US3284428A - Dyeable polyolefins - Google Patents

Dyeable polyolefins Download PDF

Info

Publication number
US3284428A
US3284428A US282117A US28211763A US3284428A US 3284428 A US3284428 A US 3284428A US 282117 A US282117 A US 282117A US 28211763 A US28211763 A US 28211763A US 3284428 A US3284428 A US 3284428A
Authority
US
United States
Prior art keywords
diamine
nickel
polypropylene
fibers
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US282117A
Inventor
Albin F Turbak
Noshay Allen
Karoly Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US282117A priority Critical patent/US3284428A/en
Application granted granted Critical
Publication of US3284428A publication Critical patent/US3284428A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/09Polyolefin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/928Polyolefin fiber

Definitions

  • Poly alpha-olefin polymers have found increasing interest as textile fibers and materials because of their desirable properties of strength and low cost.
  • One of the more diflicult problems encountered, however, has been the poor dye acceptance of such fibers because of the inertness of a hydrocarbon polymer.
  • a poly alpha-olefin material such as polypropylene, can be dyed, its fastness to typical textile environments has been inadequate.
  • alphaolefin polymers to dyeing may be improved by blending the polymer with 0.1 to 20.0 weight percent, preferably 0.2 to 5.0 weight percent, of a nickel derivative of a specific class of diamines.
  • the polymer may then be spun into fibers and contacted with dyes.
  • this treatment not only is the dye uptake of the polymer improved, but more importantly, the resistance of the dyed product to light, washing, and dry cleaning is improved.
  • the fiber does not discolor at such extreme conditions of temperature and pressure because these particular nickel-diamine substances do not react with the phenolcontaining or sulfur-containing stabilizers which are often conventionally dispersed in the hot polymer mix.
  • These stabilizers are generally preesnt in amount sof between about 0.1 to 1.0' weight percent of the polymer. They often are used together. See for example Industrial and Engineering Chemistry, volume 1, No. 4, p. 236 et seq.
  • stabilizing agents which contain sulfur are: di-tert-octyl trisulfide, di-tert-octyl tetrasulfide, dilaurylthiodipropionate, the esters of polysulfides derived from [i mercaptopro-pionic acid, and zinc dibutyl dithiocarbamate.
  • phenolic stabilizing agents are: N-lauroyl p-amino phenol; 4,4-methylene bis(2,6- ditertiary phenol); 4,4 benzi'lidene bis(2,6 ditertiary phenol); 2-hydroxy, 4-methoxy benzophenone; Z-hydroxy, 4-octoxy benzophenone; dipinenediphenol; 4,4-isobutylidene bisphenol; and 3-methyl, 6-t-butyl phenol.
  • the advantage of producing a white fiber is obvious to those skilled in the art. Discoloration in a fiber not only limits its use to dyed fabrics but also interferes with the proper dyeing of the textile produced therefrom, since muddy, dull, and impure hues are produced.
  • While this invention is principally directed to the dyeing of fibers or filaments, it may also be used to dye poly alpha-olefin films, foils, and other formed products.
  • the polymers treated by the process of the invention are alpha-olefin homopolymers and copolymers.
  • the alpha-olefin homopolymer can be prepared by any known process, such as the so-called Ziegler process, see for example Belgian Patent 533,362 and Belgian Patent 538,782, Examples of homopolymers within the scope of the invention include polyethylene, polypropylene, poly l-butene and poly l-heptene.
  • Polymers or copolymers of branched chain alpha olefins where the branching occurs no closer than the third carbon atom can also be employed such as poly 4,4-dimethyl-1-pentene, poly 4-methyl-1-pentene and 3,284,428 Patented Nov.
  • the homopolymers are prepared from alpha-olefins having from 2 to 12 carbon atoms.
  • the copolymers employed in the process of the invention include copolymers of two ditferent alphaolefins such as ethylene-propylene copolymers, ethylenel-hexene copolymers and alpha-olefin-aromatic olefin copolymers containing from 1 to 15% by weight of an aromatic olefin, such as for example copolymers of styrene and 4-methyl-l-pentene. Also, blends of one or more of the previously mentioned polymers can be employed.
  • the polymers and copolymers employed in the invention have molecular weights ranging from 100,000 to 1,000,- 000.
  • the preferred polymers and copolymers of the invention are those prepared by the use of alkyl metal catalysts. Most preferred is polypropylene.
