US3279495A - Drinking fountain arrangement and control valve therefor - Google Patents

Drinking fountain arrangement and control valve therefor Download PDF

Info

Publication number
US3279495A
US3279495A US365932A US36593264A US3279495A US 3279495 A US3279495 A US 3279495A US 365932 A US365932 A US 365932A US 36593264 A US36593264 A US 36593264A US 3279495 A US3279495 A US 3279495A
Authority
US
United States
Prior art keywords
valve
cartridge
opening
valve seat
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US365932A
Inventor
Taylor Acton Burris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US365932A priority Critical patent/US3279495A/en
Priority to US492620A priority patent/US3310236A/en
Application granted granted Critical
Publication of US3279495A publication Critical patent/US3279495A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/04Water-basin installations specially adapted to wash-basins or baths
    • E03C1/044Water-basin installations specially adapted to wash-basins or baths having a heating or cooling apparatus in the supply line
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B9/00Methods or installations for drawing-off water
    • E03B9/02Hydrants; Arrangements of valves therein; Keys for hydrants
    • E03B9/20Pillar fountains or like apparatus for dispensing drinking water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7504Removable valve head and seat unit
    • Y10T137/7668Retained by bonnet or closure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7782With manual or external control for line valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7822Reactor surface closes chamber
    • Y10T137/7823Valve head in inlet chamber
    • Y10T137/7825Rectilinear valve stem rigid with reactor surface

