US3260229A - Automatic stabilizer for watercraft - Google Patents

Automatic stabilizer for watercraft Download PDF

Info

Publication number
US3260229A
US3260229A US435383A US43538365A US3260229A US 3260229 A US3260229 A US 3260229A US 435383 A US435383 A US 435383A US 43538365 A US43538365 A US 43538365A US 3260229 A US3260229 A US 3260229A
Authority
US
United States
Prior art keywords
stabilizer
stabilizing element
axis
hull
craft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US435383A
Inventor
Plum John
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US435383A priority Critical patent/US3260229A/en
Priority to US550071A priority patent/US3379158A/en
Application granted granted Critical
Publication of US3260229A publication Critical patent/US3260229A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B39/061Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water by using trimflaps, i.e. flaps mounted on the rear of a boat, e.g. speed boat

Definitions

  • This invention relates to a stabilizing arrangement for stepped planing bulls and more particularly to a stabilizing arrangement which is an improvement on the device shown, described, and claimed in US. Patent No. 1,618,995; US. Patent No. 1,779,095; and US. Patent No. 1,875,135.
  • the forward planing surface If the forward planing surface is carrying a load, it will carve a groove in the Water into which the afterbody will settle, thereby increasing the trim angle of the forebody. This increase will, in turn, increase the depth of the groove into which the afterbody will further settle. It is a vicious circle or chain reaction which greatly affects not only the trim angle of the stepped hu'll but also its pitching motions, which may be amplified into violent porpoising at high speed.
  • the amplifying effect of the downwash from the forward area can be curtailed by reducing the load on the forward planing surface to a minimum because, with a negligible load forward, there will be a negligible deflection of the water and, therefore, no amplifying effect.
  • a forward load i.e., a mass on the wave impact area
  • the pitching motions of the bow will be excessive and, if the waves'are permitted to pass the forebody without being dispersed, the acceleration or pounding of the hulls afterbody will be violent and the bow portion of the hull will drop faster than a freely falling body. This phenomenon was clearly demonstrated during the last war when crew members inthe forward sections of PT. boats were seen standing in midair.
  • the stern extension is a rigid part of the hull. To eliminate the maximum pounding and/or.
  • the surfboard (or the stabilizer) must, therefore, be free to follow the irregularities in the water surface on which it is riding without enforcing these on the rigid stern extension.
  • the stabilizer supports the stern extension through a cushion of compressed air
  • the magnitude of the trim angle is an important factor involved in the wavemaking resistance (called the induced drag) of planing hulls.
  • the induced drag is an important factor involved in the wavemaking resistance (called the induced drag) of planing hulls.
  • FIG. 1 is shown 1 typical empirical resistance curve for a planing hull at the representative speed of 50 knots.
  • cambered bottom lines cannot be used in stepless planing hulls without causing a nosedown attitude which will increase the wetted area of the forebody and the tendency to broach in following seas.
  • the efficiency of the camber when combined with control of trim has been confirmed in actual service by the stepped hulls of flying boats, such camber having been previously incorporated into the stepped hulls of flying boats by the US. Navy (1927). Further confirmation was provided by F. W. Horenburger, surveyor of the American Power Boat Association, who timed a 500-h.p., 40-ft. stabilized stepped hull with a cambered planing surface at 62.5 m.p.h. Its maximum speed was attained with a ballast of 4000 pounds or a 33 percent increase of the hull weight. In this case the stabilizer carried about 15 percent of the load or some 2000 pounds while 14,000 pounds was carried by the forward planing surface.
  • the present invention improves the speed and comfort of small craft. And since the present invention permits the pilot to reduce the trim in head seas and increase it in following seas, the invention is also an improvement in the safety of the small craft.
  • an object to the present invention to provide a stabilizer for a stepped planing hull which may be controlled to have negative and positive trim angles and further to have hydrodynamic surface-s which are simple to manufacture and which are capable of providing lift action without causing directional forces.