  • Catalysts which are useful in this process are mixtures of reducible heavy transition metal compounds and reducing metal containing substances, or mixtures of partially reduced heavy transition metal compounds and or'ganometallic activators. Examples of these catalysts are TiCl +AlEt and TiCl -
  • the catalysts used for preparing the preferred polymers employed in the instant process are those catalysts given on page 6, line 20 to page 10, line 21 of copending application Serial No. 831,210, filed August 3, 1959, now abandoned.
  • the nickel-diamine derivatives of this invention are prepared by reacting the diamine compounds with a soluble nickel salt in a ratio of 1 mole of nickel salt to 2 to 3 moles of diamine compound to produce a nickel salt derivative of the diamine compound.
  • the nickel salt may be any soluble salt such as the halides, nitrate, or acetate. Nickel chloride is preferred.
  • diamine compounds useful in this invention are terminal, vicinal diamines containing a terminal primary amine function. These compounds are described by the following formula:
  • R R and R can be hydrogen, or any alkyl or aryl group, preferably a C C group.
  • Examples of compounds that are operative include ethylene diamine, 1,2- propylene diamine, 2-methyl-l,2-propylene diamine, 1,2- hexene diamine, N-(Z-hydroxydodecyl) 1,2 ethylene diamine or N-hexyl ethylene diamine.
  • Preferred is 1,2-propylene diamine.
  • Diamine compounds which do not fit the description above are inoperative. Thus if the diamine groups are not vicinal, or if there is no unsubstituted terminal primary amine group, they are not useful in the instant invention since they yield discolored or undyeable fibers.
  • inoperative compounds are the nickel salts of 1,3-propylene diamine; N-dodecyl-l,3-propylene diamine; 2,3-butylene diamine; methyl hydrazine; hydrazine and phenyl hydrazine.
  • the dyes which are preferably applied to the fibers of this invention include selected mordant and metallizable dyes such as those produced by the National Aniline Division of the Allied Chemical Co. Many of these are known as National Polypropylene dyes and specific examples are National Aniline Green B, National Polypropylene Red 2B, National Polypropylene Yellow R and National Polypropylene Blue B.
  • the polymer blend which has been melt spun or extruded into fibers or molded objects is contacted with the aqueous dye bath.
  • the dye baths employed contain from 0.1 to 10 weight percent of dye based on the Weight of the goods to be dyed.
  • the temperature of compound employed, the concentration of dye employed, and the intensity of color desired can easily be determined by routine experimentation.
  • the temperature of dyeing is not critical and can range from 25 to 120 C. although the dye bath is usually maintained at the boiling point.
  • Example 1 A polypropylene polymer was formed by passing propylene gas into a dispersion containing Al(Et) and TiCl in an aromatic diluent at a temperature of 80 C.
  • a crystalline polypropylene resulted having an intrinsic viscosity of 1.5 (in Tetralin at 120 C.) and a melt index of 20.
  • This polymer was spun into fibers by methods known in the art. When these fibers were contacted with the National Polypropylene dyes, essentially no dye pickup and retention were observed.
  • Example 2 A sample of bis (ethylene diamine) nickel (II) chloride was prepared according to the procedure described in volume VI of Inorganic Synthesis, p. 198 (McGraw-Hill; 1960). 0.5 weight percent of this material was blended with polypropylene resin which contained phenolic and sulfur-containing stabilizers. Specifically, in this and the following examples, about 0.5 weight percent of each of Z-hydroxy, 4-octoxy benzopheno-ne, and dilaurylthiodipropionate were in the polypropylene, although these amounts can vary between 0.1 and 1.0 weight percent.
  • This blend of resin and diamine was melt spun at about 540 F. to produce fibers. These fibers were white having a tenacity of 4.8 gms./ denier, and when contacted with National Aniline Polypropylene dyes, gave medium depths of shade which were fast to washing, dry cleaning (as determined in warm perchloroethylene) and light (as determined in a Fade-O-Meter).
  • any dyed fibers referred to in the subsequent examples were similarly fast to washing, dry cleaning and light. Additionally these fibers had satisfactory physical properties.
