at about 160 C.
- the residual product is an additive concentrate which is ready for blending into lubricating oils. While the reaction product could be handled as such, i.e., without diluting it with mineral oil, it is much more convenient to prepare it as a finished mineral oil concentrate containing, say, in the range of 1 to 15 wt. percent of molybdenum.
- the pro- Other synthetic oils include dibasic acid esters such as portions of reactants, the various catalysts used, and the 2 eth 1 h l b t b t t 1 1 t results obtained are given in Table I. It will be seen y eXy car Ona 6 es gyco es ers that with each of the catalysts the reaction time was such as C13 OX0 and dlesters tetraethylene glycol and shortened and more efiicient utilization of the reactants Complex esters as for example the complex 65ml formed was obtained.
- reaction products obtained in accordance with this invention may be added as such to lubricating oil compositions to serve as inhibitors of oxidation and corrosion. More preferably they are employed in conjunction with oil-soluble organic sulfur compounds containing labile sulfur that can become available for reaction with the molybdenum to form antiwear agents comprising molybdenum sulfides, as taught in copending application Serial No. 130,263 of John A. Price, filed August 9, 196 1.
- Sulfur compounds that are suitable for this purpose include: various alkyl and aryl polysulfides such as benzyl disulfide, phenyl disulfide, octyl disulfide, ce'tyl disulfide; sulfurized fatty oils such as sulfurized sperm oil, snlfurized rapeseed oil, sulfurized cotton seed oil; sulfnrized unsaturated alcohols, acids and esters such as sulfurized oleyl alcohol, sulfurized oleic acid, sulfurized isopropyl oleate; thioesters such as C Oxo thioacetate, ethyl dithiohexanoate; alkyl thiophosphoric acid polysulfides such as 'butyl thiophosphoric acid trisulfide; and phosphosulfurized hydrocarbons such as phosphosulfurized polybutene.
- the sulfur compound should be soluble or dispersible in the lubricating oil composition being
- the sulfur compound is added to the lubricating oil composition in an amount so that sufficient sulfur is present to convert at least half of the molybdenum present to M05 Preferably, at least enough sulfur is provided to convert all of the molybdenum to M08
- the molybdenum compound may be added to the lubricating oil composition in quantities to furnish in the range of 0.01 to 1.0 weight percent of molybdenum.
- the sulfur compound may be added in quantities to furnish in the range of from 0.005 to 5.0 weight percent of sulfur.
- a representative lubricating oil composition is made by adding to a high-viscosity-index SAE 10W-30 motor oil, compounded with a polymeric viscosity index improver and a stabilized colloidal barium carbonatephenatc complex, 0.5 weight percent of a phosphosul- :furized terpene and 0.25 weight percent of the reaction of tetraethylene glycol and 2 moles of 2-ethyl hexanoic acid.
- the products of the present invention may also be incorporated into diesel fuels in concentrations in the range of 0.0001 to 0.01 weight percent molybdenum to reduce engine wear. It the fuels contain natural sulfur, this will tend to react with the molybdenum compounds to form molybdenum sulfide in situ.
- said nitrogen base is an N-dialkyl amide.
- An improved process for preparing an organic compleX' containing molybdenum which comprises reacting a glycol selected from the group consisting of alphaand beta-alkane diols of from 2 to 18 carbon atoms with a molybdenum compound selected from the group consisting of molybdic acid, ammonium molybdate, ammonium paramolybdate, molybdenum pentachloride and M at a temperature in the range of from 80 to 160 C. in the presence of an organic nitrogen base having a boiling point no higher than 300 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
United States Patent C 3,285,942 PREPARATION OF GLYCOL MOLYBDATE COMPLEXES John A. Price, Westfield, and Richard F. Neblett, Plainfield, N.J., assignors to Esso Research and Engineering Company, a corporation of Delaware No Drawing. Filed Mar. 6, 1962, Ser. No. 177,738 10 Claims. (Cl. 260429) This invention concerns an improved process for the manufacture of organic complexes containing molybdenum. These complexes are derived by reaction of molybdic acid or a related compound with organic hydroxy compounds, particularly glycols. Such complexes are useful as addition agents for lubricating oil compositions wherein they serve as wear-reducing agents and in some cases may function also as inhibitors of oxidation and/ or corrosion.