  • the present invention when applied to flying boat stepped hull configurations enhances not only the takeoff mode of the aircraft but also enhances its landing mode. For example, during the takeoff mode, the increasing trim angle of the hull during acceleration is also enforced on the stabilizer which will travel submerged until its trim angle has become sufliciently lift producing to enable it to break through the water surface and become a surf riding aquaplane. Once the stabilizer acts as an aquaplane, the drag induced on the afterbody of the aircraft is so greatly reduced that the airplane may easily take off with loads substantially greater than would be otherwise possible without the stabilizer.
  • the further advantage accruing to the present invention is the fact that when the flying boat is initially moved in its takeoff mode, the stabilizer is at a negative trim angle. Therefore, upon movement of the aircraft, the stabilizer tends to pull down on the stern portion of the aircraft thereby forcing the aircraft into an initially positive trim angle and further counteracting the moments of the thrust of the propellers which would tend to cause the airplane to nose down.
  • the stabilizer During the landing mode of the flying boat, as the aircraft approaches and makes contact in its stern portion with the water, the stabilizer has a negative trim angle tending to pull down the stern, slowing down the aircraft and preventing the aircraft from nosediving.
  • a principal object of the present invention is to provide a stabilizing arrangement enabling heavily loaded stepped flying boat hulls to acquire the optimum trim angle or lift-drag ratio during the time the flying boat is accelerated to higher speeds.
  • FIG. 1 is a graph depicting drag characteristics of planing craft
  • FIG. 2 is a view in modified longitudinal cross-section of the stern portion of a stepped planing hull provided with a stabilizer shown in its retracted position and control means therefor in accordance with the invention;
  • FIGS. 3 and 4 are views in modified longitudinal crosssection of the stabilizer of FIG. 2 in its partially extended and fully extended positions respectively;
  • FIGS. 5, 6 and 7 are views of the stabilizer in various positions during its operation according to the invention.
  • FIGS. 8, 9, 10 and 11 are side views of a flying boat incorporating the stabilizer according to the present invention and showing the flying boat in relative positions with respect to the water during landing or takeoff.
  • the stabilizer according to the present invention is shown in FIG. 2 arranged in a recessed portion 9 below the stern portion of a boat hull 11 having a rudder 12.
  • the recessed portion 9 has a longitudinal central recess 13, best seen in FIGS. 6 and 7, extending to the transom.
  • the forward end of the recessed portion 9 terminates in a shallow step 15 defined by a thwartships blocks 17.
  • the depth of the step 15 may be about 2 inches in a boat approximately 30 feet long.
  • Transverse and longitudinal structural members 18 of the craft near the step 15 are arranged to define a generally cylindrical space 19 for housing a canted cylinder 20.
  • the top of the space 19 is defined by a sturdy structural frame 21 rigidly attached to hull members.
  • the sides of the space 19 are defined by members 23 secured at their tops to the hull members and member 21 and at their bottom to the hull.
  • the members 21 and 23 provide a strong base so that a clamp (not shown) may be mounted on the member 21 to hold the cylinder 20 rigidly in place.
  • the bottom of the opening 19 is sealed against sea water by an annular sealing element 25 of any suitable construction.
  • the annular member 25 also serves as a radial support for an end fitting 31 having an axial bore 33 and fluidtightly secured to the bottom of the cylinder 20.
  • the axis of the canted cylinder 20 is indicated by numeral 35 and has its upper end substantially forward of its lower end.
  • the upper end of the cylinder 20 is fluidtightly sealed by a head 37.
  • annular seal and roller bearing unit 38 Located within the cylinder at its bottom just above the end fitting 31 is annular seal and roller bearing unit 38 of any suitable construction.
  • a double acting piston 39 is mounted within the cylinder 20 and has on its upper surface a mounting element 41 for receiving a wire 43.
  • the wire 43 passes fluidtightly through the head 37 and extends to an instrument panel on the craft for indicating the exact axial position of the piston 39 in the cylinder 20.
  • a hollow piston rod 49 is rotatably mounted at its upper end to the piston 39 by means of a ball bearing 50 of any suitable construction and arranged so that the rod 49 does not move axially relative to the piston 39.
  • the piston rod 49 therefore moves axially with piston 39 but rotates independently thereof about the canted axis 35.
