US3280305A - Heated roll assembly and method of construction - Google Patents
Heated roll assembly and method of construction Download PDFInfo
- Publication number
- US3280305A US3280305A US505842A US50584265A US3280305A US 3280305 A US3280305 A US 3280305A US 505842 A US505842 A US 505842A US 50584265 A US50584265 A US 50584265A US 3280305 A US3280305 A US 3280305A
- Authority
- US
- United States
- Prior art keywords
- roll
- heater
- core assembly
- strips
- heater element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010276 construction Methods 0.000 title description 21
- 238000000034 method Methods 0.000 title description 10
- 238000010438 heat treatment Methods 0.000 description 12
- 239000012212 insulator Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101000793686 Homo sapiens Azurocidin Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000907 nickel aluminide Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0095—Heating devices in the form of rollers
Definitions
- This invention relates generally to heating devices and, more particularly to improved heated roll assemblies which incorporate a novel and beneficial heater construction for those applications requiring rotatably mounted, heated rolls, e.g. draw rolls and drying rolls.
- Another object of this invention is to devise a heated roll construction capable of rapidly responding to required process temperature changes.
- a further object is to devise a heated roll combination having an improved radiant heater construction which cooperates with its associated roll in such fashion that the roll surface may be elevated from ambient to process operating temperature conditions in minimum time.
- Still another object is to devise a heater construction capable of being easily fabricated in such a manner as to provide either a uniform or variable temperature gradients along the roll surface, depending upon the process requirements.
- a still further object is to provide such a heater construction wherein either a flat, ribbon-like, or small diameter, continuous wire resistance element may be employed as the heating source Without encountering short-circuit ing problems where minimum air gaps are desired for quick response.
- a further object is a method of wrapping and securing an electrical resistance heater element about a stationary core assembly in such :a fashion that a minimum air gap between the heater and the roll surface may be employed without suffering the risk of grounding the heater element against the associated roll.
- the foregoing and other objects are attained by providing a heated roll construction wherein the heater takes the form of a stationary mounted core, helically enwrapped by an electrical resistant, radiant heater element which is secured to the core assembly at axially and circumferentially spaced points, relative to the core, so as to effect a segmentation and distribution of the thermal expansion experienced by such element at the elevated temperatures to which it must be subjected.
- a major significance in such a novel fashion of securing -a ribbon-like electrical resistant heater element lies in the fact that it enables one to employ a minimum air gap between the heater element and the roll heretofore unattainable without introducing the hazroll being aflixed to a rotatable shaft extending axially through the heater core and mounted inantifriction bearings supported in'a stationary housing which comprises the inner element of "the core construction, the housing beingaffixed to any desired machine frame. Enveloping the stationary housing, and ailixed thereto, is a cylindrical, spool-shaped insulating member possessing good thermal and'electrical insulating properties.
- Enveloping the cylindrical insulator are two cylindrical sleeve members, each isolated from the other so that they may also serve as a series element in the electrical circuit of the heater. Affixed to such sleeve members are the electrical terminal connections which project through the machine frame for simplicity in connecting the heater to an electrical power source.
- Around the periphery of the cylindrical sleeves are afiixed :a plurality of insulating strips extending axially of the roll shaft, which strips, in com- V bination with others, provide the means of aifixing and electricallyisolating the continuous electrical resistance heater element in :a manner to segment its thermal expansion.
- the insulator strips are affixed to the cylindrical sleeves in a novel fashion by suitably placed clamps, as are the terminal ends of the electrical heater element. Provision is also made for accurately sensing the roll surface temperature for control and recordation purposes, the sensing element projecting into an annular cavity formed at the inboard end of the roll and consisting of a stationary combination thermistor-thermocouple, probe commercially available.
- FIG. 1 is a fully assembled, axial view, partially sectionalized, showing a typical embodiment of our heated roll assembly and details of the novel stationary heater construction mounted internally of the hollow, rotatable roll;
- FIG. 2 is an outboard end view of the roll assembly
- FIG. 3 is a partially sectionalized detailed view of the lower left hand portion of FIG. ltaken along line 3-3 of FIG. 2 and showing the details of the electrical'terminal construction
- FIG. 4 is a partially sectionalized, detailed view of a typical insulating strip, all such strips being substantially 7 are retained in shaft support housing 4'by bearing caps 8 and machine screws 9. Suitable lubrication may be sup- 'plied to bearing'7 by means of, for example, an automatic mist lubrication system, not illustrated, or any similar arrangement.
