US3274115A - Germicidal compositions - Google Patents

Germicidal compositions Download PDF

Info

Publication number
US3274115A
US3274115A US247289A US24728962A US3274115A US 3274115 A US3274115 A US 3274115A US 247289 A US247289 A US 247289A US 24728962 A US24728962 A US 24728962A US 3274115 A US3274115 A US 3274115A
Authority
US
United States
Prior art keywords
detergent
parts
germicidal
thiosemicarbazide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US247289A
Inventor
Walter J Sydor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US190257A external-priority patent/US3182082A/en
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US247289A priority Critical patent/US3274115A/en
Application granted granted Critical
Publication of US3274115A publication Critical patent/US3274115A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions

Definitions

  • This invention relates to new germicides and to detergent compositions containing said germicides. More specifically, this invention relates to compounds of the formula:
  • the new compounds of this invention may be prepared by condensing a halogenated ortho-hydroxyaryl aldehyde wherein the aryl moiety corresponds to R defined above (especially halogenated salicylaldehydes) with a 4-aryl-3-semicarbazide or a 4-aryl-3-thio semicarbazide of the formula:
  • any halogenated ortho-hydroxyaryl aldehyde consistent with the definition of R may be used in the preparation of the germicides of this invention.
  • Preferred aldehydes are halogenated salicylaldehydes represented by such compounds as 3 ,5 -dichlorosalicylaldehyde, S-chlorosalicylaldehyde, 5-nitro-3-chlorosalicylaldehyde, 5-methyl-3-bromosalicylaldehyde, 5-methyl-3-chlorosalicylaldehyde, 3-methyl-S-chlorosalicylaldehyde and 3-bromo-S-t-butylsalicylaldehyde.
  • the preferred compounds of this invention are those in which R is a halogenated ortho hydroxyphenyl group, the 4-aryl group (i.e., the R radical) is a monocyclic radical and both R and R are hydrogen.
  • the compounds of this invention are effective against 'Gram positive bacteria including Staphylococcus aureus and other Gram positive bacteria including those known to decompose perspiration into odoriferous products.
  • Staphylococcus aureus When applied to cloth from a solution (by a padding procedure), they suppress Staphylococcus aureus development in the contact area and in the area beyond as well.
  • the activity against Staphylococcus aureus outlasts many washings.
  • germicides of this invention have affinity for fibers when applied from an aqueous bath at even slightly elevated temperatures. They have notably strong affinity for cotton and may be applied thereto at temperatures as low as those encountered in laundering operations, or at the higher temperatures normally used in dyeing operations, i.e., near the boil.
  • the germicides of this invention have aflinity for other fibers such as nylon, acetate and the like when applied as described above.
  • the compounds of this invention are compatible with all types of non-ionic and anionic detergents with which they form the germicidal compositions of this invention.
  • the germicide becomes attached to the fiber thus rendering it sterile for long periods.
  • Detergent compositions having from about 0.1 to 5.0% germicide on the weight of the detergent supply an adequate amount of germicide to the fabric in normally used concentrations of detergent.
  • concentration of the germicide may be adjusted to between 0.05% and 0.5% O.W.F. (on the weight of the fiber).
  • Organic anionic detergents which may be employed to formulate the compositions of this invention include alkali metal fatty acid soaps, such as, sodium and potassium salts of higher fatty acids such as, stearic, oleic, linoleic, ricinoleic, palmitic, myristic, lauric and capric acids and mixtures thereof. These salts may be in their pure state or mixed, and, in the form of kettle soaps derived from the saponification of animal or vegetable fats and oils such as lard, tallow, coconut oil, babassu oil, olive oil, castor oil, cotton seed oil, and the like; and, in addition, the Well known surface-active alkali metal sulfonates and sulfates.
  • alkali metal fatty acid soaps such as, sodium and potassium salts of higher fatty acids such as, stearic, oleic, linoleic, ricinoleic, palmitic, myristic, lauric and capric acids and mixture
  • alkali metal fatty acid soaps may be employed as the sole detergent base or in admixture with alkali metal fatty acid soaps, as for example, 1 part of fatty acid soap to 0.5 to 2 parts by weight of the surface active alkali metal sulfonate or sulfate or mixture thereof.
  • a preferred type within this class is the long chain alkylarylsulfonates, i.e., those wherein the alkyl group is straight or branched and contains from 8-22 carbon atoms, but preferably 10-16 carbon atoms, examples of which are octyl, decyl, dodecyl, pentadecyl, hexadecyl, octadecyl, mixed long chain alkyls derived from long chain fatty acids such as the lauryl radicals, cracked parafiin wax olefins, polymers of low mono-olefin such as the tetramer propylene and the like; and wherein the aryl radical is derived from benzene, toluene, xylene, phenol, the cresols, naphthalene and the like.
  • anionic sulfate detergents having 12-26 carbon atoms particularly those having an acyl radical of about 8-22 carbon atoms, may be employed herein.
  • These include sulfuric acid esters of poly-hydric alcohols incompletely esterified with fatty acids, e.g., sodium coconut oil monoglyceride monosulfate, sodium tallow diglyceride monosulfate, the pure and mixed alkyl sulfates, and higher sulfates such as sodium lauryl sulfate and sodium cetyl sulfate.