  • Example 3 Example 2 was repeated using his (1,2-propylene diamine) nickel (II) chloride prepared by the same procedure. Again white fibers were obtained both with and without added stabilizers showing that this additive was also unaffected by the presence of sulfur and phenolcontaining additives. Deep green shades were obtained when these fibers were dyed in dyebaths containing an orange dispersion of National Aniline Green Polypropylene dye (which turns green on complexing with the nickel).
  • Example 4 Tris (2-methyl-propylene-1,2-diamine) nickel (II) chloride dihydrate was prepared by adding 13.7 g. (0.155 mole) of 2-methyl-propylene-1,2-diamine to 11.9 g. (0.05 mole) of NiCl -6H O dissolved in 70 cc. of H 0. The purple solution was filtered, evaporated to 30 cc. on a steam bath, cooled to C. in an ice bath and filtered. The solid was slurried with 30 cc. of 95% ethanol, filtered and dried to give 14.3 g. of a lavender product.
  • Example 5 Bis (Z-rnethyl-1,2-propylene-diamine) nickel (II) chloride was prepared from the tris derivative of Example 4 by disproportionation with nickel chloride, according to the procedure of Example 2. The product separated as a light blue powder.
  • This product gave white fibers when spun (at 540 F.) at 0.5% conc. level in polypropylene containing the stabilizing additives. These fibers dyed to deep shades with National Aniline Polypropylene dyes.
  • Example 6 Bis (2,3-butylene-diamine) nickel (II) dichloride was prepared from the tris derivative by dis-proportionation with NiCl -oH O according to the procedure of Example 2. This product was a bright yellow solid as compared to the bluish powders obtained when at least one amine group occupied a terminal position. This product when blended at 0.5% with polypropylene and milled at 330 F. gave a yellow blend which spun into discolored grey fibers.
  • Example 7 N-(Z-hydroxydodecyl) ethylene diamine was prepared by refluxing 46 g. of 1,2-dodecene oxide in 60 g. of ethylene diamine overnight. The product was separated from excess ethylene diamine by extracting several times with hot petroleum ether. Evaporation of the petroleum ether gave 52.7 g. of white solid product. 22 g. of this product was dissolved in cc. of CH OH and added to 11.9 g. of NiCl -6H O in 50 cc. of CH OH to give a blue solution. Addition of this solution to 500 cc. of acetone caused precipitation of a lavender colored solid nickel derivative. When 1 weight percent of this additive was blended with polypropylene stabilized with phenolic and sulfur-containing additives, it gave essentially white fibers containing 0.1% nickel which displayed good dyeability with National Aniline Polypropylene dyes.
  • Example 8 Example 7 was repeated using a C epoxide in place of the dodecene oxide. Again good white fibers were obtained which dyed well.
  • Example 9 Bis (1,3-propylene diamine) nickel (II) chloride was prepared by adding 7.4 g. of 1,3-propylene diamine (0.1 mole) dissolved in 25 ml. of CH OH to 11.9 g. of NiCl -6H O (0.05 mole) in 50 cc. of CH OH. To the resulting blue clear liquor was added 300 cc. of anhydrous ether in a slow stream. The lavender product which formed was filtered and dried.
  • Example 10 The nickel derivative of N-dodecyl-l,3-propylene diamine was prepared by reaction of the diamine with NiCl -6H O in a 2/1 molar ratio in MeOH. The product was a deep green solid and yields undesirable highly colored fibers when blended with polypropylene.
  • Example 11 Example was repeated using N-octadecyl-l,3-propylone diamine. Similar results were obtained showing that N-substituted 1,3-propylene diamine nickel derivatives are not useful.
  • Example 12 A nickel derivative of hexamethylene diamine was prepared by reacting hexamethylene diamine with in a 2/1 molar ratio in CH OH. The product was a green solid and when it was blended with polypropylene resin containing phenolic and sulfur-containing stabilizers, a deep yellow green pad was produced which yielded highly colored fibers. Thus when the amine groups are separated by six carbon atoms the resulting nickel derivative will not blend with stabilized polypropylene to yield a composition from which white fibers can be produced.
  • a dyeable composition of matter comprising a polymer of a hydrocarbon alpha-olefin blended with a nickel salt derivative of a vicinal diamine having the following formula:
  • R R and R can be hydrogen or a C C alkyl or aryl group.
  • composition of claim 2 wherein the diamine is 1,2-propylene diamine.
  • composition of claim 1 wherein the diamine is 1,2-propylene diamine.
  • composition of claim 4, wherein the nickel salt derivative of the vicinal diamine is bis (ethylene diamine) nickel (II) chloride.