- Coaxially surrounding and enveloping the troll shaft support housing 4 is cylindrical, spool-shaped insulation member 10 fabricated from a good thermal and electrical insulating material, suchas a blend of asbestos fiber and diatomaceous silica locked in an inorganic binder.
- the insulating member 10 is formed to have a sliding fit over support 4 to assure concentricity between the rotating drive shaft 6, support 4, the electrical heater components and the rotatable roll 33.
- Integral with'insulating member 10 there is provided a radially outwardly extending flange 11 which serves to reduce thermal conduction from the electrical heater to the machine frame 1 and roll shaft support housing 4.
- sleeves 12, 13 preferably constructed of steel having a low coefiicient of thermal expansion and serving as electrical conducting and heater element mounting surfaces have a tight sliding fit engagement over insulating member 10.
- Affixed to sleeves 12, 13 are electrical power terminals l4, 15, respectively. Provision for these terminals is made in the spool-shaped cylindrical insulator 10 by means of slots 18, 19 respectively, extending axially of the insulator.
- Sl-ot l8 runs the full length of the insulator up to flange 11, while slot 19 runs to a depth sufficient to permit the mounting of outboard sleeve 13 flush with the insulator surface on the right hand end, as shown in FIG. 1.
- an air gap of approximately /8 inch remains between sleeves or sheaths 12, 13 serving to isolate one from the other, this being necessary in that both such sleeves serve as electrical conductors in series relationship with the hea'ter element 24.
- Electrical power terminals 14, 15 project through holes 21, 22, respectively, in the machine frame 1 and shaft support housing 4.
- a small terminal insulator 16 surrounds the protruding extremities of terminals 14, 15 to isolate such terminals from the machine frame 1 and shaft support housing 4.
- These insulators 16 also serve as spacer members to maintain the desired relationship between washer 17 and nuts lid, to which the electrical leads are attached, and the machine frame 1.
- the strips comprise a steel core, preferably of a low co'eflicient of expansion, and an overlay or outer coating of aluminum oxide applied over a nickel-aluminide bonding medium.
- our invention is not limited to this particular construction of'the insulating strips, it has been found particularly resistant to the high tem- It is over these strips, so placed, that the ribbon-like electrical resistance heating element 24 is wound about the core assembly under low tension, the strips serving to electrically insulate the heating element from the sleeve members12, 13.
- Strips 23 may be afiixed to either of the cylindrical sleeves 12, T3, or they may be simply retained in place during the winding of the heater element 24 and not permanently afilxed to either of said sleeves, the proper positioning of the strips being maintained by the tension in the heater element imparted during the winding operation.
- Heater element 24 is ailixed to outboard cylindrical sleeve 13 by means of clamp 25 and machine screw 26, whereby the sleeve serves as an electrical terminus for the heater element at its outboard end, as viewed in FIG. 1. Having anchored the heater element 24 in such fashion, it is thence Wound over the sleeve and the previously positioned insulating strips 23 in any suitable configuration that will produce the desired heat distribution along the surface of the roll 33. It is visualized that a given heater made according to the present invention may be repeatedly rewound in varying configurations and spacing to generate any desired temperature gradient, although the most comm-on requirement will be that of a zero gradient throughout the extremities of the roll surface.
- heater element 24 is then clamped to the inboard cylindrical sleeve 12 by means of clamp 27 and machine screw 28. It is preferred that the heater element 24 be wrapped under a tension of from about to pounds to insure against slack and, in the case where the strips are not otherwise maintained in their proper position, to insure against their slippage.
- heater element 24 After heater element 24 is fully wrapped and its respective ends aflixed to the cylindrical sleeves 12, 13 upper or outer insulating strips 29, which are of the same general construction as the inner or lower strips 23, are placed, one above each other of the lower strips 23 and clamped into position by means of clamps or clip bars 30, machine screws 31 serving to detachably fasten the midpoints of the bars and, consequently, insulating strips 23, 29 to the sleeve surfaces.