  • Additional anionic surface active sulfonates and sulfates contemplated by this invention are the sulfonated and sulfated alkyl acid amides (e.g., Igepon T of the formula C H CONHCH CH SO Na) and sulfated and sulfonated esters (e.g., Igepon AT of the formula wherein R is an alkyl radical containing from 12-18 carbon atoms), sodium salt of the bisulfate of a dialkyl dicarboxylate, the sodium salt of the sulfonic acid derivative of a dialkyl dicarboxylate, sodium sulfosuccinated esters such as NaOOCCH CH(SO Na)CONHC H and the like.
  • Igepon T of the formula C H CONHCH CH SO Na
  • esters e.g., Igepon AT of the formula wherein R is an alkyl radical containing from 12-18 carbon atoms
  • R is an alkyl radical containing from 12-18 carbon
  • nonionic surface active agents are useful in the germicidal compositions of this invention.
  • Non-ionic surface active agents which may be used are generally viscous, wax-like, water-soluble surface active substances containing a polyglycol ether group of the structure wherein Z and Z are hydrogen or a lower alkyl, p is an integer greater than three and Z is the residue of a monomeric organic compound having an active hydrogen, as for example, an alcohol, a phenol, an amide, a primary amine (e.g., stearyl and lauryl amines), a secondary amine (e.g., dibutylamine), a carboxylic acid or the like.
  • a primary amine e.g., stearyl and lauryl amines
  • secondary amine e.g., dibutylamine
  • non-ionic detergents are well known (e.g., U.S. 1,970,578 and U.S. 2,213,477) and may be typified by polyalkylene oxide derivatives (e.g., polyethylene oxide, polypropylene oxide, polybutylene oxide) of water-insoluble high fatty acids, such as lauric, oleic, polymetic and stearic and the like.
  • polyalkylene oxide derivatives e.g., polyethylene oxide, polypropylene oxide, polybutylene oxide
  • water-insoluble high fatty acids such as lauric, oleic, polymetic and stearic and the like.
  • Alkylene oxide derivatives of such water-insoluble organic hydroxy compounds as the fatty alcohols, phenols (particularly those having alkyl groups such as either isooctyl-, -t-butyl-, trisopropyl-, nonyl-, dodecylor octadecyl-phenol), or aralkyl alcohols (e.g., benzyl alcohol) and the like are likewise useful. They may also be exemplified by the polyalkylene oxide derivatives of such amines as stearyl, lauryl, dicyclohexyl, dibutylamine and the like.
  • a mixture of an anionic and a non-ionic surface active agent may be used in preparing a germicidal composition of this invention.
  • a solution of 5.73 parts of 3,S-dichlorosalicyladehyde in 20 parts by volume of alcohol is added to a solution of 3.78 parts of 4-phenylsemicarbazide in 40 parts by volume of alcohol.
  • the precipitate which .forms upon standing and cooling, is filtered and dried.
  • the cake is refluxed with 100 parts by volume of alcohol, and cooled.
  • the product is separated by filteration and dried in a vacuum oven.
  • EXAMPLE 8 A series of products similar to the [foregoing is prepared by the general method given below. Table I shows the combinations used and the germicidal activity of the y products obtained.
  • the diameter of the inhibition area is measured and recorded in millimeters.
  • 12.0 means that the area is clear under the 11.5 mm. disc plus an extra 0.5 mm. clarity.
  • 120p means that the area is partially inhibited under the 11.5 mm. disc plus a partially inhibited extra 0.5 mm. area in diameter.
  • a single measurement is reported after averaging the measurements, provided they are within 1.5 mm. of each other. If they are more than 1.5 mm. apart, the reading for each disc is recorded separately.
  • Example 1 0. 5 17.0 Example 3"- 0. 5 2%. 2 0. 5 1 .4 Example 4 i 1. 0 18. 7 Example 5 0.5 P-C; 12.0 Example 6 0.5 14. 5 Example 7 0.5 12.3; 13.4p
  • Example 9B A stock solution containing the product of Example 3 is prepared by the method of Example 9B. For 0.1% and 0.5% applications, water to make 100 ml. is added to 10 ml. and ml. portions, respectively. No detergent solution is used. A 5-g. sample of fabric is entered and the application procedure continued as in Example 9B. The dried treated fabric is tested for activity against Staph. aureus, giving the results shown below:
  • Example 9B Stock solutions of the compounds of Examples 3 and 4 are prepared as in Example 9B, and each is added to an anionic detergent comprising 17% of an alkyl benzene sulfonate, an alcohol sulfate and 40% sodium tripolyphospha-te plus inert ingredients.
  • an anionic detergent comprising 17% of an alkyl benzene sulfonate, an alcohol sulfate and 40% sodium tripolyphospha-te plus inert ingredients.
  • the cotton treated by the detergent bath method with these solutions exhibits the following activity:
  • EXAMPLE 14 A mixture of one part of the product of Example 1 and 99 parts of an anionic detergent comprising sodium dodecylnaphthalenesulfonate is prepared by dissolving the product of Example 1 in a minimum amount of alcohol and adding the solution to a solution of the detergent in a minimum of Water. The resulting mixture is then dried in a vacuum. The product can be used directly as the detergent in a laundering operation to produce sterile germicidally treated textiles.
  • Example 15 The procedure of Example 16 is followed using a non-ionic detergent comprising a polyoxyethylene ester of stearic acid in place of the anionic detergent. A similarly usable product is obtained.
  • EXAMPLE 16 To hot soap, made by saponifying a mixture of parts of tallow and 20 parts of cocoanut oil With caustic soda lye and evaporating, is added with crutching,
  • a germicidal detergent composition comprising a detergent selected from the group consisting of anionic and nonionic detergents and from 0.1 to 5.0% by weight of the detergent of a germicidal compound of the formula:
  • composition of claim 1 wherein the germicidal compound is of the formula:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