It has been known for some time that various molybdenum compounds, and particularly molybdenum sulfide or complexes either containing molybdenum sulfide or capable of forming molybdenum sulfide during use, are desirable additives for lubricating oils because of their ability to reduce friction and hence to minimize wear of the parts being lubricated. It has recently been found as disclosed in copending application S.N. 130,263 of John A. Price, filed Aug. 9, 1961, and now abandoned, that desirable antiwear properties can be incorporated into a lubricating oil composition by adding to such a composition a combination of a particular type of organic sulfur compound and a complex or ester that is derived by the reaction of molybdic acid or a related material such as M ammonium molybdate, ammonium paramolybdate, or a molybdenum halide such as MoCl with an alphaor beta-alkane diol. The sulfur compounds are those that contain labile sulfur that can become available for reaction with the molybdenum to form molybdenum sulfide.
The reaction of glycols with molybdic acid yields complexes of the type wherein R R and R are hydrogen atoms or alkyl groups. Suitable glycols that may be used are selected from the group consisting of alphaand beta-alkane diols of from 2 to 18 carbon atoms. Specific glycols that may be used include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-pentanediol, 2,3-butanediol, 1,2-hexanediol, 2-methyl-l,3-pentanediol, 2-ethylhexane-1,3-diol, other 1,2- or 1,3-octylene glycols, 1,2-dodecanediol, 2,4-diethyloctane-1,3-diol, and 2,4,6-trietl1yldecane-1,3-diol.
In preparing glycol molybdates by reaction of glycols 3,285,942 Patented Nov. 15, 1966 with moly'bdic acid or related molybdenum compounds, large excesses of the glycol are ordinarily required in order that the molybdic acid reagent will be utilized to a satisfactory extent. In most cases, the excess glycol amounts to some 200 to 250 percent above the stoichiometric quantity. This excess glycol must then be recovered from the product either by extraction or by a high-temperature, low-pressure distillation. Manifestly, this recovery or removal of the excess glycol adds considerably to the cost of the process. There thus has been a need for improving the efiiciency of the reaction of a glycol with molybdic acid.
In accordance with the present invention, it has been found that organic nitrogen bases are very effective catalysts for the reaction of glycols with molybdic acid. These bases are selected from the group consisting of alkyl amines of at least 6 carbon atoms, aryl amines, amides, azines and oxazines, having boiling points not exceeding about 300 C. at atmospheric pressure. When using these catalysts the reaction can be carried further to completion and only a small excess of glycol is required.
The nitrogen bases employed in the present invention include: N-dialkyl amides such as dimethyl. formamide, dimethyl acetamide, and diethyl formamide; dialkylamines such as diamyl amine, di-iso-octyl amine, and dibenzyl amine; trialkylamines such as triethylamine; aryl amines including aniline, toluidine, phenylene diamine, xylidine, and N-alkylated or N-arylated derivatives; azines such as pyridine, pyrazine, diazo bicyclo octane, piperidine and N-ethyl piperidine; and oxazines, including morpholine and N-ethyl morpholine.
The reaction of the glycol with the molybdic acid or related compound is preferably conducted at a temperature in the range of from about to C. in an aromatic hydrocarbon solvent such as benzene, toluene, xylene or the like. The reaction is conveniently conducted under reflux and the water of reaction is separated from the reflux stream. It is preferred that the mole ratio of glycol to molybdic acid be within the range of from 1 to 1 to 1.25 to 1. Based on the ammonium rnolybdate or equivalent molybdenum compound used in the reaction, the concentration of nitrogen base catalyst will be in the range of from 1 to 50 weight per cent, the preferred range being from about 10 to 40 Weight per cent. The catalyst is removed from the reaction product along with the solvent by distillation under reduced pressure.
The following examples serve to illustrate the nature of this invention, the manner in which it may be practiced, and the advantages accruing from the use of the catalysts.