- Each clip bar 30 spans two adjacent pairs of insulating strips 23, 29 and it is preferred that two axially spaced clamps be used for each adjacent pair of strips, as depicted in FIG. 1.
- Cap screws 32 afiix the heater assembly to the shaft support housing 4 to thereby maintain the proper relationship therebetween.
- pairs of insulating strips each comprising an upper and lower strip, so spaced as to envelop cylindrical sleeves 12, 13 in substantially equal circumferential increments, serve to support and clamp the heating element 24 at substantially equal segments along its continuous length.
- any thermal expansion of the heating element will be segmented into nearly equal increments throughout the length of the element.
- Such expansion so permitted, has been found to be less than the thickness of the clamping strips which, in the embodiment illustrated, is about inch.
- Rotatable roll 33 is afiixed to shaft 6 by means of a force-fitted taper 34. Holes 35 are integral with the web of roll 33 to reduce the rotating mass and also to reduce the capacity of the heat conductive path to shaft 6 and bearings 7.
- Roll-end thermal insulation member 36 nests within a cavity provided in the outboard end of roll 33 to reduce heat losses through the end of the roll by way of roll retaining nut and cover cap 37.
- An annular slot is provided in roll 33 for the insertion of a combination thermistor-thermocouple probe 39 which is mounted in machine frame 1.
- Electrical lead 40 extends from probe 39 to any suitable temperature control and recording means, not illustrated.
- An annular groove 38 is provided along the inboard portion of the wall of roll 33 to accommodate the sensing probe 39 to better insure that it indicates and controls the surface temperature of the roll 33 rather than the temperature of the electrical heater element 24.
- the combination probe 39 has been found to sutfice for roll surface temperatures up to 300 C. For higher roll surface temperatures, a radiation pyrometer serves .as an excellent indicating and controlling means.
- Example I A roll having an outside circumference of 1.50 feet and a No. 3 matte finish, weighing 7.1 pounds exhibited the below tabulated heat-up times when heated from an ambient temperature of 22 C. to various desired operating temperatures.
- the stationary electrical heater unit utilized consumed 2225 watts at 117 volts A.C. when drawing full voltage.
- the maximum voltage applied to the heater in obtaining the following data was volts A.C., this voltage limitation being due solely to a limiting feature of the particular controller employed.
- Roll surface temperature was measured with a radiation pyrometer.
- the maximum temperature differential over the face of the roll in the examples is seen to be 3 C., a differential heretofore unattained in prior art heater rolls.
- An electrically heated roll assembly comprising a hollow, cylindrical roll member enclosing an electrical resistance heater, said heater comprising a non-rotatably mounted, spool-shaped core assembly of a diameter slightly less than the internal diameter of said roll member to thereby define a small air gap between the surface of said core assembly and the interior wall of said roll member, an electrical resistance heater element wound in a substantially helical fashion about said core assembly, fastening means operative to maintain spaced points along said element fixed relative to said core assembly, said fastening means comprising pairs of superposed electrical insulating strips spaced circumferentially about said core a rotatably mounted drive shaft extending coaxially through said heater, said roll member being supported and driven by the free end of said drive shaft, whereby thermal expansion of said heater element is effectively segmented and caused to beunif-ormly distributed about the entire circumference of said core assembly to thereby prevent excessive buckling and consequent grounding of said heater element against the interior surface of said rol'l member.
- clamping means comprises a plurality of clip bars, each said clip bar being attached at its midpoint to said core assembly to extend circumferentially thereof and transversely to said pairs of strips, each end of each clip bar engaging and clamping an adjacent pair of said strips against the surface of said core assembly.
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
Oct. 18, 1966 s. w. BURDGE ET AL 3,280,305
HEATED ROLL ASSEMBLY AND METHOD OF CONSTRUCTION Original Filed Dec. 18, 1963 SAM w 535%? F/G. 4. ROLL 's RTER AT ORN United States Patent 2 Claims. (Cl. 219-469) This invention relates generally to heating devices and, more particularly to improved heated roll assemblies which incorporate a novel and beneficial heater construction for those applications requiring rotatably mounted, heated rolls, e.g. draw rolls and drying rolls.