Definitions

  • This invention relates to drinking fountains of the general type having mechanical refrigerating means to cool the liquid being dispensed, and to an improved flow control valve especially designed for use with such drinking fountains.
  • Drinking fountains of the present type are in widespread use for dispensing drinking water, and commonly include a cooling coil through which the water is passed before it is dispensed.
  • the inlet of the cooling coil is connected to a source of water under pressure, such as a Water line, and the outlet of the coil is connected to the inlet of a pushbutton type control valve.
  • the drinking fountain also conventionally includes a bubbler head, which is connected to the outlet of the control valve, and a pan arranged so that when the pushbutton valve is operated water discharges from the bubbler head. Any water that flows into the pan is drained away.
  • Drinking fountains of the type described are commonly placed in oflice buildings and similar structures, as well as in outdoor locations.
  • the water within the coils of the cooling unit may unavoidably freeze, causing rupture of the coil.
  • the coils occasionally become damaged from other causes and leak or rupture.
  • Water can flow through the rupture in the coil and flood the immediate area of the drinking fountain.
  • Such flooding is undesirable, especially in oflices, where extensive damage can result to carpets, flooring, and the like.
  • the drinking fountain arrangement of the present invention is designed to avoid this problem.
  • a mechanical unit incorporating cooling coils is utilized, but deviates from the conventional, in that the outlet of the cooling coil is directly connected to the bubbler head.
  • the control valve for the drinking fountain instead of being placed between the outlet of the cooling coil and the bubbler head, is installed in advance of the inlet of the cooling coil.
  • control valve of the present invention is also of a novel design to insure that undesired flow into the coil cannot occur.
  • the present control valve is, of course, useful in applications other than drinking fountains, and embodies several desirable features.
  • the flow controlling elements of the valve are pre-assembled into a cartridge unit, which unit can easily be inserted and removed from a bore in the contral valve body, thereby greatly facilitating servicing and repair.
  • the present valve is also designed to prevent spurting or surge flow, which is not only wasteful but annoying.
  • Another feature of the valve is that it is also provided with dual sealing surfaces to assure non-flow, and is constructed so that the pressure in the supply line urges the flow control element toward closed position, so that in the event of coil leakage or damage, flooding by continual flow through the coil is automatically and positively prevented.
  • Another object is to provide a drinking fountain arr-angement wherein, upon operation of the control valve thereof, flow through the bubbler head will begin slowly and continue at a substantially even pressure, thereby avoiding Spurting, surges, and water hammer.
  • a further object is to provide a flow control valve wherein the flow controlling elements are assembled as a cartridge unit that can be easily installed in and removed from the valve body.
  • Still another object is to provide a flow control valve incorporating dual sealing surfaces between an enlarged valve stem head portion and a valve seat, and between the valve seat opening and a mating tapered portion of the valve stem, so that a wiping action will occur upon each closing of the valve to clean the mating sealing surfaces.
  • a still further object is to provide a flow control valve incorporating a flexible diaphragm, and constructed in a manner to minimize the possibility of damage to said diaphragm from freezing of liquid Within the valve.
  • Still another object is to provide a flow control valve, which allows an ample flow of liquid therethrough with a short valve stem stroke, and which can be readily adjusted to a desired flow rate.
  • FIG. 1 is a diagrammatic view of a drinking fountain and cooler assembly incorporating the flow control valve of the invention, and showing the relative arrangement of the control valve, the cooling unit, and the bubbler head;
  • FIG. 2 is an enlarged, vertical cross-sectional view through the control valve
  • FIG. 3 is a fragmentary, horizontal, staggered crosssectional view on a reduced scale, taken along the line 33 of FIG. 2;
  • FIG. 4 is an elevational view, partially in cross-section, of the cartridge unit of the control valve.
  • FIG. 5 is a schematic diagram showing the liquid circuit arrangement of the cooler, and control valve and bubbler head of the drinking fountain assembly.
  • a conventional liquid cooler is indicated generally at 2 in FIG. 1, and includes a front panel 4 to which is attached a drinking fountain assembly 6. While the liquid cooler 2 and the drinking fountain assembly 6 can be utilized to cool and dispense any one of a number of liquids, they conventionally are employed to dispense Water.
  • the liquid cooler 2 is shown in diagrammatic form in FIG. 1, and includes a cooling coil 8 having an inlet 10 and an outlet 12.
  • the drinking fountain assembly 6 comprises a pan 14 having a bowl portion 16 therein, from which extends a drain pipe 18.
  • the an 14 has a mounting flange 20 at its rear edge, and is secured to the front panel 4 of the liquid cooler 2 by screws 22.
  • a bubbler head 24 is mounted on the basin 14 in position to discharge water into the bowl portion 16, and includes a shield 26.
  • a conduit 28 connects the bubbler head 24 with the outlet 12 of the cooling coil 8.
  • a pushbutton operated flow control valve 30 to which is connected an inlet conduit 32 leading from a suitable source of water under pressure.
  • An outlet conduit 34 connects the outlet of the valve 30 with the inlet 10 of the cooling coil 8.
  • control valve 30 The construction of the control valve 30 is shown inv detail in FIG. 2.
  • This valve comprises a body 36 containing a replaceable cartridge unit 38 incorporating the principal working elements of the valve.
  • a pushbutton 40 is positioned at the top of the control valve 30 and, when depressed, operates in a manner to be hereinafter described to open the control valve 30 to permit water to flow therethrough to the cooling coil 8.
  • the valve body 36 has a cylindrical portion 42, and a reduced-in-diameter, externally threaded extension 44 at its upper end.
  • a radial shoulder 46 is formed at the juncture of the threaded extension 44 and the cylindrical portion 42, and a pair of diametrically opposed, radially extending notches 48 is provided in the threaded extension
  • the threaded extension 44 of the valve body 36 is passed through a circular opening 50, in FIG. 2, in the pan 14.
  • the opening 50 is provided on the periphery thereof with a radially inwardly projecting tab 52, dimensioned to be snugly received within one of the notches 48.
  • the tab 52 and its mating notch 48 cooperate to prevent rotation of the valve body 36 relative to the pan 14.
  • a hexagonal mounting nut 54 is threaded onto the projecting extension 44 of the valve body 36, and secures the valve body to the pan 14. As is best shown in FIG. 2, the axial thickness of the nut 54 is slightly greater than the distance that the extension 44 of the valve body 36 projects above the top surface of the pan 14.
  • the valve body 36 has an axial bore 56, which is threaded at 58 for about one-third of its length.
  • a cylindrical inlet chamber 60 is provided in the lower end of the valve body 36, and is axially aligned with and opens into .the bore 56.
  • the diameter of the inlet chamber 60 is slightly less than one third the diameter of the bore 56.
  • a counterbore 62 surrounds the upper end of the inlet chamber 60, and its lower end forms an annular, rounded or concave groove 64, which defines a seat or sealing lip 66 that extends about the upper end of the inlet chamber 60 and which is also of a rounded, but convex cross-section.
  • the axial bore 56 has a bottom wall 68, from which a frusto-conical bore 70 extends inwardly and downwardly toward a flat annular shoulder 72 positioned at the upper end of the counterbore 62.
  • the valve body 36 also has a radial inlet port 74, which communicates with the inlet chamber 60 at a point about midway of the length thereof.
  • the port 74 has an enlarged threaded outer end 76 to receive a fitting 78 which connects the water supply conduit 32 with the inlet chamber 60.
  • the valve body 36 further has an axially directed outlet port 80, which opens at its upper end onto the bottom wall 68 of the axial bore 56 and intersects the outer portion of the frusto-conical bore 70.
  • the outlet port 80 terminates at its lower end in an enlarged, axially offset threaded portion 82, which receives a fitting 84 connected with the outlet conduit 34.
  • the cartridge unit 38 is received within the cylindrical bore 56, and comprises a lower body portion 86 and an upper body portion 88, both of which are cylindrical and of a like diameter slightly less than the diameter'of the bore 56.
  • the lower cartridge portion 86 terminates at its lower end in a radial end face 90, which has an annular recess 92 therein.
  • a cylindrical boss 94 is positioned centrally of the end face 90 and projects downwardly therefrom.
  • the boss 94 has a circular recess 96, within which is received an annular resilient neoprene valve seat 98.
  • the valve seat 98 has an axial opening 100, and a thickness substantially greater than the length of the boss 94, whereby it projects a substantial distance therebelow.
  • the lower, or outer, face 102 of the valve seat 98 is shown to have a slight inward and upward taper in FIG. 2. However, if desired, this taper can be eliminated, in which instance, the outer face of the valve seat would comprise a horizontal planar surface.
  • the lower cartridge portion 86 has a cylindrical bore 104 in the upper end thereof, defining a continuous rim 106, and a radial annular seat 108.
  • An annular groove is provided in the seat 108 at the outer periphery thereof, adjacent the wall of the cylindrical bore 104.
  • a frusto-conical wall 112 extends inwardly and downwardly from the annular seat 108, and terminates in a short cylindrical bore 114.
  • the wall 112 defines, in part, an upwardly opening chamber 222.
  • a horizontal dividing wall 116 separates the bore 114 from the recess 96 in the boss 94.
  • the wall 116 is provided centrally thereof with an inlet port 118 aligned with and of about the same diameter as the valve seat bore 100.
  • Circumferentially spaced, angled ports 120 are provided at the juncture of the side wall of the bore 114 and the dividing wall 116, and the juncture of the outer surface of the boss 94 and the end face 90, said bores opening into the annular recess 92.
  • the upper cartridge portion 88 has a reduced-diameter cylindrical portion 122 at the lower end thereof, which is snugly received within the rim 106 on the lower cartridge portion 86 to retain said cartridge portions in axial alignment.
  • the lower end of the upper cartridge portion 88 has a horizontal, annular clamping surface 124 thereon, and the upper face 126 of said upper cartridge portion is also horizontal and has a cylindrical, upwardly projecting boss 128 centrally thereof.
  • a frusto-conical wall 130 extends inwardly and upwardly from the annular clamping surface 124, and terminates in a bore 132 that extends through the boss 128.
  • the wall 130 defines, in part, a downwardly opening chamber 224.
  • a circular, flexible diaphragm 134 rests on the annular seat 108, and a flat ring 136 rests on the outer marginal portion thereof.