  • the diameter of the piston rod 49 is such that the rod passes in close sliding relation with the inner race of the roller bearing in unit 38. The cylinder 20 is thus sealed at both ends.
  • a compression spring 51 is located between the wall of the cylinder 20 and the piston rod 49 and has its upper end resting against the lower surface of the piston 39 and its lower end resting against the upper surface of the unit 38.
  • the purpose of the spring 51 is to hold the piston in place when the stabilizer and its controlling means are not in actual operational use.
  • the spring 51 also acts as a stop to prevent excessive downward movement of the piston.
  • the axial position of the piston 39 is controlled by means of high pressure air coupled to the cylinder 20 via an upper conduit 52 and a lower conduit 52a.
  • the high pressure air may contain a small amount of oil entrained therewith to provide a good seal between piston 39 and cylinder 20.
  • a foot 53 Rigidly attached to the lower end of the piston rod 49 is a foot 53 made of sturdy material such as metal. As best seen in FIG. 5, the forward end of the foot has a bore 54 and a central longitudinal slot 54a extending a short distance aftwardly therefrom. A plurality of studs 54b pass transversely thru the slot 54a, foot 53, the lowermost of the studs passing thru a portion of the wall of rod 49, to securely hold the foot 53 rigid to the rod 49. Thus the entire foot 53 moves in unison with the piston rod 49 in rotation and translation.
  • a transverse hinge defined by a pin 55.
  • the stabilizer element 57 is connected at its aft end to the pin 55 by means of a 'block 59 carrying the pin 55. Studs 60 secure the block 59 to the stabilizer and hold the block in place. The exact shape of the surfaces of stabilizer 57 will be described in more detail in conjunction with FIGS. 5 thru 7.
  • the upper portion of the stabilizer 57 has a longitudinal central recess 61 into which, as shown in FIGS. 3 and 4, the foot 53 is pushed when the stabilizer 57 is lowered.
  • an eyelet 63 Secured to the forward end of the recess 61 of the stabilizer is an eyelet 63.
  • the eyelet 63 is located approximately on the axis 35.
  • a depending eyelet 65 is attached to the upper interior end of the piston rod 49.
  • a tension spring 67 has its upper end connected to the eyelet 65 and its lower end connected to the eyelet 63, so that the spring 67 tends to draw the forward end of stabilizer 57 toward the foot 53.
  • a roller element 69 having a longitudinal axis of rotation.
  • the stabilizer 57 has a faired leading edge 71 the upper surface of which is held in intimate contact with the bottom surface of the roller 69 by the action of the tension spring 67 thereby providing a pivot for the stabilizer during the initial stages of downward motion of the stabilizer.
  • a limit stop 73 mounted on each side of the foot 53 is rotatably mounted on a transverse pin 74.
  • the pins 74 are mounted on each side of the recess 61 of the stabilizer.
  • the foot 53 has a pin 75 extending transversely thru the foot 53.
  • the limit stop 73 has an elongated central slot 77 receiving the pin 75 so that the movements of the stabilizer 57 away from the foot 53 are limited.
  • stabilizer 57 shown in a drawn up (retracted) position in FIG. 2 has in that position an attack angle that is negative with respect to the forebody.
  • the magnitude of the trim angle or positive attack angle of the stabilizer is dependent upon the attack angle of the bottom surface of the foot 53 as installed. Any suitable means may be employed for adjusting the attack angle of the foot during or after the original installation of the equipment.
  • the stabilizer 57 rotates about the pin 55 and pivots with some aftward sliding motion at its leading edge 71 so that the entire bottom surface of the foot 53 is in intimate contact with the floor of the recess 61. Consequently the stabilizer is advantageously supported along nearly its entire length by the foot 53 when the foot is lowered to and below its position shown in FIG. 3.
  • the stabilizer may be lowered to any position until the piston is stopped by spring 51.
  • the stabilizer has a positive trim angle and is completely free to move in modes following local water disturbances.
  • the FIG. 4 position of the stabilizer is the desired position for use in the planing mode of the craft.
  • the movement of water in relation to the stabilizer 57 is exemplarily indicated in FIG. 4.
  • the motion of the stabilizer in its free position can be understood by realizing that the stabilizer when planing always tends to remain oriented in a horizontal plane, even when the craft is heeling.