EXAMPLE 1 A typical preparation utilizing the catalyst of the invention is as follows. To a suitable reactor are charged 60 grams of ammonium molybdate, 124 grams of 2-ethyl- 1,3-hexanediol, 250 cc. of xylene and 25 cc. of dimethyl formamide. The reactants are heated under reflux with stirrring, and Water is separated from the reflux overhead. The reaction is continued until the rate of water production diminishes, which ordinarily requires from about 5 to 9 hours. The reaction mixture is then cooled, filtered under suction, and added to sufficient solvent neutral mineral oil to give a concentrate calculated to contain about 10 Wt. percent molybdenum. Solvent and catalyst are then removed by reduced pressure distillation at about 160 C. and about 0.25 mm. pressure. The residual product is an additive concentrate which is ready for blending into lubricating oils. While the reaction product could be handled as such, i.e., without diluting it with mineral oil, it is much more convenient to prepare it as a finished mineral oil concentrate containing, say, in the range of 1 to 15 wt. percent of molybdenum.
1 product of Example 1 3 EXAMPLE 2 The reaction of ammonium molybdate with 2-ethyl- 1,3-hexanediol in xylene was conducted in a number of separate preparations wherein in some cases no catalyst 4 Another representative composition is made by adding to a refined mineral lubricating oil sufficient of the product of Example 1 to supply 0.025 weight percent of molybdenum and sufficient sulfurized sperm oil to supwas used and in other cases catalysts of the present invenply the theoretical amount of sulfur to convert molybtion were employed. The reactions were conducted by denum to M08 heating under reflux in the general manner outlined in EX- Various synthetic lubricating oil base stocks may be ample In each Case i reaction Was Continued until used, as well as mineral lubricating oil stocks. The latf rate of Water formatlon f611 Then the p t ter may be of any type including those derived from the in each case was filtered and the amount of filter residue Ordinary paraffinic, naphthenic, asphaltic or mixed base was i g' S E resldlle to tha mineral crude oils by suitable refining methods. Synmonium m0 y a e 6 i t e reaciwn Was use thetic hydrocarbon lubricating oils may also be employed. as a measure of the eificiency of the reaction. The pro- Other synthetic oils include dibasic acid esters such as portions of reactants, the various catalysts used, and the 2 eth 1 h l b t b t t 1 1 t results obtained are given in Table I. It will be seen y eXy car Ona 6 es gyco es ers that with each of the catalysts the reaction time was such as C13 OX0 and dlesters tetraethylene glycol and shortened and more efiicient utilization of the reactants Complex esters as for example the complex 65ml formed was obtained. by the reaction of 1 mole of sebacic acid with 2 moles TABLE I Ammonium Mole Ratio Water Utili- Catalyst Amount of Molybdate, Glycol to Reaction Produced, Residue, g. zation, Catalyst, g. g. Molybdic Time, hrs. cc. Percent Acid 120 1. 0 10. 5 34. 6 49.0 59 120 1. 10. 0 37. 2 44. 0 03 120 1. 25 10.0 33. 5 40. 0 67 23. 7 120 1. 25 9. 0 52. 8 14. 7 88 23. 7 s0 1. 25 4. 5 28. 4 7. 5 s7 23. 7 60 1. 25 5. 5 31. 6 4. 5 92 Pyridine. 24. 5 60 1. 25 6. 5 32. 5 5.1 92 Morpholine 25. 0 50 1. 25 7. 0 31. 1 3. 4 94 1 Utilization based on the weight ratio of residue to charged molybdate.