  • the outer diameter of the ring 136 is just slightly less than the diameter of the bore 104, and the inner diameter thereof is slightly larger than the inner diameter of the annular seat 108.
  • the annular clamping face 124 at the lower end of the cartridge portion 88 engages the top surface of the ring 136, and when the two cartridge portions 86 and 88 are urged toward each other, as explained hereinafter, the periphery of the diaphragm 134 is securely clamped in position.
  • the groove 110 in the seat 108 is provided to receive material displaced from the diaphragm 134 upon clamping thereof, and functions to prevent undue cold-flow of the diaphragm material.
  • the diaphragm 134 is connected with a stainless steel valve stem 138 having a portion 140 that is disposed below the diaphragm 134, extends through the inlet port 118 and through the opening 100 in the valve seat 98, and terminates in a cylindrical head portion 142.
  • the diameter of the stem portion 140 is substantially less than the diameter of the inlet port 118 and the bore 100 in order to provide an annular flow path for water therebetween.
  • the inlet port 118 and the bore 100 may have a diameter of about 0.218 inch, in which instance the diameter of the valve stem portion 140 will be about 0.109 inch.
  • the diameter of the head portion 142 is substantially less than the diameter of the inlet chamber 60.
  • the diameter of the inlet chamber 60 may be about 0.3125 inch and that of the portion 142 about 0.281 inch.
  • the upper side of the head portion 142 has an annular groove 144 that is generally triangular in radial crosssection, and defines a sealing lip 146 on the upper, outer periphery of said head portion 142.
  • the sealing lip 146 is rounded or convex, and is engageable with the lower surface 102 of the valve seat 98.
  • the inner wall of the groove 144 is formed by a frusto-conical stem portion 148, which tapers from an upper diameter substantially less than the diameter of the opening 100, to a diameter at the lower end thereof substantially greater than the diameter of said opening.
  • a second seal is provided by the engagement of the sealing lip 146 with the lower surface of the valve seat 98.
  • dual seals are provided to assure leakproof closure of the valve. It should be further noted that, as the valve seat 98 begins to wear, the frustoconical stern portion 148 will still maintain an effective seal for a long period of time.
  • the length of the head portion 142, and the position of the inlet port 74 are such that when the head portion 142 is seated against the valve seat 98, the lower surface 150 thereof will be positioned in a plane above said inlet port. Thus, when the valve is closed, the inlet port 74 will be completely exposed. However, as the valve stem 138 is moved downwardly, as during opening of the valve, the length of the head portion 142 is such that it will progressively move across the radial inlet port 74, thus producing an obstruction and causing restriction in flow therethrough. The reverse action occurs during closing, at which time the head portion 142 is effective to prevent water hammer during closing of the valve. Hence, this arrangement contributes significantly to the life of the valve components as well as to user satisfaction.
  • the portion 140 of the valve stem 138 has an integral collar 152 about midway of the length thereof, and a portion 154 of the valve stem projects above the collar 152 and is threaded and extends through an opening in the diaphragm 134.
  • a combined diaphragm-supporting disk and nut 156 is threaded on the stern portion 154 and is tightened against the collar 152, the lower face of said nut having a frusto-conical configuration.
  • the upper surface 158 of the nut 156 engages the diaphragm 134, and is roughened to insure effective gripping thereof.
  • the threaded stem portion 154 has a' clamping washer 160 thereon that engages the upper side of the diaphragm 134.
  • a lock washer 162 is disposed on top of the clamping washer 160, and a retaining nut 164 is threaded on the stem portion 154 to secure the valve stem 138 to the diaphragm 134.
  • the lower portion 166 of the retaining nut 164 is cylindrical, and terminates at its upper end in a radial flange 168.
  • a reduced cylindrical head 170 extends upwardly beyond the flange 168, and has a diametric slot 172 for receiving the tip of a screw driver or other suitable tool for installing the retaining nut.
  • the head 170 of the retaining nut 164 is received within a spring housing 174 comprising a cylindrical lower portion 176 having an external diameter slightly less than the diameter of the bore 132.
  • the housing 174 is provided near its upper end with an intermediate enlarged portion 178 having an external diameter corresponding to that of the boss 128, and terminating at its upper end in a radial flange 180.
  • the spring housing 174 has a bore 182, the upper end 184 of which is threaded.
  • the bore 182 is slightly larger in diameter than the flange 168 of the retaining nut 164, and terminates at its lower end in an annular, radial shoulder 186 of an internal diameter less than the diameter of the flange 168.
  • the flange 168 rests above the radial shoulder 186, and thus upward movement of the spring housing 174 will cause the valve stem 138 to likewise move upwardly.
  • a compression type range spring 188 is received in the housing 174 with the lower end thereof surrounding the retaining nut head 170.
  • a range adjusting screw 190 is received within the threaded upper end 184 of the bore 182, and has a recess 192 in its lower face for receiving the upper end of the spring 188.
  • the range screw 190 has a slot 194 for receiving the tip of a screw driver. The resilient force of the range spring 188 can thus be adjusted by altering the position of the range screw 190 to vary the force urging the valve stem 138 downwardly away from the spring housing 174.
  • a return spring 196 under compression, extends between the upper end face 126 of the upper cartridge portion 88 and the lower face of the flange on the spring housing 174, the upper and lower ends of said return spring 196 being held in position by the intermediate cylindrical portion 178 and the cylindrical boss 128, respectively.
  • the return spring 196 is thus operative to urge the spring housing 174 upwardly relative to the upper and lower cartridge portions 88 and 86, respectively.
  • Such upward movement of the spring housing 174 causes the shoulder 186 to engage beneath the flange 168 on the retaining nut 164, which in turn causes the valve stem 1% to be moved upwardly until the head portion 142 thereof sealingly engages with the valve seat 98.
  • the force of the return spring 196 is such that, when said spring is fully extended, it will hold the head portion 142 of the valve stem 138 in engagement with the valve seat 98 with just enough force to make a tight seal. Thus, no excessive clamping pressure, which might cause damage to the valve seat 98 is exerted by said spring.
  • the range spring 188 is of less strength than the return spring 196, and thus the return spring 196, in effect, normally overrides said range spring to maintain the valve in a closed position.
  • the cartridge unit 38 is self-contained, and can be easily inserted and removed from the cylindrical bore 56 in the valve body 36.
  • the elements thereof are held in assembled relationship in part by the return spring 196, which urges the spring housing 174 away from the upper and lower cartridge portions 88 and 86, thus causing the radial shoulder 186 to engage the flange 168 and move the valve stem 138 so that the head portion 142 thereof is engaged with the valve seat 98. Because the valve stem 138 is thus urged by the spring housing 174 and is in engagement with the valve seat 98, the components of the cartridge unit are elfectively clamped together by spring pressure, thus making the cartridge unit 38 self-contained and easily removable.
  • the cartridge unit 38 can, of course, be disassembled by first removing the range screw and the range spring 188, and by next removing the retaining nut 164. Upon removal of the nut 164, the valve stem 138, the spring housing 174, and the retaining spring 196 can be separated, after which the remaining elements of the cartridge unit can be easily disassembled without tools.
  • the cartridge 38 which containsthe flow control elements of the valve 30, is received as a unit within the cylindrical bore 56 in the valve body 36; an O-ring seal 198 being positioned between the lower end face 90 of said cartridge and the bottom wall 68 of said bore.
  • the O-ring 198 has an external diameter corresponding to the diameter of the bore 56, and serves a dual purpose. First, it forms an effective seal to prevent leakage of fluid between the end 90 of the cartridge unit 38 and the sidewall of the bore 56. Secondly, it spaces the lower end 90 of the lower cartridge portion 86 from the bottom wall 68 of the bore 56, whereby to define a manifold outlet chamber 200 therebetween for receiving flow from the angled outlet ports 120. While the ring 198 has been described as being an O-ring, it is to be understood that a flat fiber washer, or other suitable sealing member, could be substituted therefor.
  • a washer 202 is placed upon the upper face 126 of the upper cartridge portion 88, said washer having an external diameter slightly less than the diameter of the threaded portion of the bore 56, and having a radially projecting tab 204, FIG. 3, which is receivable in one of the notches 48.
  • a retainer nut 206, FIG. 2 is then threaded into the bore 58, and tightened to clamp the sealing ring 198 in position,
  • the retainer nut 206 has a plurality of circumferentially spaced holes 208 for receiving the pins of a suitable spanner wrench (not shown). The length of said nut 206 is such that when the cartridge unit 38 has been securely tightened in position, a substantial portion thereof will project above the upper end of the valve body 36 and the mounting nut 54.
  • the pushbutton 40 comprises a cup-shaped body portion 210, which receives the flange 180 on the spring housing 174.
  • the pushbutton 40 terminates at its lower end in an outturned flange 212.
  • a screw thimble 214 has an opening 215 to receive the pushbutton 40, and an inturned flange 216 that overlies and is normally spaced from the flange 212.
  • the screw thimble 214 has hexagonal, external wrench-engaging surfaces 218, and internal threads 220 that cooperate with the projecting portion of the retainer nut 206 to secure the pushbutton 40 in operative position on the valve 30.
  • valve 30 The operation of the valve 30 is as follows: with the inlet conduit 32 connected to a source of water under pressure, the return spring 196 will normally urge the spring housing 174 and the valve stem 138 upwardly, whereby to seat the valve stem head portion 142 on the valve seat 198. Because the head 142 is completely exposed within the inlet chamber 60, the pressure of the water entering said chamber from the conduit 32 will exert force on said head, tending to cause it to more tightly engage the valve seat 98. The pressure will also urge the tapered stem portion 148 to form a second seal with the wall of the seat opening 100. Thus, the greater the pressure of the incoming water, the more effective will be the seal between the head portion 142 and the valve seat 98, and the stem portion 148 and the passage 100.
  • inlet pressure to cause sealing engagement coupled with the dual sealing feature of the valve 30, effectively insures that no water leakage can occur through the closed valve.