United States Patent 3,274,115 GERMICIDAL COMPOSITIONS Walter J. Sydor, Somerville, N.J., assignor to American Cyanamid Company, Stamford, Conn., a corporation of Maine N 0 Drawing. Original application Apr. 26, 1962, Ser. No. 190,257, now Patent No. 3,182,082, dated May 4, 1965. Divided and this application Dec. 26, 1962, Ser. No. 247,289
Claims. (Cl. 252-106) This application is a division of Serial No. 190,257, filed April 26, 1962, now U.S. Patent No. 3,182,082.
This invention relates to new germicides and to detergent compositions containing said germicides. More specifically, this invention relates to compounds of the formula:
R2 Re wherein R is a halogenated ortho-hydroxyaryl radical of less than three 6-membered rings, the halogens of which have an atomic number between 16 and 36, R is hydrogen or lower alkyl, R is either hydrogen, lower alkyl, aralkyl (e.g., benzyl and phenethyl), cycloalkyl, aryl (e.g., phenyl, tolyl or xylyl), R is aryl (e.g., phenyl, tolyl, xylyl and naphthyl) and Q is oxo or thiono. More specifically, it relates further to detergent compositions comprising non-ionic or anionic detergents and germicides of the class represented by Formula I.
In recent years, increased attention has been given to the development at textile finishes which have become known as purifying finishes. These are intended to reduce the number of microorganisms able to exist on the material. These purifying finishes, when applied to articles of clothing worn close to the body, are also helpful in preventing the development of body odors.
A satisfactory purifying finish should be durable and active at low concentrations against a broad spectrum of microorganisms. It should be non-toxic and nonallergenic. Yet it must maintain its activity even against new strains of organisms which may develop as a result of using the germicidal agent in the finish. It should impart little or no color to the fabric and should be stable with respect to color and activity for many months under storage and shipping conditions. It should be resistant to the conditions used in laundering and dry cleaning. It should impart little or no modification of the hand of the textile and be substantive to the fiber. It should be compatible with dyes and resins found in textile finishes.
Various textile purifying finishes containing antibacterial substances such as hexachlorophene, tetrachlorophene, quaternary ammonium compounds such as dimethylbenzyl ammonium chloride, organo-metallic complexes of mercury, copper and silver, and others have been used, but these are for the most part nondurable and unsatisfactory in other respects, especially in their inability to exhaust from a laundry bath.
Substantivity on the fiber and durability of the antibacterial action are probably the two most important attributes for a purifying finish. Without substantivity, the germicide is merely a coating to be rubbed or washed off by the first treatment to which it is subjected. Substantivity, or affinity for the fiber, is, therefore, one of the main factors in durability; however, durability must also be a function of the stability of the germicidal compound to oxidation by air and degradation by light and heat or the like.
An especially important aspect of substantivity is the ability to exhaust from laundering baths in the same way that a dye exhausts from a dye bath. If a germicidal soap is to have the Widest utility, it must be applicable from regular laundering solutions during the laundering operations, whether in the home, the hospital or the commercial laundry. Repeated launderings will then have the effect of increasing, rather than depleting the concentration of the germicide on the fiber. Known germicidal compositions lack true substantivity under these conditions and thus are drastically limited in their effective utility.
In accordance with this invention, it has been found that a new class of compounds are durably germicidal and at the same time are substantive to textiles under laundering conditions thus making them eminently suitable as textile purifying finishes. This class of compounds, defined above, has high anti-bacterial action and is fast to washing. Within this class is an especially preferred group of substantive germicides represented by the formula:
wherein X is a halogen of atomic number between 16 and 36, m is 1, 2 or 3, Y is lower alkyl or nitro, n is 0, 1 or 2 and Ar is an aromatic, carbocyclic aryl radical of less than three 6-membered rings which may be substituted by chlorine, bromine, lower alkoxy and lower alkyl radicals.
The new compounds of this invention may be prepared by condensing a halogenated ortho-hydroxyaryl aldehyde wherein the aryl moiety corresponds to R defined above (especially halogenated salicylaldehydes) with a 4-aryl-3-semicarbazide or a 4-aryl-3-thio semicarbazide of the formula:
wherein R R R and Q are as defined above. The condensation reaction is conducted under conventional reaction conditions and proceeds along the lines of the following equation:
Generally, any halogenated ortho-hydroxyaryl aldehyde consistent with the definition of R may be used in the preparation of the germicides of this invention. Preferred aldehydes are halogenated salicylaldehydes represented by such compounds as 3 ,5 -dichlorosalicylaldehyde, S-chlorosalicylaldehyde, 5-nitro-3-chlorosalicylaldehyde, 5-methyl-3-bromosalicylaldehyde, 5-methyl-3-chlorosalicylaldehyde, 3-methyl-S-chlorosalicylaldehyde and 3-bromo-S-t-butylsalicylaldehyde.