This application constitutes a divisional of SN. 331,- 555, filed December 18, 1963.
Heretofore, considerable effort has ben expended in developing heated roll devices for use in diverse applications, such as paper-making and yarn and film treatments. As evidenced by the prior art, some workers have resorted to heated rolls for such and related purposes by introducing a liquid or gaseous media into a roll interior via a hollow shaft and rotating joint combination, as shown, for example, in US. Patent 2,162,727 to Kline. Such a construction, however, has the disadvantage of limited rotational speed of the roll and early failure of the mechanical joint or seal employed to effect the transfer of the media from a stationary source to the rotating interior of the roll, with an attendant loss of heat to the atmosphere. Other workers have utilized a liquid heat transfer media contained within one or more cavities of the roll and heating this media with an electrical means, usually employing a slip ring in cooperation with the rotating ro ll shaft. Still other workers have utilized electrical heating elements mounted interiorly of the rotating roll and supplying power thereto by slip-ring constructions that inherently are subject to wear and early mechanical failure under high speed rotation, accompanied by undesirable electrical noise and subsequent electrical failure. Still other devices employ stationary electrical means mounted interiorly of the rotating roll, which heating means may be designed to operate on the principle of electromagnetic induction, as taught in US. Patent 2,273,423 to Somes.
A common objection to all of these various heated roll devices resides in the fact that they are subject to unduly long delay in heat-up time from ambient to operating temperatures and slow response to temperature changes it may be desired to effect during the execution of a given process utilizing such rol ls. Even electrically powered radiant heaters, which inherently possess a capability of a relatively fast response, leave something to be desired, the primary obstacle being the air gap that normally exists between the heater surface and the surface of the roll to be heated thereby. The inordinate size of such an air gap is necessitated by the fact that the thermal expansion normally experienced by prior :art radiant-type heaters in many instances results in grounding of the heater element against the surface to be heated, i.e. the interior rol l surface, in cases where a sufficiently large size air gap has not been provided. A further objection to many of the existing heater designs lies in their difficulty of inspection, maintenance and repair, normally due to the fact that the heater construction is one of encapsulation, usually in some heat-resistant bonding medium, which encapsulation renders it impossible to make any major adjustments or repairs and usually results in discard of the heater should break-down occur. Also, there has been a wide and long recognized need for a heated roll design capable of precise control and adjustment of the temper- Patented Oct. 18, 1966 ature gradient along the roll surface. In many applications, it is desired to establish a precise gradient of temperature along the roll and, in others, to establish a zero gradient therealong. To our knowledge, there is not presently available a roll construction that would enable such control, no matter the precautions taken.
In general, the utilization of a stationary electrical resistance radiant heater to heat rotating roll assemblies to a desired temperature gradient along the length of the roll surface is known in the prior art, as evidenced by US. Patent Number 2,244,745, and we do not, therefore, profess that such a general construction comprises a part of our inventive contribution; we do, however, believe ourselves to be the first inventors of major refinements and improvements in the construction of such generally characterized heated roll assemblies.
It is therefore one object of our invention to provide a heated roll assembly having a stationary electrical resistance element heater that utilizes radiant heat energy and is of such design as to provide accurate control of the temperature gradient, as measured along the surface of a roll or roller associated therewith.
Another object of this invention is to devise a heated roll construction capable of rapidly responding to required process temperature changes.
A further object is to devise a heated roll combination having an improved radiant heater construction which cooperates with its associated roll in such fashion that the roll surface may be elevated from ambient to process operating temperature conditions in minimum time.
Still another object is to devise a heater construction capable of being easily fabricated in such a manner as to provide either a uniform or variable temperature gradients along the roll surface, depending upon the process requirements.
A still further object is to provide such a heater construction wherein either a flat, ribbon-like, or small diameter, continuous wire resistance element may be employed as the heating source Without encountering short-circuit ing problems where minimum air gaps are desired for quick response.
A further object is a method of wrapping and securing an electrical resistance heater element about a stationary core assembly in such :a fashion that a minimum air gap between the heater and the roll surface may be employed without suffering the risk of grounding the heater element against the associated roll.