  • the pushbutton 40 When it is desired to open the valve 30, the pushbutton 40 is manually depressed against the force of the return spring 196. As the pushbutton 40 is depressed, the spring housing 174 will move downwardly, thus disengaging the radial shoulder 186 from the flange 168. This frees the valve stem 138 for downward movement. Accordingly, as movement of the housing 174 continues, the range spring 188 will be compressed between the range screw 190 and the nut flange 168, until the force thereof is sufficient to overcome the pressure being exerted on the valve stem head portion 142 by water contained in the inlet chamber 60.
  • valve stem 148 will move downwardly, thus unseating the head portion 142 and permitting flow from the inlet chamber 60, through the seat opening 100, the inlet port 118, and into the chamber 222 below the diaphragm 134.
  • the water will then flow through the angled outlet ports 120 into the outlet chamber 200, then through the outlet port 80 and the conduit 34, into the cooling coil 8, for discharge through the bubbler head 24.
  • flow through the inlet port 74 will be progressively restricted in the manner hereinabove described.
  • the pushbutton 40 When it is desired to stop flow through the valve, the pushbutton 40 is merely released.
  • the return spring 196 then causes the spring housing 174 to move upwardly relative to the upper cartridge portion 88.
  • the radial shoulder 186 will be brought into engagement with the flange 168, and thereafter the valve stem 138 will move upwardly with the spring housing 174.
  • the return spring 196 When the pushbutton 40 has returned to its original position, the return spring 196 will have caused the head 142 to again seat on the valve seat 98, thereby closing the valve. Water pressure within the inlet chamber 60 will then again function to keep the head 142 tightly seated.
  • the restriction of the flow through the inlet port 74 caused by the head 142 will gradually decrease and the tapered stem portion 148 will gradually restrict flow through the seat opening 100, whereby flow will be effectively controlled to prevent water hammer.
  • one feature of the present control valve is that an ample amount of flow can be obtained with a relatively short stroke of the valve stem 138. Further, the positioning of the angled outlet ports at the lower end of the cylindrical bore 114 insures that even if the diaphragm 134 should move completely downwardly into engagement with the frusto-conical wall 112, flow through the valve will not be closed otf.
  • valve is designed so that no damage can be caused by water freezing in the valve body.
  • the amount of water which can be retained within the lower diaphragm chamber 222 is relatively small, but even if water contained therein should freeze, the upper diaphragm chamber 224 provides ample room for the diaphragm 134 to expand. Also any water that might freeze in the chamber 68 could expand without causing damage because of the yieldability of the seat 98.
  • the valve seat 98 and the valve stem head portion 142 are disposed on the inlet side of the diaphragm 134, a leak in the diaphragm will not be exposed to inlet fluid pressure except when the valve is open. Thus, accidental flooding because of a leaky diaphragm is eliminated.
  • control valve 30 in the drinking fountain arrangement of the invention is positioned on the inlet side of the cooling coil 8. This arrangement insures that if a leak should occur in the cooling coil 8, either because of rupture from freezing or for any other reason, the maximum amount of leakage that can occur will be limited to the liquid that can leak out of the cooling coil. Thus, a serious accidental flooding of the premises where the drinking fountain is located is avoided. If the coil 8 should become ruptured, this fact would normally become readily apparent immediately upon opening of the valve 30, and the valve could then be closed to'prevent any further flooding.
  • valve 30 at the inlet of the cooling coil 8 also provides another desirable result. Frequently, in drinking fountains where the control valve is connected adjacent the bubbler head, upon actuation of the control valve, a sudden gush or spurt of water will result. This is frequently annoying to the user of the fountain, and often causes waste and unnecessary splashing of water onto the floor.
  • the control'valve 30 is positioned at the inlet to the coil 8, so that water must first flow through the coil 8 before reaching the bubbler head 24. The result is that the first discharge of water from the bubbler head after depressing the pushbutton 48 will not be a surge, but rather will be a relatively gentle flow. As a result, splashing is avoided.
  • the control valve of the invention also functions to regulate the rate of flow through the cooling coils 8.
  • the range spring 188 will cooperate with the inlet water pressure in the chamber 68 to move the valve stem 138 away from the valve seat 98, or permit it to move toward said seat, as fluctuation in inlet pressure occurs.
  • This regulating action insures that a relatively constant pressure will be present in the coil 8, as Well as in the water issuing from the bubbler head 24.
  • the pressure of such outflow through the bubbler head 24 can be controlled by merely adjusting the range screw 190 which, in turn, adjusts the force of the range spring 188.
  • the range spring 188 will yield and permit the stem head 142 to move toward the seat 98 under surge conditions, or upon sudden depression of the pushbutton 40, to thus automatically maintain a uniform flow rate to the bubbler head 24.
  • range spring 188 will yield and permit the stem head 142 to move toward the seat 98 under surge conditions, or upon sudden depression of the pushbutton 40, to thus automatically maintain a uniform flow rate to the bubbler head 24.
  • a valve comprising: a valve body having an outwardly opening cartridge receiving cavity formed by a generally cylindrical side wall and a bottom wall at the inner end of said cavity, said valve body also having inlet means, including an inlet opening in said bottom wall; a cartridge unit removably mounted within said cavity and containing a chamber therein, the inner end of said cartridge unit having an inlet port aligned with said valve inlet opening and communicating with said chamber; a resilient valve seat carried by said cartridge unit and disposed in clamped engagement between said inner end of said cartridge unit and said bottom wall, said valve seat having an opening in communication with said valve inlet opening and with said cartridge chamber inlet port, and of smaller diameter than said valve inlet opening, said cartridge having outlet port means in the inner end thereof, and said valve body having an outlet opening in said bottom wall spaced outwardly from said resilient valve seat and in communication with said cartridge unit outlet port means, said clamped resilient valve seat sealing said valve inlet opening from said valve outlet opening; sealing means spaced from said outlet opening and said outlet port means, arranged to prevent
  • said sealing means includes: an annular resilient member disposed between the cartridge unit and the bottom wall of said valve body cavity, said resilient member defining together with said bottom wall of said valve body cavity and with said cartridge an outlet chamber for receiving liquid from said cartridge chamber for discharge through said valve body outlet, said resilient member also forming a seal to prevent leakage from said outlet chamber between said cartridge unit and the wall defining said valve body cavity.
  • valve body inlet comprises: a cylindrical inlet chamber of uniform diameter aligned with said valve seat and a radial inlet port located approximately centrally of the length of the side wall of said inlet chamber, said head portion being cylindrical and being received within said inlet chamber, the diameter of said head portion being substantially less than the diameter of said inlet chamber, and the length of said head portion being proportioned so that (1) said head portion will be disposed in the upper portion of said cylindrical inlet chamber and just be clear of said radial inlet port when said valve is closed, and (2) so that said head portion will move across said radial inlet port in obstructing position to restrict flow therethrough when said valve stem is moved to open position.
  • a replaceable cartridge unit to be removably secured in a valve housing comprising: an upper body portion having a downwardly-facing open chamber; a lower body portion having an upwardly-facing chamber disposed in confronting relation with said downwardlyfacing chamber, said chamber being closed at its lower end by a wall, and said wall having a centrally positioned inlet port therethrough; a flexible diaphragm having an outer marginal portion positioned between said upper and lower body portions separating said chambers from each other; an annular resilient valve seat; means mounting said annular resilient valve seat on the lower, external face of said wall, said valve seat having an axial opening aligned with said inlet port and communicating with said upwardly-facing chamber, said lower body portion also having an outlet port through said bottom wall and spaced from said inlet port, and leading from said upwardly-facing chamber; a valve stem connected with and extending through said diaphragm, and including a portion extending through and of substantially smaller diameter than said inlet port and said valve seat opening and having an enlarged head on the lower end thereof
  • a valve comprising: a valve body having an upwardly opening cartridge receiving cavity formed by an uninterrupted cylindrical side wall and a bottom wall at the lower end of said cavity, said body also having a smaller diameter than said cavity disposed in said cavity; said cartridge having an inlet port aligned with said reduced inlet bore, and an outlet port opening onto said bottom wall and in communication with said outlet bore,
  • said cartridge including means controlling flow between said reduced bore and said outlet bore, including a resilient valve seat clamped between said cartridge and said bottom wall, said valve seat having an opening therethrough aligned with said inlet bore and said inlet port, said valve body having a shoulder on said bottom wall surrounding the upper end of said reduced bore and engaged with said valve seat to form a seal therewith, said valve seat sealing said inlet bore from said outlet bore; sealing means spaced from said outlet bore and said outlet port, arranged to prevent leakage between said cartridge and said cylindrical side wall; and means confining said cartridge in said valve body.
  • a valve as defined in claim 8, wherein the means controlling flow between the reduced bore and the out let includes a stem extending through the resilient valve seat and having a head received in the reduced bore, said head being cngageable with the resilient valve seat to form a seal therewith.
  • a valve comprising: a valve body having an upwardly opening cartridge receiving cavity formed by a cylindrical side wall and a bottom wall at the lower end of said cavity, said body also having a central bore of reduced diameter in said bottom Wall; a generally cylindrical cartridge of slightly smaller diameter than said cavity disposed in said cavity; a sealing ring disposed in said cavity adjacent said cylindrical side wall and between said bottom wall and the lower end of said cartridge, forming both a chamber and a seal therebetween, said valve body having an outlet communicating with said chamber, and having an inlet communicating with said reduced bore, said cartridge including means controlling flow between said reduced bore and said outlet, including a resilient valve seat, said valve body having a shoulder surrounding the upper end of said reduced bore and engaged with said valve seat to form a seal therewith; and means confining said cartridge in said valve body. 4