Illustrative of the thiosemicarbazides and semicarbazides useful for the practice of this invention are:
4-phenyl-3-thiosemicarbazide,
4-0, m or p-tolyl-3-thiosemicarbazide,
4-0, m or p-methoxyphenyl-3-thiosemicarbazide, 4-o, m or p-chlorophenyl-3-thiosemicarbazide, 4-(3,5-dichlorophenyl)-3-thiosemicarbazide,
4-( 3 ,4,5-trichlorophenyl) -3-thiosemicarb azide, 4-(0, m or p-bromophenyl)-3-thiosemicarbazide, 4-(3,5-dibrornophenyl)-3-thiosemicarbazide, 4-(ccor B-naphthyl)-3-thiosemicarbazide,
4-(o-, m-, or p-biphenyl)-3-thiosemicarbazide, 4-phenyl-3-semicarbazide,
badizes useful for the practice of this invention are: 4-(0, m or p-tolyl)'-3-semicarbazide and 4-(onor fl-naphthyl)-3-semicarbazide.
The preferred compounds of this invention are those in which R is a halogenated ortho hydroxyphenyl group, the 4-aryl group (i.e., the R radical) is a monocyclic radical and both R and R are hydrogen.
The compounds of this invention are effective against 'Gram positive bacteria including Staphylococcus aureus and other Gram positive bacteria including those known to decompose perspiration into odoriferous products. When applied to cloth from a solution (by a padding procedure), they suppress Staphylococcus aureus development in the contact area and in the area beyond as well. The activity against Staphylococcus aureus outlasts many washings.
It is an important advantage of the germicides of this invention that they have affinity for fibers when applied from an aqueous bath at even slightly elevated temperatures. They have notably strong affinity for cotton and may be applied thereto at temperatures as low as those encountered in laundering operations, or at the higher temperatures normally used in dyeing operations, i.e., near the boil.
In addition to cotton, the germicides of this invention have aflinity for other fibers such as nylon, acetate and the like when applied as described above.
The compounds of this invention are compatible with all types of non-ionic and anionic detergents with which they form the germicidal compositions of this invention. During the process of laundering therewith, the germicide becomes attached to the fiber thus rendering it sterile for long periods. Detergent compositions having from about 0.1 to 5.0% germicide on the weight of the detergent supply an adequate amount of germicide to the fabric in normally used concentrations of detergent. When it is desired to use either greater or lesser concentrations of detergent, the concentration of the germicide may be adjusted to between 0.05% and 0.5% O.W.F. (on the weight of the fiber).
Organic anionic detergents which may be employed to formulate the compositions of this invention include alkali metal fatty acid soaps, such as, sodium and potassium salts of higher fatty acids such as, stearic, oleic, linoleic, ricinoleic, palmitic, myristic, lauric and capric acids and mixtures thereof. These salts may be in their pure state or mixed, and, in the form of kettle soaps derived from the saponification of animal or vegetable fats and oils such as lard, tallow, coconut oil, babassu oil, olive oil, castor oil, cotton seed oil, and the like; and, in addition, the Well known surface-active alkali metal sulfonates and sulfates. The latter may be employed as the sole detergent base or in admixture with alkali metal fatty acid soaps, as for example, 1 part of fatty acid soap to 0.5 to 2 parts by weight of the surface active alkali metal sulfonate or sulfate or mixture thereof. A preferred type within this class is the long chain alkylarylsulfonates, i.e., those wherein the alkyl group is straight or branched and contains from 8-22 carbon atoms, but preferably 10-16 carbon atoms, examples of which are octyl, decyl, dodecyl, pentadecyl, hexadecyl, octadecyl, mixed long chain alkyls derived from long chain fatty acids such as the lauryl radicals, cracked parafiin wax olefins, polymers of low mono-olefin such as the tetramer propylene and the like; and wherein the aryl radical is derived from benzene, toluene, xylene, phenol, the cresols, naphthalene and the like. Specific examples of these comprise sodium decylbenzene sulfonate, sodium dodecylbenzene sulfonate, sodium lauryl benzene sulfonate, and sodium hexadecylbenzene sulfonate. Other sulfonate surface active agents are contemplated also, as for example, the long chain alkyl sulfonates such as sodium hexadecylsulfonate and sodium octadecylsulfonate.
The well known anionic sulfate detergents having 12-26 carbon atoms, particularly those having an acyl radical of about 8-22 carbon atoms, may be employed herein. These include sulfuric acid esters of poly-hydric alcohols incompletely esterified with fatty acids, e.g., sodium coconut oil monoglyceride monosulfate, sodium tallow diglyceride monosulfate, the pure and mixed alkyl sulfates, and higher sulfates such as sodium lauryl sulfate and sodium cetyl sulfate.
Additional anionic surface active sulfonates and sulfates contemplated by this invention are the sulfonated and sulfated alkyl acid amides (e.g., Igepon T of the formula C H CONHCH CH SO Na) and sulfated and sulfonated esters (e.g., Igepon AT of the formula wherein R is an alkyl radical containing from 12-18 carbon atoms), sodium salt of the bisulfate of a dialkyl dicarboxylate, the sodium salt of the sulfonic acid derivative of a dialkyl dicarboxylate, sodium sulfosuccinated esters such as NaOOCCH CH(SO Na)CONHC H and the like.