The reaction products obtained in accordance with this invention may be added as such to lubricating oil compositions to serve as inhibitors of oxidation and corrosion. More preferably they are employed in conjunction with oil-soluble organic sulfur compounds containing labile sulfur that can become available for reaction with the molybdenum to form antiwear agents comprising molybdenum sulfides, as taught in copending application Serial No. 130,263 of John A. Price, filed August 9, 196 1. Sulfur compounds that are suitable for this purpose include: various alkyl and aryl polysulfides such as benzyl disulfide, phenyl disulfide, octyl disulfide, ce'tyl disulfide; sulfurized fatty oils such as sulfurized sperm oil, snlfurized rapeseed oil, sulfurized cotton seed oil; sulfnrized unsaturated alcohols, acids and esters such as sulfurized oleyl alcohol, sulfurized oleic acid, sulfurized isopropyl oleate; thioesters such as C Oxo thioacetate, ethyl dithiohexanoate; alkyl thiophosphoric acid polysulfides such as 'butyl thiophosphoric acid trisulfide; and phosphosulfurized hydrocarbons such as phosphosulfurized polybutene. The sulfur compound should be soluble or dispersible in the lubricating oil composition being used and should be sufficiently nonvolatile that effective quantities will remain in the composition during use.
The sulfur compound is added to the lubricating oil composition in an amount so that sufficient sulfur is present to convert at least half of the molybdenum present to M05 Preferably, at least enough sulfur is provided to convert all of the molybdenum to M08 The molybdenum compound may be added to the lubricating oil composition in quantities to furnish in the range of 0.01 to 1.0 weight percent of molybdenum. The sulfur compound may be added in quantities to furnish in the range of from 0.005 to 5.0 weight percent of sulfur.
A representative lubricating oil composition is made by adding to a high-viscosity-index SAE 10W-30 motor oil, compounded with a polymeric viscosity index improver and a stabilized colloidal barium carbonatephenatc complex, 0.5 weight percent of a phosphosul- :furized terpene and 0.25 weight percent of the reaction of tetraethylene glycol and 2 moles of 2-ethyl hexanoic acid.
The products of the present invention may also be incorporated into diesel fuels in concentrations in the range of 0.0001 to 0.01 weight percent molybdenum to reduce engine wear. It the fuels contain natural sulfur, this will tend to react with the molybdenum compounds to form molybdenum sulfide in situ.
It is to be understood that the examples presented herein are intended to be merely illustrative of the invention and not as limiting it in any manner; nor is the invention to be limited by any theory regarding its operability. The scope of the invention is to be de termined by the appended claims.
What is claimed is:
1. In the reaction of a glycol from the .group consisting of alphaand 'beta-alkane diols of from 2 to 18 carbon atoms with a molybdenum compound selected from the group consisting of molybdic acid, ammonium paramolybdate, ammonium molybdate, M00 and molybdenum pentachloride the improvement which consists in adding to the reacting materials an organic nitrogen base having a boiling point no higher than 300 C. measured at atmospheric pressure and selected from the group consisting of alkyl amines having a total of at least 6 carbon atoms, aryl amines, N-dialkyl amides, azines and oxazines, said nitrogen base being added to the reacting materials in an amount within the range of from 1 to 50 weight percent of the amount of molybdenum compound used in the reaction.
2. Improvement as defined by claim 1 wherein said reaction is conducted in an aromatic hydrocarbon solvent.
3. Improvement as defined by claim 1 wherein ammonium molybdate is reacted with 2-ethyl-1,3-hexanediol.
4. Improvement as defined by claim 1 wherein said nitrogen base is an N-dialkyl amide.
5. Improvement as defined by claim 1 wherein said nitrogen base is morpholine.
6. Improvement as defined by claim 1 wherein said nitrogen base is pyridine.
7. Improvement as defined by claim 1 wherein said nitrogen base is dimethylformamide.
8. An improved process for preparing an organic compleX' containing molybdenum which comprises reacting a glycol selected from the group consisting of alphaand beta-alkane diols of from 2 to 18 carbon atoms with a molybdenum compound selected from the group consisting of molybdic acid, ammonium molybdate, ammonium paramolybdate, molybdenum pentachloride and M at a temperature in the range of from 80 to 160 C. in the presence of an organic nitrogen base having a boiling point no higher than 300 C. measured at atmospheric pressure and selected from the group consisting of alkyl amines having a total of at least six carbon atoms, aryl amines, N-dialkyl amides, azines and oxazines, said nitrogen base being added to the reacting materials in an amount Within the range of from 1 to 50 weight percent of the amount of molybdenum compound used in the reaction, and thereafter removing the organic nitrogen base from the reaction mixture.