  • the piston rod 49 may rotate about forwardly canted axis 35.
  • the stabilizer 57 is formed of two continuously curved surfaces symmetrical about the longitudinal axis of the stabilizer and meeting each other at the leading edge and sides.
  • the curved surfaces may be portions of right circular cylinders, or any other cylindrical or continuously curved shape.
  • the stabilizer as shown has upper and lower curved surfaces 81 and 83, the curvature of the lower surface being greater than that of the upper.
  • the lower surface is transversely convex with respect to the water, and in all its transverse cross sections the stabilizer has essentially a crescent shape.
  • the stabilizer In longitudinal cross section, the stabilizer has a wedge shape with a faired leading edge (FIGS. 2 thru 4), and in plan view (FIG.
  • the stabilizer has a generally semi-circular shape.
  • a sturdy crescent-shaped strength member 85 supports the aft ends of the surfaces 81 and 83.
  • the surfaces may be made of any suitable material, e.g. metal or Fiberglas, or the like, and may be joined at their edges and at strength member 85 in any suitable manner, as by welding, bonding, etc.
  • the stabilizer may be formed to have a unitary integral structure by any suitable method, such as by injection molding, lay-up, casting, etc.
  • a block 87 made of any suitable slippery material such as nylon, Teflon, Kel-F or the like.
  • the blocks 85 serve to center the stabilizer. This action is shown in FIG. '7.
  • the upper surface 81 may have one side in a higher position than the other relative to craft 11 due to local water conditions, or due to heeling. As exemplarily shown in FIG. 7 the right hand side of the stabilizer is higher.
  • FIGS. 8-11 the invention is shown applied to a flying boat 91 having a midships step 93 in the hull.
  • the stabilizer 57 is shown mounted on the afterbody near the tail end of the hull and is depicted in exaggerated positions for purposes of descriptive clarity.
  • the stabilizer is given a suitable negative trim angle so that when power is initially applied, and the flying boat begins to move, the stabilizer tends to pull the afterbody down.
  • the lowering of the afterbody immediately establishes a positive trim angle for the flying boat, reducing total drag.
  • the stabilizer 57 is given a suitable positive trim angle, resulting in lifting the afterbody to prevent excessive hull trim angle.
  • Minimizing the trim angle of the hull reduces induced drag and enables greater take off loads and shorter take ft runs than would be possible with large hull trim angles during take off.
  • the hull planes on the step 93 and the stabilizer 57 in tandem therewith thus results in a minimum of wetted area and a minimum trim angle, thus reducing total drag.
  • the airfoils in the tail eventually lift the afterbody from the water, as shown in FIG. 10.
  • the stabilizer may then be retracted as shown.
  • the amount of lift necessary to pull the afterbody from the water is reduced according to the invention because of less wetted area in the afterbody and because of the aiding stern-lifting action of the stabilizer.
  • the flying boat is then planing at high speed on its forebody and is ready for lift off.
  • the stabilizer 57 is maintained in its retracted, negative trim angle position so that, as shown in FIG. 11, as the flying boat touches down, a moment before the forebo-dy touches the water surface, the stabilizer will become submerged at a negative trim angle (shown somewhat exaggerated in FIG. 11).
  • the effect of the action of the stabilizer is to anchor the afterbody to the Water surface while decelerating the hull with its drag.
  • Stabilizing apparatus for a planing craft of the type having a stepped hull comprising:
  • a stabilizing element positioned on the afterbody
  • said stabilizing element having on its underside a planing surface
  • movable body means located in the craft above the location of the stabilizing element
  • said movable body means being arranged for movement along, and rotation about, an axis in the longitudinal plane of the craft extending thru a forward portion of said stabilizing element;
  • said axis being canted whereby the upper end of said axis is forward of the lower end thereof;
  • a longitudinally disposed elongated body member rigidly connected at its forward end to said movable body means and rotatably connected at its aft end on a transverse axis to the aft end of said stabilizing element;
  • said stabilizing element thereby being retractable to negative trim angles and extendable to positive trim angles responsive to movement of said movable body means.