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Lift Valve (AREA)

Description

A. B. TAYLOR Oct. 18, 1966 2 Sheets-Sheet 1 Filed May 8, 1964 w N m m m w A Z W 3 m l 6 N 0 I 7 j R L 5 a 4 r wk x M I B Mf (i, r! WW 16 W 4 6 4 I A moJr\ Z. 7| IV-UDA m m 6 F z x M v 4 2 m J i Z M j x I IQHF m lfifdrlfi 2 .7 m
I NVEN TOR Acton B. Fay Zar ATTORNEYS Oct. 18, 1966 A. B. TAYLOR 3,279,495
DRINKING FOUNTAIN ARRANGEMENT AND CONTROL VALVE THEREFOR Filed May 8, 1964 2 Sheets-Sheet 2 I N VENTOR .EUZflZZ E. Taylor ATTORNEYS United States Patent ()fiice 3,279,495 Patented Oct. 18, 1966 3,279,495 DRINKING FOUNTAIN ARRANGEMENT AND CONTROL VALVE THEREFOR Acton Burris Taylor, 621 Clifi Drive, Newport Beach, Calif. Filed May 8, 1964, Ser. No. 365,932 Claims. (Cl. 137454.6)
This invention relates to drinking fountains of the general type having mechanical refrigerating means to cool the liquid being dispensed, and to an improved flow control valve especially designed for use with such drinking fountains.
Drinking fountains of the present type are in widespread use for dispensing drinking water, and commonly include a cooling coil through which the water is passed before it is dispensed. conventionally, the inlet of the cooling coil is connected to a source of water under pressure, such as a Water line, and the outlet of the coil is connected to the inlet of a pushbutton type control valve. The drinking fountain also conventionally includes a bubbler head, which is connected to the outlet of the control valve, and a pan arranged so that when the pushbutton valve is operated water discharges from the bubbler head. Any water that flows into the pan is drained away.
Drinking fountains of the type described are commonly placed in oflice buildings and similar structures, as well as in outdoor locations. In extreme cold weather, the water within the coils of the cooling unit may unavoidably freeze, causing rupture of the coil. In addition, the coils occasionally become damaged from other causes and leak or rupture. In either instance, because the inlet of the coil is connected directly to a water supply line, Water can flow through the rupture in the coil and flood the immediate area of the drinking fountain. Such flooding is undesirable, especially in oflices, where extensive damage can result to carpets, flooring, and the like. The drinking fountain arrangement of the present invention is designed to avoid this problem.
Accordingly to the present invention, a mechanical unit incorporating cooling coils is utilized, but deviates from the conventional, in that the outlet of the cooling coil is directly connected to the bubbler head. In addition, the control valve for the drinking fountain, instead of being placed between the outlet of the cooling coil and the bubbler head, is installed in advance of the inlet of the cooling coil. Thus, if the cooling coil should leak or become ruptured, no substantial flooding can occur, because the control valve prevents all flow from the supply line into the inlet of the cooling coil. Thus, the maximum flooding that can occur is limited to leakage from the ruptured cooling coil.
The control valve of the present invention is also of a novel design to insure that undesired flow into the coil cannot occur.
The present control valve is, of course, useful in applications other than drinking fountains, and embodies several desirable features. For example, the flow controlling elements of the valve are pre-assembled into a cartridge unit, which unit can easily be inserted and removed from a bore in the contral valve body, thereby greatly facilitating servicing and repair. The present valve is also designed to prevent spurting or surge flow, which is not only wasteful but annoying. Another feature of the valve is that it is also provided with dual sealing surfaces to assure non-flow, and is constructed so that the pressure in the supply line urges the flow control element toward closed position, so that in the event of coil leakage or damage, flooding by continual flow through the coil is automatically and positively prevented.
It is an object of the present invention to provide a drinking fountain of the type incorporating a cooling unit, constructed in a manner to prevent extensive flooding of premises in the event of leakage or rupture of the coil of the cooling unit.
Another object is to provide a drinking fountain arr-angement wherein, upon operation of the control valve thereof, flow through the bubbler head will begin slowly and continue at a substantially even pressure, thereby avoiding Spurting, surges, and water hammer.
It is also an object to provide a flow control valve for a drinking fountain constructed so that inlet fluid pressure will continually act to urge the valve toward -a closed position and to hold it closed until manually opened.
A further object is to provide a flow control valve wherein the flow controlling elements are assembled as a cartridge unit that can be easily installed in and removed from the valve body.
Still another object is to provide a flow control valve incorporating dual sealing surfaces between an enlarged valve stem head portion and a valve seat, and between the valve seat opening and a mating tapered portion of the valve stem, so that a wiping action will occur upon each closing of the valve to clean the mating sealing surfaces.
A still further object is to provide a flow control valve incorporating a flexible diaphragm, and constructed in a manner to minimize the possibility of damage to said diaphragm from freezing of liquid Within the valve.
Still another object is to provide a flow control valve, which allows an ample flow of liquid therethrough with a short valve stem stroke, and which can be readily adjusted to a desired flow rate.
Other objects and many of the attendant advantages of the present invention will be readily apparent from the following detailed description when taken in connection with the accompanying drawings, wherein:
FIG. 1 is a diagrammatic view of a drinking fountain and cooler assembly incorporating the flow control valve of the invention, and showing the relative arrangement of the control valve, the cooling unit, and the bubbler head;
FIG. 2 is an enlarged, vertical cross-sectional view through the control valve;
FIG. 3 is a fragmentary, horizontal, staggered crosssectional view on a reduced scale, taken along the line 33 of FIG. 2;
FIG. 4 is an elevational view, partially in cross-section, of the cartridge unit of the control valve; and
FIG. 5 is a schematic diagram showing the liquid circuit arrangement of the cooler, and control valve and bubbler head of the drinking fountain assembly.
Referring now to the drawings, a conventional liquid cooler is indicated generally at 2 in FIG. 1, and includes a front panel 4 to which is attached a drinking fountain assembly 6. While the liquid cooler 2 and the drinking fountain assembly 6 can be utilized to cool and dispense any one of a number of liquids, they conventionally are employed to dispense Water.
The liquid cooler 2 is shown in diagrammatic form in FIG. 1, and includes a cooling coil 8 having an inlet 10 and an outlet 12. The drinking fountain assembly 6 comprises a pan 14 having a bowl portion 16 therein, from which extends a drain pipe 18. The an 14 has a mounting flange 20 at its rear edge, and is secured to the front panel 4 of the liquid cooler 2 by screws 22.
A bubbler head 24 is mounted on the basin 14 in position to discharge water into the bowl portion 16, and includes a shield 26. A conduit 28 connects the bubbler head 24 with the outlet 12 of the cooling coil 8.
Also mounted on the pan 14 is a pushbutton operated flow control valve 30, to which is connected an inlet conduit 32 leading from a suitable source of water under pressure. An outlet conduit 34 connects the outlet of the valve 30 with the inlet 10 of the cooling coil 8.
The construction of the control valve 30 is shown inv detail in FIG. 2. This valve comprises a body 36 containing a replaceable cartridge unit 38 incorporating the principal working elements of the valve. A pushbutton 40 is positioned at the top of the control valve 30 and, when depressed, operates in a manner to be hereinafter described to open the control valve 30 to permit water to flow therethrough to the cooling coil 8.
The valve body 36 has a cylindrical portion 42, and a reduced-in-diameter, externally threaded extension 44 at its upper end. A radial shoulder 46 is formed at the juncture of the threaded extension 44 and the cylindrical portion 42, and a pair of diametrically opposed, radially extending notches 48 is provided in the threaded extension In assembling the valve 30 with the pan 14, the threaded extension 44 of the valve body 36 is passed through a circular opening 50, in FIG. 2, in the pan 14. The opening 50 is provided on the periphery thereof with a radially inwardly projecting tab 52, dimensioned to be snugly received within one of the notches 48. The tab 52 and its mating notch 48 cooperate to prevent rotation of the valve body 36 relative to the pan 14. A hexagonal mounting nut 54 is threaded onto the projecting extension 44 of the valve body 36, and secures the valve body to the pan 14. As is best shown in FIG. 2, the axial thickness of the nut 54 is slightly greater than the distance that the extension 44 of the valve body 36 projects above the top surface of the pan 14.
The valve body 36 has an axial bore 56, which is threaded at 58 for about one-third of its length. A cylindrical inlet chamber 60 is provided in the lower end of the valve body 36, and is axially aligned with and opens into .the bore 56. The diameter of the inlet chamber 60 is slightly less than one third the diameter of the bore 56. A counterbore 62 surrounds the upper end of the inlet chamber 60, and its lower end forms an annular, rounded or concave groove 64, which defines a seat or sealing lip 66 that extends about the upper end of the inlet chamber 60 and which is also of a rounded, but convex cross-section.
The axial bore 56 has a bottom wall 68, from which a frusto-conical bore 70 extends inwardly and downwardly toward a flat annular shoulder 72 positioned at the upper end of the counterbore 62.
The valve body 36 also has a radial inlet port 74, which communicates with the inlet chamber 60 at a point about midway of the length thereof. The port 74 has an enlarged threaded outer end 76 to receive a fitting 78 which connects the water supply conduit 32 with the inlet chamber 60. The valve body 36 further has an axially directed outlet port 80, which opens at its upper end onto the bottom wall 68 of the axial bore 56 and intersects the outer portion of the frusto-conical bore 70. The outlet port 80 terminates at its lower end in an enlarged, axially offset threaded portion 82, which receives a fitting 84 connected with the outlet conduit 34.
The cartridge unit 38, FIGS. 2 and 4, is received within the cylindrical bore 56, and comprises a lower body portion 86 and an upper body portion 88, both of which are cylindrical and of a like diameter slightly less than the diameter'of the bore 56. The lower cartridge portion 86 terminates at its lower end in a radial end face 90, which has an annular recess 92 therein. A cylindrical boss 94 is positioned centrally of the end face 90 and projects downwardly therefrom. The boss 94 has a circular recess 96, within which is received an annular resilient neoprene valve seat 98. The valve seat 98 has an axial opening 100, and a thickness substantially greater than the length of the boss 94, whereby it projects a substantial distance therebelow. The lower, or outer, face 102 of the valve seat 98 is shown to have a slight inward and upward taper in FIG. 2. However, if desired, this taper can be eliminated, in which instance, the outer face of the valve seat would comprise a horizontal planar surface.
The lower cartridge portion 86 has a cylindrical bore 104 in the upper end thereof, defining a continuous rim 106, and a radial annular seat 108. An annular groove is provided in the seat 108 at the outer periphery thereof, adjacent the wall of the cylindrical bore 104. A frusto-conical wall 112 extends inwardly and downwardly from the annular seat 108, and terminates in a short cylindrical bore 114. The wall 112 defines, in part, an upwardly opening chamber 222. A horizontal dividing wall 116 separates the bore 114 from the recess 96 in the boss 94. The wall 116 is provided centrally thereof with an inlet port 118 aligned with and of about the same diameter as the valve seat bore 100. Circumferentially spaced, angled ports 120 are provided at the juncture of the side wall of the bore 114 and the dividing wall 116, and the juncture of the outer surface of the boss 94 and the end face 90, said bores opening into the annular recess 92.
The upper cartridge portion 88 has a reduced-diameter cylindrical portion 122 at the lower end thereof, which is snugly received within the rim 106 on the lower cartridge portion 86 to retain said cartridge portions in axial alignment. The lower end of the upper cartridge portion 88 has a horizontal, annular clamping surface 124 thereon, and the upper face 126 of said upper cartridge portion is also horizontal and has a cylindrical, upwardly projecting boss 128 centrally thereof. A frusto-conical wall 130 extends inwardly and upwardly from the annular clamping surface 124, and terminates in a bore 132 that extends through the boss 128. The wall 130 defines, in part, a downwardly opening chamber 224.
A circular, flexible diaphragm 134 rests on the annular seat 108, and a flat ring 136 rests on the outer marginal portion thereof. The outer diameter of the ring 136 is just slightly less than the diameter of the bore 104, and the inner diameter thereof is slightly larger than the inner diameter of the annular seat 108. The annular clamping face 124 at the lower end of the cartridge portion 88 engages the top surface of the ring 136, and when the two cartridge portions 86 and 88 are urged toward each other, as explained hereinafter, the periphery of the diaphragm 134 is securely clamped in position. The groove 110 in the seat 108 is provided to receive material displaced from the diaphragm 134 upon clamping thereof, and functions to prevent undue cold-flow of the diaphragm material.