It is another object of our invention to provide a combination stationary-core-radiant-heater and roll assembly, the core construction being characterized by a substantially helically wrapped electrical resistance heater element secured in a novel fashion so as to effect a segmentation and substantially uniform distribution of thermal expansion eflfects throughout the length of the heater element to thereby minimize the possibility of short-circuiting such element against surrounding roll structure.
According to our invention, the foregoing and other objects are attained by providing a heated roll construction wherein the heater takes the form of a stationary mounted core, helically enwrapped by an electrical resistant, radiant heater element which is secured to the core assembly at axially and circumferentially spaced points, relative to the core, so as to effect a segmentation and distribution of the thermal expansion experienced by such element at the elevated temperatures to which it must be subjected. A major significance in such a novel fashion of securing -a ribbon-like electrical resistant heater element lies in the fact that it enables one to employ a minimum air gap between the heater element and the roll heretofore unattainable without introducing the hazroll being aflixed to a rotatable shaft extending axially through the heater core and mounted inantifriction bearings supported in'a stationary housing which comprises the inner element of "the core construction, the housing beingaffixed to any desired machine frame. Enveloping the stationary housing, and ailixed thereto, is a cylindrical, spool-shaped insulating member possessing good thermal and'electrical insulating properties. Enveloping the cylindrical insulator are two cylindrical sleeve members, each isolated from the other so that they may also serve as a series element in the electrical circuit of the heater. Affixed to such sleeve members are the electrical terminal connections which project through the machine frame for simplicity in connecting the heater to an electrical power source. Around the periphery of the cylindrical sleeves are afiixed :a plurality of insulating strips extending axially of the roll shaft, which strips, in com- V bination with others, provide the means of aifixing and electricallyisolating the continuous electrical resistance heater element in :a manner to segment its thermal expansion. 7 The insulator strips are affixed to the cylindrical sleeves in a novel fashion by suitably placed clamps, as are the terminal ends of the electrical heater element. Provision is also made for accurately sensing the roll surface temperature for control and recordation purposes, the sensing element projecting into an annular cavity formed at the inboard end of the roll and consisting of a stationary combination thermistor-thermocouple, probe commercially available.
A better understanding of the invention may be had from the following detailed description of an illustrative embodiment thereof, when read in conjunction with the appended drawings, in which: a
FIG. 1 is a fully assembled, axial view, partially sectionalized, showing a typical embodiment of our heated roll assembly and details of the novel stationary heater construction mounted internally of the hollow, rotatable roll;
FIG. 2 is an outboard end view of the roll assembly,
I partially sectionalized, taken along line 2-2 of FIG. 1;
' FIG. 3 is a partially sectionalized detailed view of the lower left hand portion of FIG. ltaken along line 3-3 of FIG. 2 and showing the details of the electrical'terminal construction, and i 7 FIG. 4 is a partially sectionalized, detailed view of a typical insulating strip, all such strips being substantially 7 are retained in shaft support housing 4'by bearing caps 8 and machine screws 9. Suitable lubrication may be sup- 'plied to bearing'7 by means of, for example, an automatic mist lubrication system, not illustrated, or any similar arrangement.
Coaxially surrounding and enveloping the troll shaft support housing 4 is cylindrical, spool-shaped insulation member 10 fabricated from a good thermal and electrical insulating material, suchas a blend of asbestos fiber and diatomaceous silica locked in an inorganic binder. The insulating member 10 is formed to have a sliding fit over support 4 to assure concentricity between the rotating drive shaft 6, support 4, the electrical heater components and the rotatable roll 33. Integral with'insulating member 10 there is provided a radially outwardly extending flange 11 which serves to reduce thermal conduction from the electrical heater to the machine frame 1 and roll shaft support housing 4.
A pair of metal cylindrical sleeves or sheaths 12, 13,
, preferably constructed of steel having a low coefiicient of thermal expansion and serving as electrical conducting and heater element mounting surfaces have a tight sliding fit engagement over insulating member 10. Affixed to sleeves 12, 13 are electrical power terminals l4, 15, respectively. Provision for these terminals is made in the spool-shaped cylindrical insulator 10 by means of slots 18, 19 respectively, extending axially of the insulator. Sl-ot l8 runs the full length of the insulator up to flange 11, while slot 19 runs to a depth sufficient to permit the mounting of outboard sleeve 13 flush with the insulator surface on the right hand end, as shown in FIG. 1. With the configuration illustrated, an air gap of approximately /8 inch remains between sleeves or sheaths 12, 13 serving to isolate one from the other, this being necessary in that both such sleeves serve as electrical conductors in series relationship with the hea'ter element 24.