In addition to the anionic surface active agents, nonionic surface active agents are useful in the germicidal compositions of this invention. Non-ionic surface active agents which may be used are generally viscous, wax-like, water-soluble surface active substances containing a polyglycol ether group of the structure wherein Z and Z are hydrogen or a lower alkyl, p is an integer greater than three and Z is the residue of a monomeric organic compound having an active hydrogen, as for example, an alcohol, a phenol, an amide, a primary amine (e.g., stearyl and lauryl amines), a secondary amine (e.g., dibutylamine), a carboxylic acid or the like. These non-ionic detergents are well known (e.g., U.S. 1,970,578 and U.S. 2,213,477) and may be typified by polyalkylene oxide derivatives (e.g., polyethylene oxide, polypropylene oxide, polybutylene oxide) of water-insoluble high fatty acids, such as lauric, oleic, polymetic and stearic and the like. Alkylene oxide derivatives of such water-insoluble organic hydroxy compounds as the fatty alcohols, phenols (particularly those having alkyl groups such as either isooctyl-, -t-butyl-, trisopropyl-, nonyl-, dodecylor octadecyl-phenol), or aralkyl alcohols (e.g., benzyl alcohol) and the like are likewise useful. They may also be exemplified by the polyalkylene oxide derivatives of such amines as stearyl, lauryl, dicyclohexyl, dibutylamine and the like.
A mixture of an anionic and a non-ionic surface active agent may be used in preparing a germicidal composition of this invention.
This invention is further illustrated by the following examples in which parts are by weight unless otherwise specified.
EXAMPLE 1 Six and one-half parts of 3,S-dichlorosalicylaldehyde is dissolved in 50 parts by volume of boiling alcohol and the solution is added to a hot slurry of 6.3 parts of 4-(pchlorophenyl)-3-thiosemicarbazide in 200 parts of alcohol. A clear solution forms temporarily. =On stirring, a granular precipitate forms which is isolated by filtration and dried. The product is recrystallized by dissolving in boiling methoxyethanol and adding an equivalent volume of water. The product is isolated by filtration and dried.
Similarly, when 4-(p-methoxyphenyl)-3-thiosemicarbazide is used in place of the 4-(p-chlorophenyl)-3-thiosemicarbazide in equivalent amounts, the corresponding methoxy derivative is obtained.
Six and one half parts of 3,5-dichlorosalicylaldehyde is dissolved in 50 parts by volume of boiling alcohol and the solution added to a hot solution of 6.3 parts of 4-(0- chlorphenyl)-3-thiosemicarbazide in 150 parts by volume of alcohol. A slurry forms Which on stirring and standing, thickens. The product is isolated by filtration and recrystallized from methoxyethanol. It is filtered and dried.
EXAMPLE 3 4-o-tolyl-3-thiosemicarbazide, 4-o-methoxyphenyl-3-thiosemicarbazide,
4- fi-naphthyl) -3-thiosemicarb azide,
4- 3,4-dichlorophenyl -3-thiosemicarbazide and 4- 2,4,6-trichlorophenyl -3-thiosemicarbazide,
the corresponding 4-o-tolyl, 4-o-rnethoxyp'henyl, 4-(,B- naphthyl), 4-(3,4-dichlorophenyl), and 4-(2.,4,6-trichlorophenyl) derivatives of 3,S-dichlorosalicylaldehyde are respectively obtained.
EXAMPLE 4 Br OH I I E 8.2 parts of 4-phenyl-3-thiosemicarbazide is dissolved in 60 parts by volume of boiling alcohol and added to a hot solution of 16.7 parts of 3,S-dibromosalicylaldehyde in 120 parts by volume of alcohol. A paste forms which is stirred occasionally and allowed to stand. The prodnet is filtered off and dissolved in 1,500 parts by volume of hot alcohol. On standing and cooling to room temperature, the product precipitates and it is isolated by filtration and dried.
EXAMPLE 5 o oH=N-NH (":-NH
I CI
4.7 parts of 5-chlorosalicylaldehyde is dissolved in 20 parts by volume of alcohol. This solution is added to a hot solution of 378 parts of 4-phenylsemicarbazide in 40 parts by volume of alcohol. After standing and cooling, the product is filtered and dried in vacuum. It is then purified by refluxing with parts by volume orf alcohol. The mixture is then cooled, filtered and dried in a vacuum oven.
When 4-phenyl-3-thiosemicarbazide in an equivalent amount is used in place of the semicarbazide used above,
r the corresponding thiosemicarbazone is obtained. 6
A solution of 5.73 parts of 3,S-dichlorosalicyladehyde in 20 parts by volume of alcohol is added to a solution of 3.78 parts of 4-phenylsemicarbazide in 40 parts by volume of alcohol. The precipitate which .forms upon standing and cooling, is filtered and dried. The cake is refluxed with 100 parts by volume of alcohol, and cooled. The product is separated by filteration and dried in a vacuum oven.
A hot solution of 5.73 parts of 3,S-dichlorosalicylaldeis added to a hot solution of 4.53 parts of 4-phenyl-2- methyl-3-thiosemicanbazide in 40 parts by volume of alco- 1101. After standing and cooling, the precipitated product is isolated by filtration, dried and recrystallized from alcohol.
EXAMPLE 8 A series of products similar to the [foregoing is prepared by the general method given below. Table I shows the combinations used and the germicidal activity of the y products obtained.
bath, and tested for germicidal activity by procedures outlined immediately following Table I below:
times in distilled water having a temperature of 80-90 F. and air-dried at room temperature.
TABLE I Activity Versus Staph. Aureus Padding Detergent Bath No. Reactants Condensed Percent Zone Percent Zone Weight (nnn.) Weight (mm.)
(OWF) (OWF) (a) 3,5-dibromosalicylaldehyde, 4-(p- 0. 5 l5. 3 0. 5 13. 3 ehlorophenyl)3-thiosemicarbazide. 0. 1 12. 6 0.05 C