Description

United States Patent 3,284,428 DYEABLE POLYOLEFINS Alhin F. Turbak, New Providence, Allen Noshay, East Brunswick, and Gabriel Karoly, Elizabeth, N.J., assignors to Esso Research and Engineering Company, a corporation of Delaware No Drawing. Filed May 21, 1963, Ser. No. 282,117 6 Claims. (Cl. 260-933) This invention relates to a process for treating alphaolefin polymers to render them dyeable, and the composition produced thereby.
Poly alpha-olefin polymers have found increasing interest as textile fibers and materials because of their desirable properties of strength and low cost. One of the more diflicult problems encountered, however, has been the poor dye acceptance of such fibers because of the inertness of a hydrocarbon polymer. Although a poly alpha-olefin material, such as polypropylene, can be dyed, its fastness to typical textile environments has been inadequate.
It has now been found that the receptivity of alphaolefin polymers to dyeing may be improved by blending the polymer with 0.1 to 20.0 weight percent, preferably 0.2 to 5.0 weight percent, of a nickel derivative of a specific class of diamines. The polymer may then be spun into fibers and contacted with dyes. By means of this treatment, not only is the dye uptake of the polymer improved, but more importantly, the resistance of the dyed product to light, washing, and dry cleaning is improved.
An additional and very important advantage of these nickel-diamine compounds is that when the polymer which has been blended with these compounds is spun into filaments at high temperature and pressure, the resulting fiber is white.
The fiber does not discolor at such extreme conditions of temperature and pressure because these particular nickel-diamine substances do not react with the phenolcontaining or sulfur-containing stabilizers which are often conventionally dispersed in the hot polymer mix. These stabilizers are generally preesnt in amount sof between about 0.1 to 1.0' weight percent of the polymer. They often are used together. See for example Industrial and Engineering Chemistry, volume 1, No. 4, p. 236 et seq. Some examples of these stabilizing agents which contain sulfur are: di-tert-octyl trisulfide, di-tert-octyl tetrasulfide, dilaurylthiodipropionate, the esters of polysulfides derived from [i mercaptopro-pionic acid, and zinc dibutyl dithiocarbamate. Some examples of phenolic stabilizing agents are: N-lauroyl p-amino phenol; 4,4-methylene bis(2,6- ditertiary phenol); 4,4 benzi'lidene bis(2,6 ditertiary phenol); 2-hydroxy, 4-methoxy benzophenone; Z-hydroxy, 4-octoxy benzophenone; dipinenediphenol; 4,4-isobutylidene bisphenol; and 3-methyl, 6-t-butyl phenol. The advantage of producing a white fiber is obvious to those skilled in the art. Discoloration in a fiber not only limits its use to dyed fabrics but also interferes with the proper dyeing of the textile produced therefrom, since muddy, dull, and impure hues are produced.
While this invention is principally directed to the dyeing of fibers or filaments, it may also be used to dye poly alpha-olefin films, foils, and other formed products.
The polymers treated by the process of the invention are alpha-olefin homopolymers and copolymers. The alpha-olefin homopolymer can be prepared by any known process, such as the so-called Ziegler process, see for example Belgian Patent 533,362 and Belgian Patent 538,782, Examples of homopolymers within the scope of the invention include polyethylene, polypropylene, poly l-butene and poly l-heptene. Polymers or copolymers of branched chain alpha olefins where the branching occurs no closer than the third carbon atom can also be employed such as poly 4,4-dimethyl-1-pentene, poly 4-methyl-1-pentene and 3,284,428 Patented Nov. 8, 1966 poly 3-methyl-1-butene. -In general, the homopolymers are prepared from alpha-olefins having from 2 to 12 carbon atoms. The copolymers