US3274507A - Electron beam plasma amplifier with a wave-guide coupling - Google Patents
Electron beam plasma amplifier with a wave-guide coupling Download PDFInfo
- Publication number
- US3274507A US3274507A US164762A US16476262A US3274507A US 3274507 A US3274507 A US 3274507A US 164762 A US164762 A US 164762A US 16476262 A US16476262 A US 16476262A US 3274507 A US3274507 A US 3274507A
- Authority
- US
- United States
- Prior art keywords
- plasma
- electron beam
- signal
- coupling means
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 title claims description 38
- 230000008878 coupling Effects 0.000 title claims description 30
- 238000010168 coupling process Methods 0.000 title claims description 30
- 238000005859 coupling reaction Methods 0.000 title claims description 30
- 230000003993 interaction Effects 0.000 claims description 15
- 230000003321 amplification Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 241001492414 Marina Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/02—Details
- H01J17/04—Electrodes; Screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/005—Gas-filled transit-time tubes
Definitions
- the invention relates to a sign-a1 amplifying device comprising an electron beam tube, in which the signal to be amplified is fed to an input coupler and the amplified signal is derived from an output coupler, farther remote from the electron gun and in which the signal is amplified by the interaction of the electron beam with a plasma having a plasma frequency which is at least equal to the signal frequency.
- a sign-a1 amplifying device comprising an electron beam tube, in which the signal to be amplified is fed to an input coupler and the amplified signal is derived from an output coupler, farther remote from the electron gun and in which the signal is amplified by the interaction of the electron beam with a plasma having a plasma frequency which is at least equal to the signal frequency.
- a plasma having a plasma frequency which is at least equal to the signal frequency.
- a modulated beam is guided across the plasma whereas input and output coupling take place beyond the interaction space of the electron beam and the plasma on the beam.
- the electron beam is modulated in the conventional manner with the signal, in the manner described in the said device, for example with the aid of helices. In order to obtain the desired couplings these helices may sometimes require great dimensions.
- high frequency signals for example of more than 10,000 mc./s.
- the couplers can be constructed only with difiiculty.
- the length of the electron beam, owing to the couplers must be considerably greater than the interaction space of the beam and the plasma.
- the invention obviates these disadvantages by providing a particular embodiment of the couplers. It is based on the recognition of the fact that within the interaction space of the beam and the plasma provision is made not only of a modulated beam and a plasma, but also of a modulated beam and a modulated plasma. It is hence possible to carry out the coupling operation in the plasma space. This means that, if by some means the plasma is set oscillating the device can also provide an amplification of the signal.
- At least one of the signal couplers is located in the range of the plasma while the coupler is constructed in the form of a coupler suitable for use in a waveguide system.
- This arrangement has the advantage that coupling can be obtained in a simple manner, since it is not bound to the shape characteristic of an electron beam, while the length may be shorter.
- the construction in the form of a coupler suit-able for use with a waveguide system may be obtained by means of a loop, a coupling hole or an antenna.
- At least one of the signal couplers is particularly located in the interaction range of the electron beam and the plasma since this provides an improved signal transfer.
- the invention furthermore relates to an electron beam tube comprising a coupler for supplying the signal to be amplified, an output coupler farther remote from the electron gun for deriving the amplified signal and means for producing a plasma by the interaction of which with the electron beam signal amplification is obtained, in
- At least one of the signal couplers is located in the range of the plasma while the coupler is constructed in the form of a coupler suitable for use in a waveguide system. At least one of the signal couplers is located particularly in the interaction space of the electron beam and the plasma.
- the electron beam is produced in the conventional manner by an electron gun and an anode located behind the former, while the beam may strike a collector at the end of the tube.
- a collector may be dispensed with, since the beam may terminate owing to collisions of beam electrons with the plasma particles.
- the output coupler may be arranged beyond the interaction space of the beam and the plasma.
- a plasma is to be understood to denote herein a mixture of positively and negatively charged particles, which can be produced between a cathode, which may be a heating cathode, and an anode.
- the electrons in the plasma perform an oscillatory motion, of which the frequency, the so-called plasma frequency, depends upon the electron density in the plasma.
- FIG. 1 shows diagrammaticaly an electron beam tube
- FIG. 2 shows diagrammatically a different embodiment of such an electron beam tube.
- the electron beam tube shown in a diagrammatical sectional view in FIG. 1 comprises a gun I and an anode 2 for producing the electron beam.
- This beam anode 2 serves, moreover, as a plasma anode.
- the plasma is produced between this plasma anode and the plasma cathode 3 in the glass bulb 4.
- Through the glass wall are taken the input coupler 5 and the output coupler 6.
- These couplers are shaped in the form of a loop.
- To the input coupler 5 is fed the signal to be amplified from a device which is not shown, whereas the amplified signal is fed by the output coupler 6 to a further device not shown.
- the plasma cathode 3, which is shaped in the form of heating cathode, serves moreover as a beam collector.