(b) 3,5,6-trichlorosalieylaldehyde. 0. 5 14. 9 0. 5 12. 6 4-phenyl-3-thiosemiearbazide. O. l I? (c)- 3, 5-dichlorosalieylaldehyde, i-(p-tolyl) 0. 5 19. 0. 14. 2 3-thi0semicarbazide. 0. 1 12. 3 l3. 3P
(d) 3,5-dichlorosalicylaldehyde, 2,4- 0. 5 12. 0,
. diphenyl-3-thiosemicarbazide. 12. 4p
(e) 3,5-diehlorosalicylaldehyde, 4,4- 0. 5 12. Up
diphenylsemicarbazide.
(f) 3,5-dichlorosalicylaldehyde, 4-(a- 0. 5 16. 8 0. 5 12.4
naphthyl)-3thiose1nicarbazide. 0. 1
1 On weight of the fiber.
EXAMPLE 9 A. Procedure for padding on cotton and washing padded fabrics To 0.588 g. of the compound to be tested is added 99.412 g. of dimethylformamide to give a total of 100 g. of solution. The solution is placed in a pad box. One yard of 80 X 80 cotton percale 1 6 inches Wide and weighing about 38-40 g. is dipped once through the pad box containing the solution and then nipped once through 18-inch rollers of a microset padder adjusted at 25 pounds standing and cooling, is filtered and dried. The cake is fabric is then pinned taut on a frame and placed in an oven circulating hot air at 225 F. for 2 minutes which completely dries it. It is then subjected to the procedure given in Part C for determining its germicidal activity.
To determine the durability of the attachment of the germicidal compound, a 20" x 20 piece of padded 80 X 80 cotton is put through five or more washing cycles. Each cycle consists of the following operation:
A commercial automatic washing machine having capacity for a 6-lb. load is filled with water at 140 F. and sufiicient neutral soap added to make a 0.1% soap solution. The volume of water is about gallons. A 6-lb. load of cotton, including the test sample of 80 X 80 padded cotton, is added and a washing period of minutes ensues. This is followed by a 10-minute rinse period using water at 120 F. and then another rinse period of tfive minutes using water at 100 F. After that, the load is spun to semi-dryness. Total cycle is about 40 minutes.
B. Procedure for applying germicide from a detergent bath 50 mg. of the germicide is dissolved in 1 ml. of dimethylformamide. One drop of Triton X-100 (Reg. T.M.), a wetting and dispersing agent which is an alkyl aryl polyether alcohol, is added and the solution made up to 100 ml. with distilled water. This gives a stock solution of the germicide for application to the fabrics.
For a 0.05% O.W.F. application on 80 X 80 cotton fabric, 5 ml. of the stock solution is added to 50 ml. of a 0.50% solution of an anionic detergent containing 35% of sodium dodecyl benzene sulfonate, and 40% of sodium tripolyphosphate plus inert constituents. This mixture is made up to a total of 100 ml. with distilled water. A S-gram piece of 80 x 80 cotton is entered and treated for 20 minutes at 130 F. It is then rinsed three C. Procedure for evaluation of germicides A 20 ml. portion of sterile melted agar is added to a Petri dish and allowed to solidify. Another bottle containing ml. of sterile melted agar is cooled to F. and inoculated with 0.25 ml. of an overnight bacterial culture of Staphylococcus aureus grown in a nutrient agar broth. 4 ml. of the inoculated agar is uniformly spread over the hard base layer in the Petri dish and allowed to solidify on a level surface. This agar dish is then ready to receive test samples of fabric. At least two 11.5 mm. diameter discs of the 80 X 80 fabric having germicide applied from a detergent bath or padded on, are punched out of the test fabric. These discs are then carefully placed on the agar with forceps, about 1" apart. The Petri dishes are covered and kept at room temperature for 2 hours. The test discs are then removed with forceps and the dish is allowed to incubate for a total of 16-20 hours at 100 F. Where bacterial growth has taken place, the agar will be opaque. The sites of those discs having effective germicidal action, will remain clear. These clear areas contain no bacterial growth and are called zones of inhibition.
When no zone of inhibition occurs outside the area of the discs, i.e., outside of the 11.5 mm. area, the activity within this area is noted. The scale set up to describe this condition is as follows:
means complete inhibition, a clear zone in the area in contact with the cloth disc.
Pmeans partially or nearly complete inhibition in the area under the disc.
means [little or no inhibition; opacity is similar to that of the unhibited growth.
-means l025% inhibition.
VSmeans 0- l0% inhibition.
Where the area of inhibition extends beyond the 11.5 mm. diameter and is greater than that of the disc, the diameter of the inhibition area is measured and recorded in millimeters. Thus, 12.0 means that the area is clear under the 11.5 mm. disc plus an extra 0.5 mm. clarity. 120p means that the area is partially inhibited under the 11.5 mm. disc plus a partially inhibited extra 0.5 mm. area in diameter. A single measurement is reported after averaging the measurements, provided they are within 1.5 mm. of each other. If they are more than 1.5 mm. apart, the reading for each disc is recorded separately.
9 EXAMPLE 10 Compounds of the foregoing examples were tested for germicidal activity on cotton using the above described padding and detergent bath techniques A and B, respectively, of Example 9. The following table records the results.
TABLE II Gcrmieidal Activity vs.
Staph. aureus Concentration Compound of (OWF).
Percent Padding Detergent Bath Activity 5 Washings (mm.) Activity (mm.)
Example 1 0. 5 17.0 Example 3"- 0. 5 2%. 2 0. 5 1 .4 Example 4 i 1. 0 18. 7 Example 5 0.5 P-C; 12.0 Example 6 0.5 14. 5 Example 7 0.5 12.3; 13.4p