  • Apparatus according to claim 1 including elastic means connecting the forebody portion of said stabilizing element to said movable body means whereby the leading edge portion thereof is further held in place.
  • said stabilizing element is comprised of an upper curved surface and a lower curved surface of greater curvature than the upper surface and coextensive therewith, said surfaces being joined at their edges, to define in plan view semicircular shape, said stabilizing element having elongated essentially wedge-shaped longitudinal cross sections.
  • each of said curved surfaces is cylindrical about a longitudinal axis of the stabilizing element.
  • Apparatus according to claim 3 including a body of relatively slippery material mounted on the bottom of the after body on each side of the centerline for intimate sliding contact with the after portions of the upper surface of said stabilizing element whereby-said bodies provide camming means for enhancing centering of the stabilizing element when drawn up.
  • Apparatus according to claim 3 including a rotatable element mounted for rotation about a longitudinal axis of the craft, said rotatable element bearing against the upper portion of the leading edge of said stabilizing element.
  • said movable means comprises a piston mounted within a closed cylinder coaxial with said axis, said piston having a depending tube rigidly attached thereto.
  • said movable means further comprises a spring positioned within said tube and connecting said piston to said stabilizing element along said axis.
  • said movable means further comprises controllable means for providing fluid under pressure for acting on said piston to move it upwardly and downwardly along said axis, and a further spring arrangeed within said cylinder to urge an upward force against said piston.
  • Apparatus according to claim 10 but further comprising means attached to said piston for indicating the axial position of said piston in the cylinder, whereby the position of said stabilizing element is accurately determined.
  • Stabilizing apparatus for a planing craft of the type having a stepped hull, said hull being provided in its afterbody with a shallow recessed portion, said apparatus comprising:
  • a stabilizing element positioned in the recessed portion of the afterbody
  • said stabilizing element having gently curved closely overlying upper and lower surfaces at least approximately circular in transverse cross section;
  • said stabilizing element in plan view being generally delta shaped with a curved leading edge
  • a reciprocating piston located in the craft above the stabilizing element
  • said reciprocating piston being arranged within a closed cylinder for sealed sliding movement therein both axially and rotationally about the axis of the cylinder;
  • said reciprocating piston having rigidly attached thereto a depending element protruding into said recessed portion;
  • the axis of said cylinder being in the longitudinal plane of the craft and canted whereby the upper end of the axis is forward of the lower end thereof, the lower end of the axis extending thru the stabilizing element at a point thereon near the leading edge, the aftwardfacing angle at which the axis meets the longitudinal section of the stabilizing element being at least obtuse;
  • a longitudinally disposed elongated body member having a given attack angle rigidly connected at its forward end to the protruding portion of said reciprocating element and rotatably connected at its aft end on a transverse axis to the aft end of said stabilizing element;
  • the afterbody of said stabilizing element is rotatable about a transverse axis located approximately at the leading edge portion of the stabilizing element, said leading edge portion capable of being held in place in the recessed portion of the craft by the planing action of the stabilizing element;
  • said stabilizing element thereby being retractable to negative trim angles and extendable to positive trim angles responsive to movement of said movable body means and further being rotatable about said axis.
  • said stabilizing element has a longitudinally disposed recess in its upper surface for receiving said elongated body member when said piston is moved downwardly, said elongated body providing support for the stabilizing element along a substantial longitudinal length of the stabilizing element.
  • Apparatus according to claim 14 including retaining means connecting said stabilizing element and said elongated member to prevent excessive relative movement therebetween.

Description

Jul 12, 1966 J. PLUM AUTOMATIC S'l'ABl'LlZER FOR WATERCRAFT Filed Fob. S5, 1965 TOTAL DRAG 5 Sheets-Sheet i DRAG FRICTIONAL (Wtcmd [INDUCED DRAG TRIM ANGLE, a
I.\'\'E.\'TOR. JOHN PL UM July 12, 1966 J. PLUM 3,260,229
AU'I'OMATJG STABILIZER FOR WATERCRAFT Filed Feb. 25, 1965 5 Sheets--Sheut P FIG. 2.