employed in the process of the invention include copolymers of two ditferent alphaolefins such as ethylene-propylene copolymers, ethylenel-hexene copolymers and alpha-olefin-aromatic olefin copolymers containing from 1 to 15% by weight of an aromatic olefin, such as for example copolymers of styrene and 4-methyl-l-pentene. Also, blends of one or more of the previously mentioned polymers can be employed. The polymers and copolymers employed in the invention have molecular weights ranging from 100,000 to 1,000,- 000. The preferred polymers and copolymers of the invention are those prepared by the use of alkyl metal catalysts. Most preferred is polypropylene. Catalysts which are useful in this process are mixtures of reducible heavy transition metal compounds and reducing metal containing substances, or mixtures of partially reduced heavy transition metal compounds and or'ganometallic activators. Examples of these catalysts are TiCl +AlEt and TiCl -|-AlEt The catalysts used for preparing the preferred polymers employed in the instant process are those catalysts given on page 6, line 20 to page 10, line 21 of copending application Serial No. 831,210, filed August 3, 1959, now abandoned.
The nickel-diamine derivatives of this invention are prepared by reacting the diamine compounds with a soluble nickel salt in a ratio of 1 mole of nickel salt to 2 to 3 moles of diamine compound to produce a nickel salt derivative of the diamine compound. The nickel salt may be any soluble salt such as the halides, nitrate, or acetate. Nickel chloride is preferred.
The diamine compounds useful in this invention are terminal, vicinal diamines containing a terminal primary amine function. These compounds are described by the following formula:
p where R R and R can be hydrogen, or any alkyl or aryl group, preferably a C C group. Examples of compounds that are operative include ethylene diamine, 1,2- propylene diamine, 2-methyl-l,2-propylene diamine, 1,2- hexene diamine, N-(Z-hydroxydodecyl) 1,2 ethylene diamine or N-hexyl ethylene diamine. Preferred is 1,2-propylene diamine.
Diamine compounds which do not fit the description above are inoperative. Thus if the diamine groups are not vicinal, or if there is no unsubstituted terminal primary amine group, they are not useful in the instant invention since they yield discolored or undyeable fibers. Examples of inoperative compounds are the nickel salts of 1,3-propylene diamine; N-dodecyl-l,3-propylene diamine; 2,3-butylene diamine; methyl hydrazine; hydrazine and phenyl hydrazine.
The dyes which are preferably applied to the fibers of this invention include selected mordant and metallizable dyes such as those produced by the National Aniline Division of the Allied Chemical Co. Many of these are known as National Polypropylene dyes and specific examples are National Aniline Green B, National Polypropylene Red 2B, National Polypropylene Yellow R and National Polypropylene Blue B.
The polymer blend which has been melt spun or extruded into fibers or molded objects is contacted with the aqueous dye bath. In general the dye baths employed contain from 0.1 to 10 weight percent of dye based on the Weight of the goods to be dyed. The temperature of compound employed, the concentration of dye employed, and the intensity of color desired. These parameters can easily be determined by routine experimentation. The temperature of dyeing is not critical and can range from 25 to 120 C. although the dye bath is usually maintained at the boiling point.
This invention will be more fully understood by reference to the following examples.
Example 1 A polypropylene polymer was formed by passing propylene gas into a dispersion containing Al(Et) and TiCl in an aromatic diluent at a temperature of 80 C.