9. Improvement as defined by claim 1 wherein the amount of organic nitrogen base is within the range of 10 to weight percent of the amount of molybdenum compound used in the reaction.
10. Process as defined by claim 8 wherein the amount of organic nitrogen base is within the range of 10 to 40 weight percent of the amount of molybdenum compound used in the reaction.
References Cited by the Examiner UNITED STATES PATENTS 2,795,552 6/1957 Abbott et al. 260-429 TOBIAS E. LEVOW, Primary Examiner.
W. J. VAN BALEN, T. L. IAPALUCCI, A. DEMERS, Assistant Examiners.
Claims (1)
1. IN THE REACTION OF A GLYCOL FROM THE GROUP CONSISTING OF ALPHA- AND BETA-ALKANE DIOLS OF FROM 2 TO 18 CARBON ATOMS WITH A MOLYBDENUM COMPOUND SELECTED FROM THE GROUP CONSISTING OF MOLYBDIC ACID, AMMONIUM PARAMOLYBDATE, AMMONIUM MOLYBDATE, MOO3 AND MOLYBDENUM PENTACHLORIDE THE IMPROVEMENT WHICH CONSISTS IN ADDING TO THE REACTING MATERIALS AN ORGANIC NITROGEN BASE HAVING A BOILING POINT NO HIGHER THAN 300*C. MEASURED AT ATMOSPHERIC PRESSURE AND SELECTED FROM THE GROUP CONSISTING OF ALKYL AMINES HAVING A TOTAL OF AT LEAST 6 CARBON ATOMS, ARYL AMINES, N-DIALKYL AMIDES, AZINES AND OXAZINES, SAID NITROGEN BASE BEING ADDED TO THE REACTING MATERIALS IN AN AMOUNT OF MOLYBDENUM COMPOUND WEIGHT PERCENT OF THE AMOUNT OF MOLYBDENUM COMPOUND USED IN THE REACTION.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US177738A US3285942A (en) | 1962-03-06 | 1962-03-06 | Preparation of glycol molybdate complexes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US177738A US3285942A (en) | 1962-03-06 | 1962-03-06 | Preparation of glycol molybdate complexes |
Publications (1)
Publication Number | Publication Date |
---|---|
US3285942A true US3285942A (en) | 1966-11-15 |
Family
ID=22649796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US177738A Expired - Lifetime US3285942A (en) | 1962-03-06 | 1962-03-06 | Preparation of glycol molybdate complexes |
Country Status (1)
Country | Link |
---|---|
US (1) | US3285942A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668227A (en) * | 1968-09-05 | 1972-06-06 | Snam Progetti | Molybdenum catalysts for the oxidation of unsaturated compounds in liquid phase |
US3956180A (en) * | 1970-12-28 | 1976-05-11 | Texaco Development Corporation | Hydrocarbon soluble molybdenum catalysts |
US3991090A (en) * | 1975-07-11 | 1976-11-09 | Olin Corporation | Method of preparing molybdenum derivative compound catalysts for epoxidation reactions |
US4009122A (en) * | 1975-06-23 | 1977-02-22 | Olin Corporation | Novel glycol soluble molybdenum catalysts and method of preparation |
EP0018307A1 (en) * | 1979-01-24 | 1980-10-29 | Manfred Dipl.-Chem. Hornscheidt | Method for the preparation of molybdenum-surface-compounds and their uses |
US4607113A (en) * | 1984-11-05 | 1986-08-19 | Atlantic Richfield Company | Production of molybdenum dioxo dialkyleneglycolate compositions for epoxidation of olefins |
US4626596A (en) * | 1984-12-31 | 1986-12-02 | Texaco Inc. | Synthesis of molybdenum/alkylene glycol complexes useful as epoxidation catalysts |
US4650886A (en) * | 1984-12-31 | 1987-03-17 | Texaco Inc. | Synthesis of ammonium molybdate/alkanol complexes |
US4654427A (en) * | 1984-12-31 | 1987-03-31 | Texaco Inc. | Synthesis of molybdenum oxide/alkanol complexes |
US4667045A (en) * | 1984-03-28 | 1987-05-19 | Union Carbide Corporation | Organosalts of metalate anions and process for the production of alkylene glycols therewith |