INVENTOR. JOH/V PLUM BY www ATTK AGE/VT J. PLUM AUTOMATIC STABILIZER FOR WATERCRAFT July 12, 1966 5 Sheets-Sheet .5
July' 12, 1966 PLUM 3,260,229
AUTOMATIC STABILIZER FOR WATERCRAFT Filed Pub/rs, 1965 s Sheets-Sheet 4 INVENTOR. 60 JOHN PL UM FIG. 7. BY Mg Z July 12, 1966 .1. PLUM 3,260,229
AUTOMATIC STABILLZEH FOR WATERCRAFT Filed Feb. 25, 1965 5 Sheets-Sheet, 5;
INVENTOR.
United States Patent Office 3,260,229 Patented July 12, 1966 3,260,229 AUTOMATIC STABILIZER FOR WATERCRAFT John Plum, Montgomery County, Md. (5402 Tuscarawas Road, Washington 16, DC.) Filed Feb. 25, 1965, Ser. No. 435,383 15 Claims. (Cl. 114-665) The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
This invention relates to a stabilizing arrangement for stepped planing bulls and more particularly to a stabilizing arrangement which is an improvement on the device shown, described, and claimed in US. Patent No. 1,618,995; US. Patent No. 1,779,095; and US. Patent No. 1,875,135.
It is known to workers in this art that the stepped planing hull has great potential value if a practical solution can be found to eliminate some of its faults. Principal among these faults is the fact that the trim angle of the boat is affected much more by the magnitude and Location of an added load than in the case of the stepless ull.
These problems will be readily understood when it is realized that the conventional stepped hull is supported by two planing surfaces traveling in tandem so that the afterbody is supported by water which has already been deflected by the forward planing surface.
If the forward planing surface is carrying a load, it will carve a groove in the Water into which the afterbody will settle, thereby increasing the trim angle of the forebody. This increase will, in turn, increase the depth of the groove into which the afterbody will further settle. It is a vicious circle or chain reaction which greatly affects not only the trim angle of the stepped hu'll but also its pitching motions, which may be amplified into violent porpoising at high speed.
The amplifying effect of the downwash from the forward area can be curtailed by reducing the load on the forward planing surface to a minimum because, with a negligible load forward, there will be a negligible deflection of the water and, therefore, no amplifying effect. But without a forward load (i.e., a mass on the wave impact area), the pitching motions of the bow will be excessive and, if the waves'are permitted to pass the forebody without being dispersed, the acceleration or pounding of the hulls afterbody will be violent and the bow portion of the hull will drop faster than a freely falling body. This phenomenon was clearly demonstrated during the last war when crew members inthe forward sections of PT. boats were seen standing in midair.
This is explained by the fact that an upward acceleration of the stern will make the hull pivot about its center of gravity a moment after it has pivoted about its transom. This will accelerate the downward motion of the bow, and when the downward velocity is arrested by an oncoming wave, the maximum hull acceleration, i.e., pounding, is produced.
Before proceeding further, it is to be understood that the statements made herein apply not only to vessels or boats having stepped planing hulls but also equally as Well to stepped flying boat hulls.
In the case of the flying boat such extreme accelerations are eliminated, and control of trim is obtained by lifting the afterbody clear of the water by the airfoil stabilizers and elevators when suflicient air speed is attained. In fact, the functioning of the flying boat demonstrates adequately the advantages that can be obtained by the stepped hull if its afterbody can be lifted clear of the water and stabilized by a surfboard at the stern. It should be realized that when the afterbody of the stepped hull is lifted clear of the water in this manner, the forward step is, in effect, the transom of the hull proper, and the afterbody becomes a stern extension by which the surfboard is towed.
In contrast to the towline by which a surfboard is us ually towed without drag on the wave (or upwash) that follows a speed boat, the stern extension is a rigid part of the hull. To eliminate the maximum pounding and/or.
the amplifying effect of the downwash, the surfboard (or the stabilizer) must, therefore, be free to follow the irregularities in the water surface on which it is riding without enforcing these on the rigid stern extension. According to the present invention, the stabilizer supports the stern extension through a cushion of compressed air,
the pressure of which (controlled by the pilot) decides the height at which the afterbody is lifted above the water surface. This in turn decides the magnitude of the hulls trim angle.