Hydrogen was used to control the molecular weight. A crystalline polypropylene resulted having an intrinsic viscosity of 1.5 (in Tetralin at 120 C.) and a melt index of 20. This polymer was spun into fibers by methods known in the art. When these fibers were contacted with the National Polypropylene dyes, essentially no dye pickup and retention were observed.
Example 2 A sample of bis (ethylene diamine) nickel (II) chloride was prepared according to the procedure described in volume VI of Inorganic Synthesis, p. 198 (McGraw-Hill; 1960). 0.5 weight percent of this material was blended with polypropylene resin which contained phenolic and sulfur-containing stabilizers. Specifically, in this and the following examples, about 0.5 weight percent of each of Z-hydroxy, 4-octoxy benzopheno-ne, and dilaurylthiodipropionate were in the polypropylene, although these amounts can vary between 0.1 and 1.0 weight percent.
This blend of resin and diamine was melt spun at about 540 F. to produce fibers. These fibers were white having a tenacity of 4.8 gms./ denier, and when contacted with National Aniline Polypropylene dyes, gave medium depths of shade which were fast to washing, dry cleaning (as determined in warm perchloroethylene) and light (as determined in a Fade-O-Meter).
It is to be understood that any dyed fibers referred to in the subsequent examples were similarly fast to washing, dry cleaning and light. Additionally these fibers had satisfactory physical properties.
Example 3 Example 2 was repeated using his (1,2-propylene diamine) nickel (II) chloride prepared by the same procedure. Again white fibers were obtained both with and without added stabilizers showing that this additive was also unaffected by the presence of sulfur and phenolcontaining additives. Deep green shades were obtained when these fibers were dyed in dyebaths containing an orange dispersion of National Aniline Green Polypropylene dye (which turns green on complexing with the nickel).
Example 4 Tris (2-methyl-propylene-1,2-diamine) nickel (II) chloride dihydrate was prepared by adding 13.7 g. (0.155 mole) of 2-methyl-propylene-1,2-diamine to 11.9 g. (0.05 mole) of NiCl -6H O dissolved in 70 cc. of H 0. The purple solution was filtered, evaporated to 30 cc. on a steam bath, cooled to C. in an ice bath and filtered. The solid was slurried with 30 cc. of 95% ethanol, filtered and dried to give 14.3 g. of a lavender product.
Found: Ni= 13.3%; N;=18.94% Calculated for (CH z C-- CH1] Nick-21110 =13.5% Ni; 19.5% N,
On milling 0.5 weight percent of this product at 330 F. with polypropylene resin a light blue homogeneous blend both in the presence and absence of sulfur or phenolic stabilizers was obtained. White fibers were obtained from these blends. These fibers exhibited good dyeability with National Aniline Polypropylene dyes.
Example 5 Bis (Z-rnethyl-1,2-propylene-diamine) nickel (II) chloride was prepared from the tris derivative of Example 4 by disproportionation with nickel chloride, according to the procedure of Example 2. The product separated as a light blue powder.
Found: 19.0% Ni; 17.8% N2 Calculated for (CH )zCHCHg:| Ni Clg=10.0% Ni; 18.3% N:
This product gave white fibers when spun (at 540 F.) at 0.5% conc. level in polypropylene containing the stabilizing additives. These fibers dyed to deep shades with National Aniline Polypropylene dyes.
Example 6 Bis (2,3-butylene-diamine) nickel (II) dichloride was prepared from the tris derivative by dis-proportionation with NiCl -oH O according to the procedure of Example 2. This product was a bright yellow solid as compared to the bluish powders obtained when at least one amine group occupied a terminal position. This product when blended at 0.5% with polypropylene and milled at 330 F. gave a yellow blend which spun into discolored grey fibers.