- the plasma is obtained by a mercury vapour discharge at a pressure of 2X l0 torr, a discharge current across the plasma of ma. and a voltage between the plasma cathode and the plasma anode, the so-called burning voltage of the plasma of 20 v.
- the electron density in the plasma amounts to about 2x 10 cm. This density corresponds to a plasma frequency of about 4000 mc./s. With this adjustment the tube is therefore suitable for amplifying signals having a frequency of not more than 4000 mc./s. with which signal frequency the maximum amplification is obtained.
- the voltage between the cathode and the anode in the beam is 300 v., whereas the beam current amounts to 2 ma. When the beam enters the interaction space, it has a diameter of 2 mms.
- the electron beam tube shown diagrammatically in FIG. 2 comprises a gun 11 and an anode 12 for producing an electron beam.
- This beam anode 12 serves, moreover, as a plasma cathode.
- the plasma is produced between this plasma oathode and the plasma anode 13 in the glass bulb 14.
- the input coupler is shaped in the form of a coupling hole 15 and the output coupler is shaped in the form of an antenna 16.
- the signal supply device and the signal output device connected herewith are not shown.
- the plasma anode 13 serves, in addition, as a beam collector, if the beam has not yet been annulled by collision with plasma particles.
- An electron beam plasma amplifier comprising an envelope containing an ionizable gaseous medium, means within said envelope for generating an electron beam, first and second electrodes directly in the path of the electron beam defining a plasma discharge space and for generating a plasma, coupling means for introducing an input signal of given frequency directly into said plasma discharge space, said plasma having a plasma frequency which is at least equal to the signal frequency, the signal being amplified by interaction between the electron beam and the plasma, and output coupling means for extnacting an amplified signal from said plasma discharge space, said output coupling means being positioned more remote from said electron beam generating means than said input coupling means, at least one of said coupling means being a wave-guide coupler and being positioned in the plasma discharge space.
- An electron beam plasma amplifier comprising an envelope containing an ionizable gaseous medium, an electron gun within said envelope for generating an electron beam, said electron gun comprising a cathode and an apertured anode for the passage of the electron beam, a second cathode spaced from and operatively associated with said anode and defining a plasma discharge space in which plasma is produced from said ionizable medium, coupling means between said anode and said second cathode for introducing an input signal of given frequency into said plasma discharge space, said plasma having a plasma frequency which is at least equal to the signal frequency, the signal being amplified by interaction between the electron beam and the plasma, and output coupling means for extracting an amplified signal from said plasma discharge space, said output coupling means being positioned more remote from said anode than said input coupling means, at least one of said coupling means being a wave-guide coupler and being positioned in the plasma discharge space.
- An electron beam plasma amplifier comprising an envelope containing an ionizable gaseous medium, an electron gun within said envelope for generating an electron beam, said electron gun comprising a cathode and an apertured anode for the passage of an electron beam, a second cathode spaced from and operatively associated with said anode and defining a plasma discharge space in which plasma is produced from said ionizable medium, coupling means between said anode and said second cathode for introducing an input signal of given frequency into said plasma discharge space, said plasma having a plasma frequency which is at least equal to the signal frequency, the signal being amplified by interaction between the electron beam and the plasma, and output coupling means for extracting an amplified signal from said plasma discharge space, said output coupling means being positioned more remote from said anode than said input coupling means, at least one of said coupling means being a wave-guide coupler and being positioned in the interaction region of the electron beam and the plasma.