US4687868A (en) * | 1984-11-05 | 1987-08-18 | Atlantic Richfield Company | Production of molybdenum dioxo dialkyleneglycolate compositions for epoxidation of olefins |
US4703027A (en) * | 1986-10-06 | 1987-10-27 | Texaco Inc. | Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts |
US4708784A (en) * | 1986-10-10 | 1987-11-24 | Phillips Petroleum Company | Hydrovisbreaking of oils |
US4758681A (en) * | 1986-12-30 | 1988-07-19 | Texaco Chemical Company | Method of making molybdenum/alkylene glycol complexes useful as epoxidation catalysts |
US4772731A (en) * | 1984-11-05 | 1988-09-20 | Arco Chemical Company | Epoxidation of olefins with molybdenum dioxo dialkyleneglycolate compositions |
US4845251A (en) * | 1986-10-06 | 1989-07-04 | Texaco Inc. | Epoxidation in the presence of molybdenum/alkali metal/ethylene glycol complexes [useful as epoxidation catalysts] |
US4889647A (en) * | 1985-11-14 | 1989-12-26 | R. T. Vanderbilt Company, Inc. | Organic molybdenum complexes |
US5017712A (en) * | 1984-03-09 | 1991-05-21 | Arco Chemical Technology, Inc. | Production of hydrocarbon-soluble salts of molybdenum for epoxidation of olefins |
US5107067A (en) * | 1986-05-08 | 1992-04-21 | Texaco Inc. | Catalytic reaction of propyelne with tertiary butyl hydroperoxide |
US5412130A (en) * | 1994-06-08 | 1995-05-02 | R. T. Vanderbilt Company, Inc. | Method for preparation of organic molybdenum compounds |
US5650381A (en) * | 1995-11-20 | 1997-07-22 | Ethyl Corporation | Lubricant containing molybdenum compound and secondary diarylamine |
US5840672A (en) * | 1997-07-17 | 1998-11-24 | Ethyl Corporation | Antioxidant system for lubrication base oils |
EP0949320A2 (en) | 1998-04-09 | 1999-10-13 | Ethyl Petroleum Additives Limited | Lubrifcating compositions |
USRE38929E1 (en) * | 1995-11-20 | 2006-01-03 | Afton Chemical Intangibles Llc | Lubricant containing molybdenum compound and secondary diarylamine |
EP1770153A1 (en) * | 2005-09-23 | 2007-04-04 | R.T. Vanderbilt Company, Inc. | Process for the preparation of organo-molybdenum compounds |
WO2008109523A1 (en) | 2007-03-06 | 2008-09-12 | R.T. Vanderbilt Company, Inc. | Lubricant antioxidant compositions containing a metal compound and a hindered amine |
EP2009082A2 (en) | 2007-06-20 | 2008-12-31 | Chevron Oronite Company LLC | Synergistic lubricating oil composition containing a mixture of a nitro-substituted diarylamine and a diarylamine |
EP2077315A1 (en) | 2007-12-20 | 2009-07-08 | Chevron Oronite Company LLC | Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant |
CN102676280A (en) * | 2011-03-10 | 2012-09-19 | 中国石油天然气股份有限公司 | Oil composition for automobile hydraulic shock absorber |
WO2017030785A1 (en) | 2015-08-14 | 2017-02-23 | Vanderbilt Chemicals, Llc | Additive for lubricant compositions comprising an organomolybdenum compound, and a derivatized triazole |
CN112745353A (en) * | 2021-01-07 | 2021-05-04 | 洛阳康纳森新能源科技有限公司 | Preparation method of oil-soluble molybdic acid complex |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2795552A (en) * | 1954-06-29 | 1957-06-11 | California Research Corp | Lubricant compositions |
-
1962
- 1962-03-06 US US177738A patent/US3285942A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2795552A (en) * | 1954-06-29 | 1957-06-11 | California Research Corp | Lubricant compositions |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668227A (en) * | 1968-09-05 | 1972-06-06 | Snam Progetti | Molybdenum catalysts for the oxidation of unsaturated compounds in liquid phase |