EXAMPLE 11 Cotton treated by the detergent bath method, Example 9B, with varying concentrations of the compound of Example .3 shows the following activity against Staph. aureus:
TABLE III Cone. Percent Activity vs. Staph.
(OWF) ameus (mm.)
P-C; 12. Up
EXAMPLE 12,
A stock solution containing the product of Example 3 is prepared by the method of Example 9B. For 0.1% and 0.5% applications, water to make 100 ml. is added to 10 ml. and ml. portions, respectively. No detergent solution is used. A 5-g. sample of fabric is entered and the application procedure continued as in Example 9B. The dried treated fabric is tested for activity against Staph. aureus, giving the results shown below:
Stock solutions of the compounds of Examples 3 and 4 are prepared as in Example 9B, and each is added to an anionic detergent comprising 17% of an alkyl benzene sulfonate, an alcohol sulfate and 40% sodium tripolyphospha-te plus inert ingredients. The cotton treated by the detergent bath method with these solutions exhibits the following activity:
TABLE V Compound Applied Cone. No. of Activity vs.
(OWF), Treatment Staph. aure'us percent (mm.)
Example 4 0. 5 1 14.7
0. 05 1 C; 12.01) 0. 05 5 P-C; 12.0p 0.05 10 C; 12.11)
Example 3 0. 5 1 16.1
EXAMPLE 14 A mixture of one part of the product of Example 1 and 99 parts of an anionic detergent comprising sodium dodecylnaphthalenesulfonate is prepared by dissolving the product of Example 1 in a minimum amount of alcohol and adding the solution to a solution of the detergent in a minimum of Water. The resulting mixture is then dried in a vacuum. The product can be used directly as the detergent in a laundering operation to produce sterile germicidally treated textiles.
When the detergent above is replaced with a mixture of the alkali metal salts of fatty acids (45% oleic and linoleic, 30% palmitic, 10% stearic, 15% lower fatty acids) a composition suitable for use in bar soap, is obtained.
The proportion of the product of Example 1 to the detergent can be varied from 1 part to 999 parts of detergent to 5 parts to 95 .parts of detergent, to give compositions of proportional .potency in germicidal activity.
EXAMPLE 15 The procedure of Example 16 is followed using a non-ionic detergent comprising a polyoxyethylene ester of stearic acid in place of the anionic detergent. A similarly usable product is obtained.
When the products of Examples 2, 3, 4, 5, 6 and 7 are used in place of that of Example 1, similar prodnets are also obtained.
When other non-ionic agents such as polyoxyethylene ethers are used in place of the above ester, similar products are obtained.
EXAMPLE 16 To hot soap, made by saponifying a mixture of parts of tallow and 20 parts of cocoanut oil With caustic soda lye and evaporating, is added with crutching,
0.2 part of sodium chloride 0.25 part of titanium dioxide 0.004 part of ED. & C. Red 4, Colour Index 14700 1.0 part of 70% soap grade geraniol 0.1 part of the product of Example 3 Crutching is continued until a homogeneous mixture is obtained. The mixture is poured into trays, cut into strips and fed into a bar cutting and moulding machine. A germicidal bar soap is thus obtained.
I claim:
1. A germicidal detergent composition comprising a detergent selected from the group consisting of anionic and nonionic detergents and from 0.1 to 5.0% by weight of the detergent of a germicidal compound of the formula:
it RiCH=NII IIC-III-R4 wherein R is a halogenated ortho-hydroxyaryl radical of less than three 6-membered rings, in which the halogen has an atomic number between 16 and 36, R is a member selected from the group consisting of hydrogen and lower alkyl, R is selected from the group consisting of hydrogen, lower alkyl, cycloalkyl, monocyclic ar(lower alkyl) and monoey clic aryl, R is :aryl of less 3. The composition of claim 1 wherein the germicidal compound is of the formula:
4. The composition of claim 1 wherein the germicidal compound is of the formula:
5. The composition of claim 1 wherein the germicidal compound is of the formula:
Cl OH 6. The composition of claim 1 wherein the germicidal compound is of the formula:
7. The composition of claim 1 wherein the germicidal compound is of the formula:
8. The composition of claim wherein the germicidal compound is of the formula:
9. The composition of claim 1 in which the detergent is an alkylarylsulfonate and the germicidal compound is of the formula:
10. The composition of claim 1 in which the detergent is a fatty acid soap and the germicidal compound is of the formula:
References Cited by the Examiner UNITED STATES PATENTS 2,261,735 11/1941 Gertler et al. 260-554 XR 2,263,948 11/ 1941 Halvorson et a1. 252-106 XR 2,354,192 7/ 1944 Bowen.
2,544,732 3/1951 Shectmeister.
2,867,659 1/1959 Model et al 252107 XR LEON D. ROSDOL, Primary Examiner.
JULIUS GREENWALD, Examiner.
W. E. SCHULZ, S. E. DARDEN, Assistant Examiners.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,274,115 September 20, 1966 Walter J. Sydor It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 3, line 15, strike out "bazides useful for the practice of this invention are:" and insert instead 4-(o,m or )chlorophenyl)-3-semicarbazide, column 7, line 40, strike out "standing and cooling, is filtered and dried. The cake is" and insert instead pressure, The takeup of the solution is 85%. The column 10 lines 67 and 68 for that portion of the formula reading:
read -N Signed and sealed this 22nd day of August 1967a (SEAL) Attest:
ERNEST W. SWIDER EDWARD J BRENNER Attesting Officer Commissioner of Patents