Example 7 N-(Z-hydroxydodecyl) ethylene diamine was prepared by refluxing 46 g. of 1,2-dodecene oxide in 60 g. of ethylene diamine overnight. The product was separated from excess ethylene diamine by extracting several times with hot petroleum ether. Evaporation of the petroleum ether gave 52.7 g. of white solid product. 22 g. of this product was dissolved in cc. of CH OH and added to 11.9 g. of NiCl -6H O in 50 cc. of CH OH to give a blue solution. Addition of this solution to 500 cc. of acetone caused precipitation of a lavender colored solid nickel derivative. When 1 weight percent of this additive was blended with polypropylene stabilized with phenolic and sulfur-containing additives, it gave essentially white fibers containing 0.1% nickel which displayed good dyeability with National Aniline Polypropylene dyes.
Example 8 Example 7 was repeated using a C epoxide in place of the dodecene oxide. Again good white fibers were obtained which dyed well.
Example 9 Bis (1,3-propylene diamine) nickel (II) chloride was prepared by adding 7.4 g. of 1,3-propylene diamine (0.1 mole) dissolved in 25 ml. of CH OH to 11.9 g. of NiCl -6H O (0.05 mole) in 50 cc. of CH OH. To the resulting blue clear liquor was added 300 cc. of anhydrous ether in a slow stream. The lavender product which formed was filtered and dried.
Found: 20.92% Ni; 20.19% N Theoretical for [NH (CH NH NiCl =20.9% Ni; 20.14% N It should be noted that the product decomposed in the presence of acetone. This is contrasted to the stability of the 1,2-propylene diamine nickel derivative which was prepared using acetone, thus showing a different metal chelate strength for the 1,3 vs. the 1,2 derivative.
When 0.5 weight percent of this additive was blended with polypropylene containing stabilizers it gave undesirable yellow green fibers although they dyed to medium shades with National Aniline polypropylene dyes. Thus when the diamine functions are not vicinal, the nickel derivatives give undesirable behavior during spinning.
Example 10 The nickel derivative of N-dodecyl-l,3-propylene diamine was prepared by reaction of the diamine with NiCl -6H O in a 2/1 molar ratio in MeOH. The product was a deep green solid and yields undesirable highly colored fibers when blended with polypropylene.
Example 11 Example was repeated using N-octadecyl-l,3-propylone diamine. Similar results were obtained showing that N-substituted 1,3-propylene diamine nickel derivatives are not useful.
Example 12 A nickel derivative of hexamethylene diamine was prepared by reacting hexamethylene diamine with in a 2/1 molar ratio in CH OH. The product was a green solid and when it was blended with polypropylene resin containing phenolic and sulfur-containing stabilizers, a deep yellow green pad was produced which yielded highly colored fibers. Thus when the amine groups are separated by six carbon atoms the resulting nickel derivative will not blend with stabilized polypropylene to yield a composition from which white fibers can be produced.
This invention has been described in connection with certain specific embodiments thereof; however, it should be understood that these are by way of example rather than by way of limitation, and it is not intended that the invention be restricted thereby.
What is claimed is:
1. A dyeable composition of matter comprising a polymer of a hydrocarbon alpha-olefin blended with a nickel salt derivative of a vicinal diamine having the following formula:
wherein R R and R can be hydrogen or a C C alkyl or aryl group.
2. The composition of claim 1 wherein the polymer is =polypropylene.
3. The composition of claim 2 wherein the diamine is 1,2-propylene diamine.
4. The composition of claim 1 wherein the diamine is 1,2-propylene diamine.
5. A substantially white fiber produced from the composition of claim 1.
6. The composition of claim 4, wherein the nickel salt derivative of the vicinal diamine is bis (ethylene diamine) nickel (II) chloride.
References Cited by the Examiner UNITED STATES PATENTS 2,984,634 5/1961 Caldwell et a1 260-93.7
JOSEPH L. SCHOFER, Primary Examiner.
L. EDELMAN, Assistant Examiner.