The magnitude of the trim angle is an important factor involved in the wavemaking resistance (called the induced drag) of planing hulls. In FIG. 1 is shown 1 typical empirical resistance curve for a planing hull at the representative speed of 50 knots.
It is seen that the optimum trim angle producing the smallest drag is 5 /2 degrees even though the inducedv drag is enormously high. The induced drag is found,
by multiplying the weight of the hull by the tangent of the trim angle so that in the case of a 50 ton hull some 10,000 pounds of propeller thrust are required to overcome the induced drag. Nevertheless, a large trim angle, which reduces the wetted area of the hull (i.e., of the forebody), gives the maximum speed of the conventional ste'pless hull in smooth water. This proves that the frictional resistance is a drag-producingfactor out of all proportion to the other factors, including the induced grees at a speed of 50 knots, the10,000 pounds of induced drag of 50 ton hull is reduced 68 percent.
Since the induced drag is a function of the hull weight and the trim angle, it becomes increasingly clear that the optimum trim angle of. the planingsurface should have the smallest possible value. This is especially important in the case of a craft designed for carrying heavy loads at' high speeds. Such a quality has been found in the cambered planing surface which is described and claimed by me in US. Patent No. 1,618,995 issued March 1, 1927.
'If the camber of a longitudinally concave planing surface starts with an angle of attack of zero degree, the downward acceleration of the water particles along the camber will be gentle and uniform, which in turn will produce a reaction (or lift) of surprisingly high efficiency. In fact, papers by Wagner (1932 and 1933); Tulin (1957); advocate the use of the cambered planing surface for reducing the drag, especial-1y the wavemaking far too large at 60 m.p.h. Therefore, an additional load on such a hull will neither require an increase of trim angle nor a larger planing area. Hence, neither the induced drag nor the frictional resistance will be increased by an additional load at 60 m.p.h.
It is obvious that cambered bottom lines cannot be used in stepless planing hulls without causing a nosedown attitude which will increase the wetted area of the forebody and the tendency to broach in following seas. However, the efficiency of the camber when combined with control of trim has been confirmed in actual service by the stepped hulls of flying boats, such camber having been previously incorporated into the stepped hulls of flying boats by the US. Navy (1927). Further confirmation was provided by F. W. Horenburger, surveyor of the American Power Boat Association, who timed a 500-h.p., 40-ft. stabilized stepped hull with a cambered planing surface at 62.5 m.p.h. Its maximum speed was attained with a ballast of 4000 pounds or a 33 percent increase of the hull weight. In this case the stabilizer carried about 15 percent of the load or some 2000 pounds while 14,000 pounds was carried by the forward planing surface.
Since hull accelerations (pounding) are inversely proportional to the mass at the Wave impact area and directly proportional to the magnitude of the trim angle, the present invention improves the speed and comfort of small craft. And since the present invention permits the pilot to reduce the trim in head seas and increase it in following seas, the invention is also an improvement in the safety of the small craft.
It is, therefore, an object to the present invention to provide a stabilizer for a stepped planing hull which may be controlled to have negative and positive trim angles and further to have hydrodynamic surface-s which are simple to manufacture and which are capable of providing lift action without causing directional forces.
The present invention when applied to flying boat stepped hull configurations enhances not only the takeoff mode of the aircraft but also enhances its landing mode. For example, during the takeoff mode, the increasing trim angle of the hull during acceleration is also enforced on the stabilizer which will travel submerged until its trim angle has become sufliciently lift producing to enable it to break through the water surface and become a surf riding aquaplane. Once the stabilizer acts as an aquaplane, the drag induced on the afterbody of the aircraft is so greatly reduced that the airplane may easily take off with loads substantially greater than would be otherwise possible without the stabilizer. The further advantage accruing to the present invention is the fact that when the flying boat is initially moved in its takeoff mode, the stabilizer is at a negative trim angle. Therefore, upon movement of the aircraft, the stabilizer tends to pull down on the stern portion of the aircraft thereby forcing the aircraft into an initially positive trim angle and further counteracting the moments of the thrust of the propellers which would tend to cause the airplane to nose down.