Landscapes
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL260047 | 1961-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3274507A true US3274507A (en) | 1966-09-20 |
Family
ID=19752810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US164762A Expired - Lifetime US3274507A (en) | 1961-01-13 | 1962-01-08 | Electron beam plasma amplifier with a wave-guide coupling |
Country Status (3)
Country | Link |
---|---|
US (1) | US3274507A (en)) |
GB (1) | GB959421A (en)) |
NL (1) | NL260047A (en)) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3363138A (en) * | 1964-11-04 | 1968-01-09 | Sperry Rand Corp | Electron beam-plasma device operating at multiple harmonics of beam cyclotron frequency |
US3378712A (en) * | 1966-11-18 | 1968-04-16 | Gen Electric | Field emission ionization gauge with restricted line of sight between field emissionanode and ion collector |
US3423694A (en) * | 1964-08-26 | 1969-01-21 | Melpar Inc | Radiant energy source |
US3432722A (en) * | 1966-01-17 | 1969-03-11 | Gen Electric | Electromagnetic wave generating and translating apparatus |
US3432721A (en) * | 1966-01-17 | 1969-03-11 | Gen Electric | Beam plasma high frequency wave generating system |
WO1989010000A1 (en) * | 1988-04-14 | 1989-10-19 | Hughes Aircraft Co | Plasma-assisted high-power microwave generator |
US4916361A (en) * | 1988-04-14 | 1990-04-10 | Hughes Aircraft Company | Plasma wave tube |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1984499A (en) * | 1932-09-14 | 1934-12-18 | Radio Res Lab Inc | Coupling system and apparatus |
US2750455A (en) * | 1953-05-28 | 1956-06-12 | Ibm | Radio frequency controlled plasmatron |
US2806974A (en) * | 1954-07-06 | 1957-09-17 | Hughes Aircraft Co | Plasma amplifiers |
US2817045A (en) * | 1952-02-05 | 1957-12-17 | Itt | Electromagnetic wave generator |
US2848649A (en) * | 1952-01-24 | 1958-08-19 | Itt | Electromagnetic wave generator |
US3099768A (en) * | 1959-03-25 | 1963-07-30 | Gen Electric | Low noise electron beam plasma amplifier |
US3111604A (en) * | 1960-06-13 | 1963-11-19 | Ericsson Telefon Ab L M | Electronic device for generating or amplifying high frequency oscillations |
-
0
- NL NL260047D patent/NL260047A/xx unknown
-
1962
- 1962-01-08 US US164762A patent/US3274507A/en not_active Expired - Lifetime
- 1962-01-10 GB GB923/62A patent/GB959421A/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1984499A (en) * | 1932-09-14 | 1934-12-18 | Radio Res Lab Inc | Coupling system and apparatus |
US2848649A (en) * | 1952-01-24 | 1958-08-19 | Itt | Electromagnetic wave generator |
US2817045A (en) * | 1952-02-05 | 1957-12-17 | Itt | Electromagnetic wave generator |
US2750455A (en) * | 1953-05-28 | 1956-06-12 | Ibm | Radio frequency controlled plasmatron |
US2806974A (en) * | 1954-07-06 | 1957-09-17 | Hughes Aircraft Co | Plasma amplifiers |
US3099768A (en) * | 1959-03-25 | 1963-07-30 | Gen Electric | Low noise electron beam plasma amplifier |
US3111604A (en) * | 1960-06-13 | 1963-11-19 | Ericsson Telefon Ab L M | Electronic device for generating or amplifying high frequency oscillations |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3423694A (en) * | 1964-08-26 | 1969-01-21 | Melpar Inc | Radiant energy source |
US3363138A (en) * | 1964-11-04 | 1968-01-09 | Sperry Rand Corp | Electron beam-plasma device operating at multiple harmonics of beam cyclotron frequency |
US3432722A (en) * | 1966-01-17 | 1969-03-11 | Gen Electric | Electromagnetic wave generating and translating apparatus |
US3432721A (en) * | 1966-01-17 | 1969-03-11 | Gen Electric | Beam plasma high frequency wave generating system |
US3378712A (en) * | 1966-11-18 | 1968-04-16 | Gen Electric | Field emission ionization gauge with restricted line of sight between field emissionanode and ion collector |
WO1989010000A1 (en) * | 1988-04-14 | 1989-10-19 | Hughes Aircraft Co | Plasma-assisted high-power microwave generator |
US4916361A (en) * | 1988-04-14 | 1990-04-10 | Hughes Aircraft Company | Plasma wave tube |
Also Published As
Publication number | Publication date |
---|---|
NL260047A (en)) | |
GB959421A (en) | 1964-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3558967A (en) | Linear beam tube with plural cathode beamlets providing a convergent electron stream | |
US3432721A (en) | Beam plasma high frequency wave generating system | |
US2416303A (en) | Secondary emissive shell resonator tube | |
US2848649A (en) | Electromagnetic wave generator | |
GB1039833A (en) | Crossed field tube | |
US2852715A (en) | High frequency structure | |
US3274507A (en) | Electron beam plasma amplifier with a wave-guide coupling | |
US3432722A (en) | Electromagnetic wave generating and translating apparatus | |
US2289906A (en) | Cathode ray tube | |
US3317784A (en) | Travelling wave tube using a plasmafilled waveguide as a slow wave structure | |
US2757311A (en) | Double beam progressive wave tube | |
US2073599A (en) | Electric discharge device | |
US3096457A (en) | Traveling wave tube utilizing a secondary emissive cathode | |
US3483419A (en) | Velocity modulation tube with r.f. lossy leads to the beam focusing lenses | |
US3201640A (en) | Electron gun in the form of a multipactor | |
US2228276A (en) | Electrical gaseous discharge device | |
US3433992A (en) | O-type traveling wave tube amplifier having means for counteracting the modulation of the spent beam in the collector electrode region | |
US2936393A (en) | Low noise traveling-wave tube | |
US2323560A (en) | Electron discharge apparatus | |
US2842703A (en) | Electron gun for beam-type tubes | |
US3388281A (en) | Electron beam tube having a collector electrode insulatively supported by a cooling chamber | |
GB691900A (en) | Electron discharge devices | |
US2845567A (en) | Indirectly heated thermionic cathode | |
US3688152A (en) | High power klystron | |
US3214632A (en) | Low noise electron gun |