Turning now to another important feature of our invention, there shall now be described a novel and most advantageous way of wrapping and securing the heating element 24- to the above describedcore-insulator assembly in such fashion as to segment and uniformly distribute heating element elongations due to thermal expansion to thereby avoid excessive concentrated buckling and consequent grounding of the heating elements. From the drawing, it is seen that a plurality of insulating strips 23 envelop the cylinndrical sleeve members 12,13 and are arranged to extend axially of the core assembly and spaced circumferentially thereabout. As more clearly seen in FIG. 4, the strips comprise a steel core, preferably of a low co'eflicient of expansion, and an overlay or outer coating of aluminum oxide applied over a nickel-aluminide bonding medium. Though our invention is not limited to this particular construction of'the insulating strips, it has been found particularly resistant to the high tem- It is over these strips, so placed, that the ribbon-like electrical resistance heating element 24 is wound about the core assembly under low tension, the strips serving to electrically insulate the heating element from the sleeve members12, 13. Strips 23 may be afiixed to either of the cylindrical sleeves 12, T3, or they may be simply retained in place during the winding of the heater element 24 and not permanently afilxed to either of said sleeves, the proper positioning of the strips being maintained by the tension in the heater element imparted during the winding operation.
An annular slot is provided in roll 33 for the insertion of a combination thermistor-thermocouple probe 39 which is mounted in machine frame 1. Electrical lead 40 extends from probe 39 to any suitable temperature control and recording means, not illustrated. An annular groove 38 is provided along the inboard portion of the wall of roll 33 to accommodate the sensing probe 39 to better insure that it indicates and controls the surface temperature of the roll 33 rather than the temperature of the electrical heater element 24. The combination probe 39 has been found to sutfice for roll surface temperatures up to 300 C. For higher roll surface temperatures, a radiation pyrometer serves .as an excellent indicating and controlling means.
To further aid a clear understanding and appreciation of the significance of our inventive contributions, reference may be had to the following examples.
Example I A roll having an outside circumference of 1.50 feet and a No. 3 matte finish, weighing 7.1 pounds exhibited the below tabulated heat-up times when heated from an ambient temperature of 22 C. to various desired operating temperatures.
The stationary electrical heater unit utilized consumed 2225 watts at 117 volts A.C. when drawing full voltage. The maximum voltage applied to the heater in obtaining the following data was volts A.C., this voltage limitation being due solely to a limiting feature of the particular controller employed.
Roll surface temperature was measured with a radiation pyrometer. The maximum temperature differential over the face of the roll in the examples is seen to be 3 C., a differential heretofore unattained in prior art heater rolls.
Roll Speed, f.p.m. Roll Surface Heat-up Time, Min.
Temp, 0.
Example 11 Roll Speed, f.p.m. Roll Surface, Heat-up Time, Min.
Temp., C.
It may now be appreciated that the above described invention offers particular advantages and benefits to those engaged in the manufacture of synthetic fibers, plastic, film, paper, etc. where the processing of materials of a continuous nature must be accomplished.
Present day economics dictate that process equipment operate at higher and higher speeds in order to achieve increased production from a smaller capital investment. At the same time, product quality must be continually improved to remain competitive. In the particular case of drawing, drying, etc. synthetic fibers, the present invention has been found to fulfill both desires in that high speed,
heated rolls, in cooperation with stationary electric core heaters, overcome the disadvantages of existing means known in the art, ClOll speed limitation being now only dependent on process demands or the type of antifriction bearings employed. Similarly, the quality of product capable of being realized with this invention is greatly enhanced because the roll surface temperatures are easily controlled within extremely narrow limits and the product contacting such rolls may therefore be processed at more uniform temperatures.