Claims (1)

1. A GERMICIDAL DETERGENT COMPOSITION COMPRISING A DETERGENT SELECTED FROM THE GROUP CONSISTING OF ANIONIC AND NONIONIC DETERGENTS AND FROM 0.1 TO 5.0% BY WEIGHT OF THE DETERGENT OF A GERMICIDAL COMPOUND OF THE FORMULA:
US247289A 1962-04-26 1962-12-26 Germicidal compositions Expired - Lifetime US3274115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US247289A US3274115A (en) 1962-04-26 1962-12-26 Germicidal compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US190257A US3182082A (en) 1962-04-26 1962-04-26 Salicylaldehyde-semicarbazones
US247289A US3274115A (en) 1962-04-26 1962-12-26 Germicidal compositions

Publications (1)

Publication Number Publication Date
US3274115A true US3274115A (en) 1966-09-20

Family

ID=26885918

Family Applications (1)

Application Number Title Priority Date Filing Date
US247289A Expired - Lifetime US3274115A (en) 1962-04-26 1962-12-26 Germicidal compositions

Country Status (1)

Country Link
US (1) US3274115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885042A (en) * 1972-02-09 1975-05-20 Philips Corp Benzylidenesemicarbazide compounds having insecticidal activity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2261735A (en) * 1940-04-05 1941-11-04 Henry A Wallace Insecticide
US2263948A (en) * 1938-10-31 1941-11-25 Economics Lab Germicidal detergent
US2354192A (en) * 1943-09-25 1944-07-25 Claude R Wickard Insecticide
US2544732A (en) * 1945-09-27 1951-03-13 Isaac L Shechmeister Method for rendering a fabric germicidal
US2867659A (en) * 1953-12-22 1959-01-06 Geigy Ag J R Polyhalogen substituted monohydroxydiphenyl urea and thiourea compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2263948A (en) * 1938-10-31 1941-11-25 Economics Lab Germicidal detergent
US2261735A (en) * 1940-04-05 1941-11-04 Henry A Wallace Insecticide
US2354192A (en) * 1943-09-25 1944-07-25 Claude R Wickard Insecticide
US2544732A (en) * 1945-09-27 1951-03-13 Isaac L Shechmeister Method for rendering a fabric germicidal
US2867659A (en) * 1953-12-22 1959-01-06 Geigy Ag J R Polyhalogen substituted monohydroxydiphenyl urea and thiourea compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885042A (en) * 1972-02-09 1975-05-20 Philips Corp Benzylidenesemicarbazide compounds having insecticidal activity

Similar Documents

Publication Publication Date Title
US3852441A (en) Synergistic mixtures of diphenylbismuth acetate and the zinc salt of 1-hydroxy-2-pyridine thione effect as antibacterial and antifungal agents
US3637495A (en) Agent for the posttreatment of laundry
US4504541A (en) Antimicrobial fabrics having improved susceptibility to discoloration and process for production thereof
US3689550A (en) N-hydroxyphenyl-n{40 -phenylureas
US3281366A (en) Synergistic antibacterial compositions
US3134711A (en) Halogenated salicylanilide-halogenated trifluoromethyldiphenyl urea synergistic composition
US3445398A (en) Synergistic antibacterial compositions
US3182082A (en) Salicylaldehyde-semicarbazones
US3244636A (en) Antimicrobial detergent compositions
US3740191A (en) Antibacterial laundry oil and dust control oil composition
US3576843A (en) Halogenated 2-acyloxy-diphenylethers
US3088916A (en) Bacteriostatic and fungistatic cleansing compositions
US3274115A (en) Germicidal compositions
US3925227A (en) Novel laundering compositions
US4323466A (en) Germicide
US2692862A (en) Cleansing compositions having antibacterial properties
US4406809A (en) Disinfecting cleaning intensifier for dry cleaning
DE2039450A1 (en) Antimicrobial bleaching textile treatment agents
US3485919A (en) Antibacterial composition
US3592837A (en) Bis-(phenoxyphenyl) carbonates
US3546255A (en) Furan-2,5-dicarboxylic acid diamides
US3223582A (en) Antimicrobic compositions and use thereof
US3788803A (en) Method of concurrently dyeing and imparting durable bioactive proper- ties to synthetic textiles
US3245914A (en) Germicidal alkylhalodiphenyl oxide sulfonate compositions
US3529015A (en) Alkylhalodiphenyl oxide sulfonates