The diaphragm 134 is connected with a stainless steel valve stem 138 having a portion 140 that is disposed below the diaphragm 134, extends through the inlet port 118 and through the opening 100 in the valve seat 98, and terminates in a cylindrical head portion 142. The diameter of the stem portion 140 is substantially less than the diameter of the inlet port 118 and the bore 100 in order to provide an annular flow path for water therebetween. By way of example, the inlet port 118 and the bore 100 may have a diameter of about 0.218 inch, in which instance the diameter of the valve stem portion 140 will be about 0.109 inch. The diameter of the head portion 142 is substantially less than the diameter of the inlet chamber 60. For example, the diameter of the inlet chamber 60 may be about 0.3125 inch and that of the portion 142 about 0.281 inch.
The upper side of the head portion 142 has an annular groove 144 that is generally triangular in radial crosssection, and defines a sealing lip 146 on the upper, outer periphery of said head portion 142. The sealing lip 146 is rounded or convex, and is engageable with the lower surface 102 of the valve seat 98. The inner wall of the groove 144 is formed by a frusto-conical stem portion 148, which tapers from an upper diameter substantially less than the diameter of the opening 100, to a diameter at the lower end thereof substantially greater than the diameter of said opening. Thus, as the valve stem 138 moves upwardly, the frusto-conical portion 148 will be wiped against the wall of the opening 100 in the valve seat 98, and said stem will come to rest with the stem portion 148 in sealing engagement with the lower portion of said opening. Such wiping action tends to remove any foreign matter from the frusto-conical portion 148 of the valve stem, and insures an effective seal between said poriton and the valve seat 98.
In addition to the seal provided by the frusto-conical stern portion 148, a second seal is provided by the engagement of the sealing lip 146 with the lower surface of the valve seat 98. Thus, dual seals are provided to assure leakproof closure of the valve. It should be further noted that, as the valve seat 98 begins to wear, the frustoconical stern portion 148 will still maintain an effective seal for a long period of time.
The length of the head portion 142, and the position of the inlet port 74 are such that when the head portion 142 is seated against the valve seat 98, the lower surface 150 thereof will be positioned in a plane above said inlet port. Thus, when the valve is closed, the inlet port 74 will be completely exposed. However, as the valve stem 138 is moved downwardly, as during opening of the valve, the length of the head portion 142 is such that it will progressively move across the radial inlet port 74, thus producing an obstruction and causing restriction in flow therethrough. The reverse action occurs during closing, at which time the head portion 142 is effective to prevent water hammer during closing of the valve. Hence, this arrangement contributes significantly to the life of the valve components as well as to user satisfaction.
The portion 140 of the valve stem 138 has an integral collar 152 about midway of the length thereof, and a portion 154 of the valve stem projects above the collar 152 and is threaded and extends through an opening in the diaphragm 134. A combined diaphragm-supporting disk and nut 156 is threaded on the stern portion 154 and is tightened against the collar 152, the lower face of said nut having a frusto-conical configuration. The upper surface 158 of the nut 156 engages the diaphragm 134, and is roughened to insure effective gripping thereof.
The threaded stem portion 154 has a' clamping washer 160 thereon that engages the upper side of the diaphragm 134. A lock washer 162 is disposed on top of the clamping washer 160, and a retaining nut 164 is threaded on the stem portion 154 to secure the valve stem 138 to the diaphragm 134. The lower portion 166 of the retaining nut 164 is cylindrical, and terminates at its upper end in a radial flange 168. A reduced cylindrical head 170 extends upwardly beyond the flange 168, and has a diametric slot 172 for receiving the tip of a screw driver or other suitable tool for installing the retaining nut.
The head 170 of the retaining nut 164 is received within a spring housing 174 comprising a cylindrical lower portion 176 having an external diameter slightly less than the diameter of the bore 132. The housing 174 is provided near its upper end with an intermediate enlarged portion 178 having an external diameter corresponding to that of the boss 128, and terminating at its upper end in a radial flange 180.
The spring housing 174 has a bore 182, the upper end 184 of which is threaded. The bore 182 is slightly larger in diameter than the flange 168 of the retaining nut 164, and terminates at its lower end in an annular, radial shoulder 186 of an internal diameter less than the diameter of the flange 168. The flange 168 rests above the radial shoulder 186, and thus upward movement of the spring housing 174 will cause the valve stem 138 to likewise move upwardly.
A compression type range spring 188 is received in the housing 174 with the lower end thereof surrounding the retaining nut head 170. A range adjusting screw 190 is received within the threaded upper end 184 of the bore 182, and has a recess 192 in its lower face for receiving the upper end of the spring 188. The range screw 190 has a slot 194 for receiving the tip of a screw driver. The resilient force of the range spring 188 can thus be adjusted by altering the position of the range screw 190 to vary the force urging the valve stem 138 downwardly away from the spring housing 174.
A return spring 196, under compression, extends between the upper end face 126 of the upper cartridge portion 88 and the lower face of the flange on the spring housing 174, the upper and lower ends of said return spring 196 being held in position by the intermediate cylindrical portion 178 and the cylindrical boss 128, respectively.
The return spring 196 is thus operative to urge the spring housing 174 upwardly relative to the upper and lower cartridge portions 88 and 86, respectively. Such upward movement of the spring housing 174 causes the shoulder 186 to engage beneath the flange 168 on the retaining nut 164, which in turn causes the valve stem 1% to be moved upwardly until the head portion 142 thereof sealingly engages with the valve seat 98. The force of the return spring 196 is such that, when said spring is fully extended, it will hold the head portion 142 of the valve stem 138 in engagement with the valve seat 98 with just enough force to make a tight seal. Thus, no excessive clamping pressure, which might cause damage to the valve seat 98 is exerted by said spring. The range spring 188 is of less strength than the return spring 196, and thus the return spring 196, in effect, normally overrides said range spring to maintain the valve in a closed position.
The cartridge unit 38, as is best shown in FIG. 4, is self-contained, and can be easily inserted and removed from the cylindrical bore 56 in the valve body 36. The elements thereof are held in assembled relationship in part by the return spring 196, which urges the spring housing 174 away from the upper and lower cartridge portions 88 and 86, thus causing the radial shoulder 186 to engage the flange 168 and move the valve stem 138 so that the head portion 142 thereof is engaged with the valve seat 98. Because the valve stem 138 is thus urged by the spring housing 174 and is in engagement with the valve seat 98, the components of the cartridge unit are elfectively clamped together by spring pressure, thus making the cartridge unit 38 self-contained and easily removable. The cartridge unit 38 can, of course, be disassembled by first removing the range screw and the range spring 188, and by next removing the retaining nut 164. Upon removal of the nut 164, the valve stem 138, the spring housing 174, and the retaining spring 196 can be separated, after which the remaining elements of the cartridge unit can be easily disassembled without tools.
The cartridge 38, which containsthe flow control elements of the valve 30, is received as a unit within the cylindrical bore 56 in the valve body 36; an O-ring seal 198 being positioned between the lower end face 90 of said cartridge and the bottom wall 68 of said bore.
The O-ring 198 has an external diameter corresponding to the diameter of the bore 56, and serves a dual purpose. First, it forms an effective seal to prevent leakage of fluid between the end 90 of the cartridge unit 38 and the sidewall of the bore 56. Secondly, it spaces the lower end 90 of the lower cartridge portion 86 from the bottom wall 68 of the bore 56, whereby to define a manifold outlet chamber 200 therebetween for receiving flow from the angled outlet ports 120. While the ring 198 has been described as being an O-ring, it is to be understood that a flat fiber washer, or other suitable sealing member, could be substituted therefor.
After the sealing ring 198 and the cartridge unit 38 have been inserted into the bore 56, a washer 202 is placed upon the upper face 126 of the upper cartridge portion 88, said washer having an external diameter slightly less than the diameter of the threaded portion of the bore 56, and having a radially projecting tab 204, FIG. 3, which is receivable in one of the notches 48. A retainer nut 206, FIG. 2, is then threaded into the bore 58, and tightened to clamp the sealing ring 198 in position,
and to clamp the outer marginof the diaphragm 134 securely between the upper and lower cartridge portions 88 and 86, respectively. The retainer nut 206 has a plurality of circumferentially spaced holes 208 for receiving the pins of a suitable spanner wrench (not shown). The length of said nut 206 is such that when the cartridge unit 38 has been securely tightened in position, a substantial portion thereof will project above the upper end of the valve body 36 and the mounting nut 54.
The pushbutton 40 comprises a cup-shaped body portion 210, which receives the flange 180 on the spring housing 174. The pushbutton 40 terminates at its lower end in an outturned flange 212. A screw thimble 214 has an opening 215 to receive the pushbutton 40, and an inturned flange 216 that overlies and is normally spaced from the flange 212. The screw thimble 214 has hexagonal, external wrench-engaging surfaces 218, and internal threads 220 that cooperate with the projecting portion of the retainer nut 206 to secure the pushbutton 40 in operative position on the valve 30.
The operation of the valve 30 is as follows: with the inlet conduit 32 connected to a source of water under pressure, the return spring 196 will normally urge the spring housing 174 and the valve stem 138 upwardly, whereby to seat the valve stem head portion 142 on the valve seat 198. Because the head 142 is completely exposed within the inlet chamber 60, the pressure of the water entering said chamber from the conduit 32 will exert force on said head, tending to cause it to more tightly engage the valve seat 98. The pressure will also urge the tapered stem portion 148 to form a second seal with the wall of the seat opening 100. Thus, the greater the pressure of the incoming water, the more effective will be the seal between the head portion 142 and the valve seat 98, and the stem portion 148 and the passage 100. The use of inlet pressure to cause sealing engagement, coupled with the dual sealing feature of the valve 30, effectively insures that no water leakage can occur through the closed valve.
When it is desired to open the valve 30, the pushbutton 40 is manually depressed against the force of the return spring 196. As the pushbutton 40 is depressed, the spring housing 174 will move downwardly, thus disengaging the radial shoulder 186 from the flange 168. This frees the valve stem 138 for downward movement. Accordingly, as movement of the housing 174 continues, the range spring 188 will be compressed between the range screw 190 and the nut flange 168, until the force thereof is sufficient to overcome the pressure being exerted on the valve stem head portion 142 by water contained in the inlet chamber 60. Continued downward movement of the pushbutton 40 will then cause the valve stem 148 to move downwardly, thus unseating the head portion 142 and permitting flow from the inlet chamber 60, through the seat opening 100, the inlet port 118, and into the chamber 222 below the diaphragm 134. The water will then flow through the angled outlet ports 120 into the outlet chamber 200, then through the outlet port 80 and the conduit 34, into the cooling coil 8, for discharge through the bubbler head 24. It should be noted that as the stem head 142 moves downwardly, flow through the inlet port 74 will be progressively restricted in the manner hereinabove described.
When it is desired to stop flow through the valve, the pushbutton 40 is merely released. The return spring 196 then causes the spring housing 174 to move upwardly relative to the upper cartridge portion 88. As the spring housing 174 moves upwardly, the radial shoulder 186 will be brought into engagement with the flange 168, and thereafter the valve stem 138 will move upwardly with the spring housing 174. When the pushbutton 40 has returned to its original position, the return spring 196 will have caused the head 142 to again seat on the valve seat 98, thereby closing the valve. Water pressure within the inlet chamber 60 will then again function to keep the head 142 tightly seated. During closing action of the valve, the restriction of the flow through the inlet port 74 caused by the head 142 will gradually decrease and the tapered stem portion 148 will gradually restrict flow through the seat opening 100, whereby flow will be effectively controlled to prevent water hammer.
After the valve has closed, all flow ceases and such water as is present in the system between the valve 30 and the bubbler head 24 remains there, since the system is airtight. It will also be appreciated that with the coil 20 located at a height above the bubbler head as shown in FIG. 1, if the coil develops a leak, air entering at such point will break the vacuum and water can drain from the coil into the pan 14 through the bubbler head.