Obviously, numerous modifications and variations of the present invention both as to its apparatus and method aspects, are possible in the light of the above teachings. It is, therefore, to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
What is claimed is:
1. An electrically heated roll assembly comprising a hollow, cylindrical roll member enclosing an electrical resistance heater, said heater comprising a non-rotatably mounted, spool-shaped core assembly of a diameter slightly less than the internal diameter of said roll member to thereby define a small air gap between the surface of said core assembly and the interior wall of said roll member, an electrical resistance heater element wound in a substantially helical fashion about said core assembly, fastening means operative to maintain spaced points along said element fixed relative to said core assembly, said fastening means comprising pairs of superposed electrical insulating strips spaced circumferentially about said core a rotatably mounted drive shaft extending coaxially through said heater, said roll member being supported and driven by the free end of said drive shaft, whereby thermal expansion of said heater element is effectively segmented and caused to beunif-ormly distributed about the entire circumference of said core assembly to thereby prevent excessive buckling and consequent grounding of said heater element against the interior surface of said rol'l member. a
2. The apparatus as recited in claim 1 wherein said clamping means comprises a plurality of clip bars, each said clip bar being attached at its midpoint to said core assembly to extend circumferentially thereof and transversely to said pairs of strips, each end of each clip bar engaging and clamping an adjacent pair of said strips against the surface of said core assembly.
References Citedfby the Examiner.
UNITED STATES PATENTS 2,047,372 7/1936 Jalens 2l9 -469 2,462,607 7 2/1949 Browne 1 338316 3,187,150 6/1965 France 219-4061 X I 3,200,230 8/1965 La Bretoniere 21 9-l0.61
, FOREIGN PATENTS 1,292,053 3/ 196 2 France.
RICHARD M. WOOD, Primdry Examiner.
L. H. BENDER, Assistant Examiner.
Claims (1)
1. AN ELECTRICALLY HEATED ROLL ASSEMBLY COMPRISING A HOLLOW, CYLINDRICAL ROLL MEMBER ENCLOSING AN ELECTRICAL RESISTANCE HEATER, SAID HEATER COMPRISING A NON-ROTATABLY MOUNTED, SPOOL-SHAPED CORE ASSEMBLY OF A DIAMETER SLIGHTLY LESS THAN THE TERMINAL DIAMETER OF SAID ROLL MEMBER TO THEREBY DEFINE A SMALL AIR GAP BETWEEN THE SURFACE OF SAID CORE ASSEMBLY AND THE INTERIOR WALL OF SAID ROLL MEMBER, AN ELECTRICAL RESISTANCE HEATER ELEMENT WOUND IN A SUBSTANTIALLY HELICAL FASHION ABOUT SAID CORE ASSEMBLY, FASTENING MEANS OPERATIVE TO MAINTAIN SPACED POINTS ALONG SAID ELEMENT FIXED RELATIVE TO SAID CORE ASSEMBLY, SAID FASTENING MEANS COMPRISING PAIRS OF SUPERPOSED ELECTRICAL INSULATING STRIPS SPACED CIRCUMFERENTIALLY ABOUT SAID CORE ASSEMBLY AND EXTENDING AXIALLY THEREOF, SAID HEATER ELEMENT EXTENDING BETWEEN THE MEMBER STRIPS OF EACH OF SAID PAIRS, MEANS TO CLAMP SAID STRIPS TO SAID CORE ASSEMBLY, A ROTATABLY MOUNTED DRIVE SHAFT EXTENDING COAXIALLY THROUGH SAID HEATER, SAID ROLL MEMBER BEING SUPPORTED AND DRIVEN BY THE FREE END OF SAID DRIVE SHAFT, WHEREBY THERMAL EXPANSION OF SAID HEATER ELEMENT IS EFFECTIVELY SEGMENTED AND CAUSED TO BE UNIFORMLY DISTRIBUTED ABOUT THE ENTIRE CIRCUMFERENCE OF SAID CORE ASSEMBLY TO THEREBY PREVENT EXCESSIVE BUCKLING AND CONSEQUENT GROUNDING OF SAID HEATER ELEMENT AGAINST THE INTERIOR SURFACE OF SAID ROLL MEMBER.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US505842A US3280305A (en) | 1963-12-18 | 1965-11-01 | Heated roll assembly and method of construction |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US331555A US3273101A (en) | 1963-12-18 | 1963-12-18 | Heating apparatus for use in electrically heated rolls |
| US505842A US3280305A (en) | 1963-12-18 | 1965-11-01 | Heated roll assembly and method of construction |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3280305A true US3280305A (en) | 1966-10-18 |