US3956180A (en) * | 1970-12-28 | 1976-05-11 | Texaco Development Corporation | Hydrocarbon soluble molybdenum catalysts |
US4009122A (en) * | 1975-06-23 | 1977-02-22 | Olin Corporation | Novel glycol soluble molybdenum catalysts and method of preparation |
US3991090A (en) * | 1975-07-11 | 1976-11-09 | Olin Corporation | Method of preparing molybdenum derivative compound catalysts for epoxidation reactions |
EP0018307A1 (en) * | 1979-01-24 | 1980-10-29 | Manfred Dipl.-Chem. Hornscheidt | Method for the preparation of molybdenum-surface-compounds and their uses |
US5017712A (en) * | 1984-03-09 | 1991-05-21 | Arco Chemical Technology, Inc. | Production of hydrocarbon-soluble salts of molybdenum for epoxidation of olefins |
US4667045A (en) * | 1984-03-28 | 1987-05-19 | Union Carbide Corporation | Organosalts of metalate anions and process for the production of alkylene glycols therewith |
US4772731A (en) * | 1984-11-05 | 1988-09-20 | Arco Chemical Company | Epoxidation of olefins with molybdenum dioxo dialkyleneglycolate compositions |
US4687868A (en) * | 1984-11-05 | 1987-08-18 | Atlantic Richfield Company | Production of molybdenum dioxo dialkyleneglycolate compositions for epoxidation of olefins |
US4607113A (en) * | 1984-11-05 | 1986-08-19 | Atlantic Richfield Company | Production of molybdenum dioxo dialkyleneglycolate compositions for epoxidation of olefins |
US4650886A (en) * | 1984-12-31 | 1987-03-17 | Texaco Inc. | Synthesis of ammonium molybdate/alkanol complexes |
US4654427A (en) * | 1984-12-31 | 1987-03-31 | Texaco Inc. | Synthesis of molybdenum oxide/alkanol complexes |
US4626596A (en) * | 1984-12-31 | 1986-12-02 | Texaco Inc. | Synthesis of molybdenum/alkylene glycol complexes useful as epoxidation catalysts |
US4889647A (en) * | 1985-11-14 | 1989-12-26 | R. T. Vanderbilt Company, Inc. | Organic molybdenum complexes |
US5107067A (en) * | 1986-05-08 | 1992-04-21 | Texaco Inc. | Catalytic reaction of propyelne with tertiary butyl hydroperoxide |
US4845251A (en) * | 1986-10-06 | 1989-07-04 | Texaco Inc. | Epoxidation in the presence of molybdenum/alkali metal/ethylene glycol complexes [useful as epoxidation catalysts] |
US4703027A (en) * | 1986-10-06 | 1987-10-27 | Texaco Inc. | Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts |
US4708784A (en) * | 1986-10-10 | 1987-11-24 | Phillips Petroleum Company | Hydrovisbreaking of oils |
US4758681A (en) * | 1986-12-30 | 1988-07-19 | Texaco Chemical Company | Method of making molybdenum/alkylene glycol complexes useful as epoxidation catalysts |
US5412130A (en) * | 1994-06-08 | 1995-05-02 | R. T. Vanderbilt Company, Inc. | Method for preparation of organic molybdenum compounds |
USRE38929E1 (en) * | 1995-11-20 | 2006-01-03 | Afton Chemical Intangibles Llc | Lubricant containing molybdenum compound and secondary diarylamine |
USRE40595E1 (en) * | 1995-11-20 | 2008-12-02 | Afton Chemical Intangibles Llc | Lubricant containing molybdenum compound and secondary diarylamine |
USRE37363E1 (en) | 1995-11-20 | 2001-09-11 | Ethyl Corporation | Lubricant containing molybdenum compound and secondary diarylamine |
US5650381A (en) * | 1995-11-20 | 1997-07-22 | Ethyl Corporation | Lubricant containing molybdenum compound and secondary diarylamine |
US5840672A (en) * | 1997-07-17 | 1998-11-24 | Ethyl Corporation | Antioxidant system for lubrication base oils |
EP0949320A2 (en) | 1998-04-09 | 1999-10-13 | Ethyl Petroleum Additives Limited | Lubrifcating compositions |