It will be noted that one feature of the present control valve is that an ample amount of flow can be obtained with a relatively short stroke of the valve stem 138. Further, the positioning of the angled outlet ports at the lower end of the cylindrical bore 114 insures that even if the diaphragm 134 should move completely downwardly into engagement with the frusto-conical wall 112, flow through the valve will not be closed otf.
Another feature of the valve is that it is designed so that no damage can be caused by water freezing in the valve body. The amount of water which can be retained within the lower diaphragm chamber 222 is relatively small, but even if water contained therein should freeze, the upper diaphragm chamber 224 provides ample room for the diaphragm 134 to expand. Also any water that might freeze in the chamber 68 could expand without causing damage because of the yieldability of the seat 98. It should also be noted that, because the valve seat 98 and the valve stem head portion 142 are disposed on the inlet side of the diaphragm 134, a leak in the diaphragm will not be exposed to inlet fluid pressure except when the valve is open. Thus, accidental flooding because of a leaky diaphragm is eliminated.
As has been hereinabove mentioned, the control valve 30 in the drinking fountain arrangement of the invention is positioned on the inlet side of the cooling coil 8. This arrangement insures that if a leak should occur in the cooling coil 8, either because of rupture from freezing or for any other reason, the maximum amount of leakage that can occur will be limited to the liquid that can leak out of the cooling coil. Thus, a serious accidental flooding of the premises where the drinking fountain is located is avoided. If the coil 8 should become ruptured, this fact would normally become readily apparent immediately upon opening of the valve 30, and the valve could then be closed to'prevent any further flooding.
The positioning of the valve 30 at the inlet of the cooling coil 8 also provides another desirable result. Frequently, in drinking fountains where the control valve is connected adjacent the bubbler head, upon actuation of the control valve, a sudden gush or spurt of water will result. This is frequently annoying to the user of the fountain, and often causes waste and unnecessary splashing of water onto the floor. In the present invention, the control'valve 30 is positioned at the inlet to the coil 8, so that water must first flow through the coil 8 before reaching the bubbler head 24. The result is that the first discharge of water from the bubbler head after depressing the pushbutton 48 will not be a surge, but rather will be a relatively gentle flow. As a result, splashing is avoided.
The control valve of the invention also functions to regulate the rate of flow through the cooling coils 8. When the valve 30 is in an open position, the range spring 188 will cooperate with the inlet water pressure in the chamber 68 to move the valve stem 138 away from the valve seat 98, or permit it to move toward said seat, as fluctuation in inlet pressure occurs. This regulating action insures that a relatively constant pressure will be present in the coil 8, as Well as in the water issuing from the bubbler head 24. The pressure of such outflow through the bubbler head 24 can be controlled by merely adjusting the range screw 190 which, in turn, adjusts the force of the range spring 188. In addition, the range spring 188 will yield and permit the stem head 142 to move toward the seat 98 under surge conditions, or upon sudden depression of the pushbutton 40, to thus automatically maintain a uniform flow rate to the bubbler head 24.
In addition, the range spring 188 will yield and permit the stem head 142 to move toward the seat 98 under surge conditions, or upon sudden depression of the pushbutton 40, to thus automatically maintain a uniform flow rate to the bubbler head 24.
I claim:
1. A valve, comprising: a valve body having an outwardly opening cartridge receiving cavity formed by a generally cylindrical side wall and a bottom wall at the inner end of said cavity, said valve body also having inlet means, including an inlet opening in said bottom wall; a cartridge unit removably mounted within said cavity and containing a chamber therein, the inner end of said cartridge unit having an inlet port aligned with said valve inlet opening and communicating with said chamber; a resilient valve seat carried by said cartridge unit and disposed in clamped engagement between said inner end of said cartridge unit and said bottom wall, said valve seat having an opening in communication with said valve inlet opening and with said cartridge chamber inlet port, and of smaller diameter than said valve inlet opening, said cartridge having outlet port means in the inner end thereof, and said valve body having an outlet opening in said bottom wall spaced outwardly from said resilient valve seat and in communication with said cartridge unit outlet port means, said clamped resilient valve seat sealing said valve inlet opening from said valve outlet opening; sealing means spaced from said outlet opening and said outlet port means, arranged to prevent leakage between said cartridge unit and the side wall of said cavity; a valve stem carried by said cartridge unit, and including: a stem portion supported for reciprocation within said cartridge chamber and extending through said valve seat opening, said stem portion having a substantially smaller diameter than said valve seat opening to provide a flow path therebetween; an enlarged head portion carried by said stem portion and disposed on the inlet side of said valve seat, said enlarged head portion being engageable with said valve seat to prevent flow therethrough; and means carried by said cartridge unit normally urging said enlarged head portion into engagement with said seat and being manually operable to actuate said valve stem to move said enlarged head portion out of engagement with said valve seat.
2. A valve as recited in claim 1, wherein the cartridge unit includes a flexible diaphragm extending across the cartridge chamber, and wherein the valve stem is connected with and extends through said diaphragm, and wherein the diaphragm divides said cartridge chamber into an inner portion in communication with said valve seat, and an outer portion sealed from said valve seat.
3. A valve as recited in claim 2, wherein the cartridge unit includes an upper body portion having a bore therein which communicates with the outer portion of said cartridge chamber, said valve stem further including an extended portion aligned with and of smaller diameter than said bore, said extended stem portion having flange means thereon, and wherein the means operable to move said valve stem includes: a hollow spring housing received over said extended stem portion and having shoulder means engageable with the undersurface of said flange means on said extended stem portion, the lower portion of said spring housing being received within said bore; a range spring in said spring housing and arranged to urge said flange means on said extended stem portion into engagement with said shoulder means on said spring housing; and a return spring disposed between said upper body portion and said spring housing, and arranged to urge said spring housing away from said upper body portion to engage said spring housing shoulder means with said flange on said extended stem portion and to seat said head portion on said valve seat.
4. A valve as recited in claim 2, wherein said inner portion of said cartridge chamber is defined in part by a reduced diameter wall portion spaced from said diaphragm and in alignment with the valve seat and by a frusto-conical wall portion extending between said reduced diameter wall portion and said diaphragm, said cartridge outlet port means intersecting said reduced diameter wall portion.
5. A valve as recited in claim 1, wherein said sealing means includes: an annular resilient member disposed between the cartridge unit and the bottom wall of said valve body cavity, said resilient member defining together with said bottom wall of said valve body cavity and with said cartridge an outlet chamber for receiving liquid from said cartridge chamber for discharge through said valve body outlet, said resilient member also forming a seal to prevent leakage from said outlet chamber between said cartridge unit and the wall defining said valve body cavity.
6. A valve as recited in claim 1, wherein the valve body inlet comprises: a cylindrical inlet chamber of uniform diameter aligned with said valve seat and a radial inlet port located approximately centrally of the length of the side wall of said inlet chamber, said head portion being cylindrical and being received within said inlet chamber, the diameter of said head portion being substantially less than the diameter of said inlet chamber, and the length of said head portion being proportioned so that (1) said head portion will be disposed in the upper portion of said cylindrical inlet chamber and just be clear of said radial inlet port when said valve is closed, and (2) so that said head portion will move across said radial inlet port in obstructing position to restrict flow therethrough when said valve stem is moved to open position.
7. A replaceable cartridge unit to be removably secured in a valve housing, comprising: an upper body portion having a downwardly-facing open chamber; a lower body portion having an upwardly-facing chamber disposed in confronting relation with said downwardlyfacing chamber, said chamber being closed at its lower end by a wall, and said wall having a centrally positioned inlet port therethrough; a flexible diaphragm having an outer marginal portion positioned between said upper and lower body portions separating said chambers from each other; an annular resilient valve seat; means mounting said annular resilient valve seat on the lower, external face of said wall, said valve seat having an axial opening aligned with said inlet port and communicating with said upwardly-facing chamber, said lower body portion also having an outlet port through said bottom wall and spaced from said inlet port, and leading from said upwardly-facing chamber; a valve stem connected with and extending through said diaphragm, and including a portion extending through and of substantially smaller diameter than said inlet port and said valve seat opening and having an enlarged head on the lower end thereof exteriorly of said lower body portion engageable with the inner peripheral portion of said valve seat; means, including a spring, arranged to continually urge said valve stem in a direction to engage said head with said resilient valve seat and to act through said valve stem to urge said upper and lower body portions toward each other; and means manually operable to move said valve stem in the opposite direction to move said head portion of said valve stem away from said valve seat against the force of said spring, to establish a flow path between said valve stem and the side walls of said inlet port and said valve seat opening.
8. A valve comprising: a valve body having an upwardly opening cartridge receiving cavity formed by an uninterrupted cylindrical side wall and a bottom wall at the lower end of said cavity, said body also having a smaller diameter than said cavity disposed in said cavity; said cartridge having an inlet port aligned with said reduced inlet bore, and an outlet port opening onto said bottom wall and in communication with said outlet bore,
said cartridge including means controlling flow between said reduced bore and said outlet bore, including a resilient valve seat clamped between said cartridge and said bottom wall, said valve seat having an opening therethrough aligned with said inlet bore and said inlet port, said valve body having a shoulder on said bottom wall surrounding the upper end of said reduced bore and engaged with said valve seat to form a seal therewith, said valve seat sealing said inlet bore from said outlet bore; sealing means spaced from said outlet bore and said outlet port, arranged to prevent leakage between said cartridge and said cylindrical side wall; and means confining said cartridge in said valve body.
9. A valve as defined in claim 8, wherein the means controlling flow between the reduced bore and the out let includes a stem extending through the resilient valve seat and having a head received in the reduced bore, said head being cngageable with the resilient valve seat to form a seal therewith.
10. A valve comprising: a valve body having an upwardly opening cartridge receiving cavity formed by a cylindrical side wall and a bottom wall at the lower end of said cavity, said body also having a central bore of reduced diameter in said bottom Wall; a generally cylindrical cartridge of slightly smaller diameter than said cavity disposed in said cavity; a sealing ring disposed in said cavity adjacent said cylindrical side wall and between said bottom wall and the lower end of said cartridge, forming both a chamber and a seal therebetween, said valve body having an outlet communicating with said chamber, and having an inlet communicating with said reduced bore, said cartridge including means controlling flow between said reduced bore and said outlet, including a resilient valve seat, said valve body having a shoulder surrounding the upper end of said reduced bore and engaged with said valve seat to form a seal therewith; and means confining said cartridge in said valve body. 4
References Cited by the Examiner V UNITED STATES PATENTS 1,739,864 12/1929 Schardein 137-4545 1,793,292 2/1931 Taylor 137-495 2,065,087 12/1936 May 137-4545 2,370,390 2/1945 Berryman 62-304 2,554,417 5/1951 Morrison 62-319 2,618,908 11/1952 Salter 137454.5 2,658,716 11/1953 Winfree 137-454.S X 2,868,223 1/1959 Lum 137-4546 3,003,519 10/1961 Homeyer 137-4546 3,019,810- 2/1962 Aymar 137-495 3,078,864 2/1963 Schmid 251-210 X 3,148,700 9/1964 Friedell 137-4545 3,150,682 9/1964 Mancusi 137-4545 3,166,500 1/1965 Noakes 137-4546 X WILLIAM F. ODEA, Primary Examiner.
LLOYD L. KING, M. CARY NELSON, ISADOR WEIL,
Examiners.
H. WEAKLEY, Assistant Examiner.