Family
ID=26987819
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US505842A Expired - Lifetime US3280305A (en) | 1963-12-18 | 1965-11-01 | Heated roll assembly and method of construction |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3280305A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3435171A (en) * | 1965-12-03 | 1969-03-25 | Barmag Barmer Maschf | Heated galette |
| US3518822A (en) * | 1968-08-12 | 1970-07-07 | Henry W Mccard | Textile heater |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2047372A (en) * | 1933-09-15 | 1936-07-14 | Jalens George | Apparatus for welding ink and cellulose tissue |
| US2462607A (en) * | 1945-03-01 | 1949-02-22 | Donald W Browne | Heating element |
| FR1292053A (en) * | 1960-06-25 | 1962-04-27 | Escher Wyss Gmbh | Electrically heated heating cylinder for sheets of paper or other similar products |
| US3187150A (en) * | 1961-09-26 | 1965-06-01 | Tmm Research Ltd | Heating arrangements |
| US3200230A (en) * | 1961-04-07 | 1965-08-10 | American Enka Corp | Apparatus for the heating of travelling thread or tape-shaped products on a transport roller |
-
1965
- 1965-11-01 US US505842A patent/US3280305A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2047372A (en) * | 1933-09-15 | 1936-07-14 | Jalens George | Apparatus for welding ink and cellulose tissue |
| US2462607A (en) * | 1945-03-01 | 1949-02-22 | Donald W Browne | Heating element |
| FR1292053A (en) * | 1960-06-25 | 1962-04-27 | Escher Wyss Gmbh | Electrically heated heating cylinder for sheets of paper or other similar products |
| US3200230A (en) * | 1961-04-07 | 1965-08-10 | American Enka Corp | Apparatus for the heating of travelling thread or tape-shaped products on a transport roller |
| US3187150A (en) * | 1961-09-26 | 1965-06-01 | Tmm Research Ltd | Heating arrangements |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3435171A (en) * | 1965-12-03 | 1969-03-25 | Barmag Barmer Maschf | Heated galette |
| US3518822A (en) * | 1968-08-12 | 1970-07-07 | Henry W Mccard | Textile heater |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3624353A (en) | Drying cylinder | |
| US3412229A (en) | Electric heating means | |
| US6340810B2 (en) | Device with induction heating roller including projecting portions at both ends and a central portion of a bobbin for maintaining a gap between an inner surface of the heating roller and a coil on the bobbin | |
| US4888464A (en) | Heat roll for electrophotography | |
| US3772492A (en) | Induction heater for fiber processing roll | |
| US3200230A (en) | Apparatus for the heating of travelling thread or tape-shaped products on a transport roller | |
| ES2019278B3 (en) | HOT TAPE PLACER ON AN ELECTRIC CONDUCTOR. | |
| US3435171A (en) | Heated galette | |
| US3280305A (en) | Heated roll assembly and method of construction | |
| US2777931A (en) | Thread-advancing drying unit | |
| US3273101A (en) | Heating apparatus for use in electrically heated rolls | |
| US3484581A (en) | Godet roll | |
| US3429034A (en) | Heated roll method | |
| US3879594A (en) | Temperature measurement and control of rotating surfaces | |
| US3257939A (en) | Heating roller assembly | |
| US3286081A (en) | Electrical heating arrangements | |
| US3441702A (en) | Method and apparatus for heating thread-like products | |
| US5760375A (en) | Heated rollers | |
| US3328554A (en) | Wire heater | |
| US2896060A (en) | Apparatus for heat setting yarn | |
| US4921355A (en) | Heating and cooling arrangement particularly for an extrusion cylinder | |
| US3632947A (en) | Draw roll and temperature gauge for draw-twisting, draw-winding and spin-draw-winding machines | |
| KR960006782B1 (en) | Heat Shrinkable Tube Heaters | |
| US3417219A (en) | Rotating transformer structure | |
| IE904168A1 (en) | Roll for a device for the continuous casting of thin metal¹strips |