EP1770153A1 (en) * | 2005-09-23 | 2007-04-04 | R.T. Vanderbilt Company, Inc. | Process for the preparation of organo-molybdenum compounds |
JP2007084545A (en) * | 2005-09-23 | 2007-04-05 | Rt Vanderbilt Co Inc | Method for preparing organic molybdenum compound |
WO2008109523A1 (en) | 2007-03-06 | 2008-09-12 | R.T. Vanderbilt Company, Inc. | Lubricant antioxidant compositions containing a metal compound and a hindered amine |
EP2009082A2 (en) | 2007-06-20 | 2008-12-31 | Chevron Oronite Company LLC | Synergistic lubricating oil composition containing a mixture of a nitro-substituted diarylamine and a diarylamine |
EP2077315A1 (en) | 2007-12-20 | 2009-07-08 | Chevron Oronite Company LLC | Lubricating oil compositions containing a tetraalkyl-napthalene-1,8 diamine antioxidant |
CN102676280A (en) * | 2011-03-10 | 2012-09-19 | 中国石油天然气股份有限公司 | Oil composition for automobile hydraulic shock absorber |
CN102676280B (en) * | 2011-03-10 | 2015-05-27 | 中国石油天然气股份有限公司 | Oil composition for automobile hydraulic shock absorber |
WO2017030785A1 (en) | 2015-08-14 | 2017-02-23 | Vanderbilt Chemicals, Llc | Additive for lubricant compositions comprising an organomolybdenum compound, and a derivatized triazole |
CN112745353A (en) * | 2021-01-07 | 2021-05-04 | 洛阳康纳森新能源科技有限公司 | Preparation method of oil-soluble molybdic acid complex |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3285942A (en) | Preparation of glycol molybdate complexes | |
KR900004517B1 (en) | Novel carbamate additives for functional fluids | |
US4410438A (en) | Borated epoxides and lubricants containing same | |
US2632767A (en) | Complex phosphate ester synthetic lubricant | |
US3159664A (en) | Cyclopentenyl esters of 2-mercapto-2-thiono 1, 3, 2-dioxaphosphorinane and 1, 3, 2-dioxaphospholane acids | |
US3623985A (en) | Polysuccinimide ashless detergents as lubricating oil additives | |
US2750342A (en) | Synthetic lubricants | |
US4744912A (en) | Sulfurized antiwear additives and compositions containing same | |
US4175043A (en) | Metal salts of sulfurized olefin adducts of phosphorodithioic acids and organic compositions containing same | |
US2703811A (en) | Dibasic acid esters of glycols | |
US4207195A (en) | Sulfurized olefin adducts of dihydrocarbyl phosphites and lubricant compositions containing same | |
US3050538A (en) | Molybdenum blue complexes | |
US2723237A (en) | Phosphoric acid esters of diethylene glycol ethers and lubricants containing the same | |
US2786812A (en) | Mineral oil compositions containing tincontaining dithiophosphate compounds | |
US2785128A (en) | Metal salts of organic acids of phosphorus | |
US4212753A (en) | Reaction products of sulfurized olefin adducts of phosphorodithioic acids and organic compositions containing same | |
EP0308264B1 (en) | Lubricant additive comprising mixed non-aryl diol/phosphorodithioate-derived borates | |
US3184410A (en) | Molybdenum compounds and lubricating compositions containing them | |
US2760937A (en) | Phosphorus-containing lubricant additives | |
EP0134063B1 (en) | Grease composition | |
US3175974A (en) | Mineral lubricating oil compositions | |
US2987478A (en) | Lubricating oil compositions having extreme pressure characteristics | |
US4255271A (en) | Phosphorus-containing compounds and lubricants containing same | |
US4253978A (en) | Phosphorus-containing compounds and lubricants containing same | |
US3796756A (en) | C-alkyloxy substituted tert.-butyl amines |