Claims (1)

1. A DYEABLE COMPOSITION OF MATTER COMPRISING A POLYMER OF A HYDROCARBON ALPHA-OLEFIN BLENDED WITH A NICKEL SALT DERIVATIVE OF A VICINAL DIAMIE HAVING THE FOLLOWING FORMULA: R1-C(-R2)(-NH-R3)-CH2-NH2 WHEREIN R1 R2 AND R3 CAN BE HYDROEN OR A C1-C18 ALKYL OR ARYL GROUP.
US282117A 1963-05-21 1963-05-21 Dyeable polyolefins Expired - Lifetime US3284428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US282117A US3284428A (en) 1963-05-21 1963-05-21 Dyeable polyolefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US282117A US3284428A (en) 1963-05-21 1963-05-21 Dyeable polyolefins

Publications (1)

Publication Number Publication Date
US3284428A true US3284428A (en) 1966-11-08

Family

ID=23080169

Family Applications (1)

Application Number Title Priority Date Filing Date
US282117A Expired - Lifetime US3284428A (en) 1963-05-21 1963-05-21 Dyeable polyolefins

Country Status (1)

Country Link
US (1) US3284428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042767A1 (en) * 1997-03-25 1998-10-01 Cognis Deutschland Gmbh Use of amphiphiles for permanent improvement of colorant compatibility of polyolefin-based shaped bodies, fibers and films

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984634A (en) * 1957-01-30 1961-05-16 Eastman Kodak Co Crystalline polymerized monoolefinic hydrocarbons containing metal salt of carboxylic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984634A (en) * 1957-01-30 1961-05-16 Eastman Kodak Co Crystalline polymerized monoolefinic hydrocarbons containing metal salt of carboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042767A1 (en) * 1997-03-25 1998-10-01 Cognis Deutschland Gmbh Use of amphiphiles for permanent improvement of colorant compatibility of polyolefin-based shaped bodies, fibers and films
US6312631B1 (en) 1997-03-25 2001-11-06 Henkel Kommanditgesellschaft Auf Aktien Use of amphiphiles for permanent improvement of colorant compatibility of polyolefin-based shaped bodies, fibers and films

Similar Documents

Publication Publication Date Title
US3517085A (en) Dyeable compositions comprising polyolefin and n-vinyl carbazole-ethylene copolymer
US3404140A (en) Shaped article of polyolefin composition having improved dyeability containing metalcompounds and a process for dyeing the same
US3284428A (en) Dyeable polyolefins
US3331806A (en) Dye receptive polyolefin compositions containing oxides and/or hydroxides
US3459703A (en) Resins stabilized with a nickel,chromium or cobalt chelate
US3236804A (en) Preparation of block polymers
US3424716A (en) Stabilized dyeable polymers
US3299030A (en) Dyeable polyolefins
US3310509A (en) Reformed dyeable polyolefin composition containing (1) a polyolefin containing transition metal, (2) organic tin compounds and (3) optionally an alkylphenol type antioxidant
US3639505A (en) Polyolefin fibers of improved dye receptivity containing toluenesulfonamides
US3821142A (en) Dyeable polyolefins
US3127234A (en) Method of producing folyolefev shaped
US3356642A (en) Polyolefin stabilized with a salt of a piperazine-alkanoic acid
US3192007A (en) Blending of polypropylene with unmetallized chelating agent to improve dyeability
US3148936A (en) Blending polyolefin with chelating agent to improve dyeability
US3853810A (en) Nickel salts of arylsulfonic acids as ultraviolet stabilizers for light sensitive polymers
US3928504A (en) Dyeable polypropylene compositions containing a polyamine adduct
US3332732A (en) Method of dyeing polyolefin fibers
EP0610155A1 (en) Stabilized polyamide compositions
US3374215A (en) Synthetic polymer compositions having a particular receptivity to dyestuffs and a process for preparing them
US3321502A (en) Nickel phenolates and their use as light stabilizers for polyolefins
US3268476A (en) Dye receptive and light stable polyolefins containing chromium complexes
US3215487A (en) Articles having improved tinctorial properties and method of preparing same
US3296239A (en) Blending of polypropylene with nickel organic compounds to improve dyeability
US3639335A (en) Thermally-stable polyamide compositions