Claims (1)

1. A VALVE, COMPRISING: A VALVE BODY HAVING AN OUTWARDLY OPENING CARTRIDGE RECEIVING CAVITY FORMED BY A GENERALLY CYLINDRICAL SIDE WALL AND A BOTTOM WALL AT THE INNER END OF SAID CAVITY, SAID VALVE BODY ALSO HAVING INLET MEANS, INCLUDING AN INLET OPENING IN SAID BOTTOM WALL; A CARTRIDGE UNIT REMOVABLY MOUNTED WITHIN SAID CAVITY AND CONTAINING A CHAMBER THEREIN, THE INNER END OF SAID CARTRIDGE UNIT HAVING AN INLET PORT ALIGNED WITH SAID VALVE INLET OPENING AND COMMUNICATING WITH SAID CHAMBER; A RESILIENT VALVE SEAT CARRIED BY SAID CARTRIDGE UNIT AND DISPOSED IN CLAMPED ENGAGEMENT BETWEEN SAID INNER END OF SAID CARTRIDGE UNIT AND SAID BOTTOM WALL, SAID VALVE SEAT HAVING AN OPENING IN COMMUNICATION WITH SAID VALVE INLET OPENING AND WITH SAID CARTRIDGE CHAMBER INLET PORT, AND OF SMALLER DIAMETER THAN SAID VALVE INLET OPENING, SAID CARTRIDGE HAVING OUTLET PORT MEANS IN THE INNER END THEREOF, AND SAID VALVE BODY HAVING AN OUTLET OPENING IN SAID BOTTOM WALL SPACED OUTWARDLY FROM SAID RESILIENT VALVE SEAT AND IN COMMUNICATION WITH SAID CARTRIDGE UNIT OUTLET PORT MEANS, SAID CLAMPED RESILIENT VALVE SEAT SEALING SAID VALVE INLET OPENING FROM SAID VALVE OUTLET OPENING; SEALING MEANS SPACED FROM SAID OUTLET OPENING AND SAID OUTLET MEANS, ARRANGED TO PREVENT LEAKAGE BETWEEN SAID CARTRIDGE UNIT AND THE SIDE WALL OF SAID CAVITY; A VALVE STEM CARRIED BY SAID CARTRIDGE UNIT, AND INCLUDING: A STEM PORTION SUPPORTED FOR RECIPROCATION WITHIN SAID CARTRIDGE CHAMBER AND EXTENDING THROUGH SAID VALVE SEAT OPENING, SAID STEM PORTION HAVING A SUBSTANTIALLY SMALLER DIAMETER THAN SAID VALVE SEAT OPENING TO PROVIDE A FLOW PATH THEREBETWEEN; AN ENLARGED HEAD PORTION CARRIED BY SAID STEM PORTION AND DISPOSED ON THE INLET SIDE OF SAID VALVE SEAT, SAID ENLARGED HEAD PORTION BEING ENGAGEABLE WITH SAID VALVE SEAT TO PREVENT FLOW THERETHROUGH; AND MEANS CARRIED BY SAID CARTRIDGE UNIT NORMALLY URGING SAID ENLARGED HEAD PORTION INTO ENGAGEMENT WITH SAID SEAT AND BEING MANUALLY OPERABLE TO ACTUATE SAID VALVE STEM TO MOVE SAID ENLARGED HEAD PORTION OUT OF ENGAGEMENT WITH SAID VALVE SEAT.
US365932A 1964-05-08 1964-05-08 Drinking fountain arrangement and control valve therefor Expired - Lifetime US3279495A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US365932A US3279495A (en) 1964-05-08 1964-05-08 Drinking fountain arrangement and control valve therefor
US492620A US3310236A (en) 1964-05-08 1965-10-04 Drinking fountain arrangement and control valve therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US365932A US3279495A (en) 1964-05-08 1964-05-08 Drinking fountain arrangement and control valve therefor

Publications (1)

Publication Number Publication Date
US3279495A true US3279495A (en) 1966-10-18

Family

ID=23440985

Family Applications (1)

Application Number Title Priority Date Filing Date
US365932A Expired - Lifetime US3279495A (en) 1964-05-08 1964-05-08 Drinking fountain arrangement and control valve therefor

Country Status (1)

Country Link
US (1) US3279495A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493010A (en) * 1967-10-25 1970-02-03 H & H Thermostats Inc Control valve for fluid dispensing system
US3921903A (en) * 1975-02-20 1975-11-25 White Westinghouse Corp Water cooler bubbler assembly
US4634099A (en) * 1985-05-17 1987-01-06 Nupro Company High pressure inverted bellows valve
US4744387A (en) * 1987-06-25 1988-05-17 Otteman John H Fluid pressure regulator
US5054514A (en) * 1989-05-25 1991-10-08 Plumbmaster, Inc. Drinking fountain cartridge valve
US6363959B1 (en) 1999-05-10 2002-04-02 Parker-Hannifin Corporation Fluid pressure regulator with differential pressure setting control
US6363958B1 (en) 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
US6848483B1 (en) 2004-03-24 2005-02-01 Louis D. Atkinson Liquid level maintaining device
US20080011365A1 (en) * 2006-07-12 2008-01-17 Newton John R Selectively actuated constant flow valve
US20120291826A1 (en) * 2011-05-20 2012-11-22 Vita-Mix Corporation Container cleaner

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1739864A (en) * 1928-08-09 1929-12-17 Clarence E Schardein Faucet
US1793292A (en) * 1928-08-01 1931-02-17 Halsey W Taylor Pressure-regulating valve
US2065087A (en) * 1935-09-07 1936-12-22 Edward M May Valve
US2370390A (en) * 1943-07-03 1945-02-27 Joseph De N Berryman Cooling device
US2554417A (en) * 1949-12-29 1951-05-22 Sunroc Refrigeration Company Sanitary water cooler
US2618908A (en) * 1949-05-05 1952-11-25 Weldit Inc Pressure regulator with interengaging piston and seat insert
US2658716A (en) * 1950-05-31 1953-11-10 Robert N Winfree Manual and automatic valve
US2868223A (en) * 1954-11-03 1959-01-13 Arthur C Homeyer Valves
US3003519A (en) * 1959-05-21 1961-10-10 Homeyer Fluid control devices
US3019810A (en) * 1959-08-21 1962-02-06 We Mar Inc Foot control valve device
US3078864A (en) * 1961-01-19 1963-02-26 Acme Air Appliance Co Inc Core for pneumatic valve
US3148700A (en) * 1962-11-30 1964-09-15 Clark Feather Mfg Co Press button valve
US3150682A (en) * 1962-07-18 1964-09-29 Altair Inc Balanced pressure regulator
US3166500A (en) * 1962-04-18 1965-01-19 American Radiator & Standard Combined reciprocating valve apparatus and flow controller

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1793292A (en) * 1928-08-01 1931-02-17 Halsey W Taylor Pressure-regulating valve
US1739864A (en) * 1928-08-09 1929-12-17 Clarence E Schardein Faucet
US2065087A (en) * 1935-09-07 1936-12-22 Edward M May Valve
US2370390A (en) * 1943-07-03 1945-02-27 Joseph De N Berryman Cooling device
US2618908A (en) * 1949-05-05 1952-11-25 Weldit Inc Pressure regulator with interengaging piston and seat insert
US2554417A (en) * 1949-12-29 1951-05-22 Sunroc Refrigeration Company Sanitary water cooler
US2658716A (en) * 1950-05-31 1953-11-10 Robert N Winfree Manual and automatic valve
US2868223A (en) * 1954-11-03 1959-01-13 Arthur C Homeyer Valves
US3003519A (en) * 1959-05-21 1961-10-10 Homeyer Fluid control devices
US3019810A (en) * 1959-08-21 1962-02-06 We Mar Inc Foot control valve device
US3078864A (en) * 1961-01-19 1963-02-26 Acme Air Appliance Co Inc Core for pneumatic valve
US3166500A (en) * 1962-04-18 1965-01-19 American Radiator & Standard Combined reciprocating valve apparatus and flow controller
US3150682A (en) * 1962-07-18 1964-09-29 Altair Inc Balanced pressure regulator
US3148700A (en) * 1962-11-30 1964-09-15 Clark Feather Mfg Co Press button valve

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493010A (en) * 1967-10-25 1970-02-03 H & H Thermostats Inc Control valve for fluid dispensing system
US3921903A (en) * 1975-02-20 1975-11-25 White Westinghouse Corp Water cooler bubbler assembly
US4634099A (en) * 1985-05-17 1987-01-06 Nupro Company High pressure inverted bellows valve
US4744387A (en) * 1987-06-25 1988-05-17 Otteman John H Fluid pressure regulator
US5054514A (en) * 1989-05-25 1991-10-08 Plumbmaster, Inc. Drinking fountain cartridge valve
US6363959B1 (en) 1999-05-10 2002-04-02 Parker-Hannifin Corporation Fluid pressure regulator with differential pressure setting control
US6363958B1 (en) 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
US6450200B1 (en) 1999-05-10 2002-09-17 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
US6848483B1 (en) 2004-03-24 2005-02-01 Louis D. Atkinson Liquid level maintaining device
US20050211333A1 (en) * 2004-03-24 2005-09-29 Atkinson Louis D Liquid level maintaining device
US7059367B2 (en) 2004-03-24 2006-06-13 Louis D. Atkinson Liquid level maintaining device
US20080011365A1 (en) * 2006-07-12 2008-01-17 Newton John R Selectively actuated constant flow valve
US7814931B2 (en) * 2006-07-12 2010-10-19 Global Agricultural Technology And Engineering, Llc Selectively actuated constant flow valve
US20120291826A1 (en) * 2011-05-20 2012-11-22 Vita-Mix Corporation Container cleaner
US9505013B2 (en) * 2011-05-20 2016-11-29 Vita-Mix Management Corporation Container cleaner

Similar Documents

Publication Publication Date Title
US4176063A (en) Water purifier system and valve
US4081171A (en) Self-cleaning filter assembly for solenoid-actuated valves
US4475570A (en) Anti-syphon freezeless water hydrant
US5129416A (en) Anti-siphon frost-proof water hydrant
US5029603A (en) Anti-siphon frost-proof water hydrant
US4998555A (en) Accessory faucet
US4064904A (en) Washerless cartridge valve for faucets
US3536294A (en) Foot-operated control valve attachment device for water faucets
US2619122A (en) Flow regulator and float valve assembly
US3279495A (en) Drinking fountain arrangement and control valve therefor
US7578309B2 (en) Universal kinetic diverting spout post assembly
US4967784A (en) Air break structure adapted for use in the base of an accessory faucet
US4336918A (en) Diaphragm valve with multiple pivot axis valve element
US3446241A (en) Flow control valve with plural diaphragm operator
US5224686A (en) Valve assembly for high pressure water shut-off gun
US4396032A (en) Safety underwater pressure regulator
US2583233A (en) Shower head
US5012833A (en) Freeze-proof hydrant
US5290008A (en) Discharge controlling device for faucets
US2154811A (en) Primer valve
US3310236A (en) Drinking fountain arrangement and control valve therefor
US2790677A (en) Automatic self-cleaning shower heads
US4177829A (en) Float controlled valves
US5288053A (en) Discharge controlling device for faucets
US2282338A (en) Antisiphonic valve