During the landing mode of the flying boat, as the aircraft approaches and makes contact in its stern portion with the water, the stabilizer has a negative trim angle tending to pull down the stern, slowing down the aircraft and preventing the aircraft from nosediving.
A principal object of the present invention is to provide a stabilizing arrangement enabling heavily loaded stepped flying boat hulls to acquire the optimum trim angle or lift-drag ratio during the time the flying boat is accelerated to higher speeds.
The foregoing objects and advantages of the invention as other features of the invention will be better understood by reference to the following detailed description and accompanying drawings in which:
FIG. 1 (previously referred to) is a graph depicting drag characteristics of planing craft;
FIG. 2 is a view in modified longitudinal cross-section of the stern portion of a stepped planing hull provided with a stabilizer shown in its retracted position and control means therefor in accordance with the invention;
FIGS. 3 and 4 are views in modified longitudinal crosssection of the stabilizer of FIG. 2 in its partially extended and fully extended positions respectively;
'FIGS. 5, 6 and 7 are views of the stabilizer in various positions during its operation according to the invention;
FIGS. 8, 9, 10 and 11 are side views of a flying boat incorporating the stabilizer according to the present invention and showing the flying boat in relative positions with respect to the water during landing or takeoff.
The stabilizer according to the present invention is shown in FIG. 2 arranged in a recessed portion 9 below the stern portion of a boat hull 11 having a rudder 12. The recessed portion 9 has a longitudinal central recess 13, best seen in FIGS. 6 and 7, extending to the transom. The forward end of the recessed portion 9 terminates in a shallow step 15 defined by a thwartships blocks 17. As an non-limiting example, the depth of the step 15 may be about 2 inches in a boat approximately 30 feet long.
Transverse and longitudinal structural members 18 of the craft near the step 15 are arranged to define a generally cylindrical space 19 for housing a canted cylinder 20. The top of the space 19 is defined by a sturdy structural frame 21 rigidly attached to hull members. The sides of the space 19 are defined by members 23 secured at their tops to the hull members and member 21 and at their bottom to the hull. The members 21 and 23 provide a strong base so that a clamp (not shown) may be mounted on the member 21 to hold the cylinder 20 rigidly in place.
The bottom of the opening 19 is sealed against sea water by an annular sealing element 25 of any suitable construction. The annular member 25 also serves as a radial support for an end fitting 31 having an axial bore 33 and fluidtightly secured to the bottom of the cylinder 20.
The axis of the canted cylinder 20 is indicated by numeral 35 and has its upper end substantially forward of its lower end. The upper end of the cylinder 20 is fluidtightly sealed by a head 37.
Located within the cylinder at its bottom just above the end fitting 31 is annular seal and roller bearing unit 38 of any suitable construction.
A double acting piston 39 is mounted within the cylinder 20 and has on its upper surface a mounting element 41 for receiving a wire 43. The wire 43 passes fluidtightly through the head 37 and extends to an instrument panel on the craft for indicating the exact axial position of the piston 39 in the cylinder 20.
A hollow piston rod 49 is rotatably mounted at its upper end to the piston 39 by means of a ball bearing 50 of any suitable construction and arranged so that the rod 49 does not move axially relative to the piston 39. The piston rod 49 therefore moves axially with piston 39 but rotates independently thereof about the canted axis 35. The diameter of the piston rod 49 is such that the rod passes in close sliding relation with the inner race of the roller bearing in unit 38. The cylinder 20 is thus sealed at both ends.
A compression spring 51 is located between the wall of the cylinder 20 and the piston rod 49 and has its upper end resting against the lower surface of the piston 39 and its lower end resting against the upper surface of the unit 38. The purpose of the spring 51 is to hold the piston in place when the stabilizer and its controlling means are not in actual operational use. The spring 51 also acts as a stop to prevent excessive downward movement of the piston.
The axial position of the piston 39 is controlled by means of high pressure air coupled to the cylinder 20 via an upper conduit 52 and a lower conduit 52a. The high pressure air may contain a small amount of oil entrained therewith to provide a good seal between piston 39 and cylinder 20.
Rigidly attached to the lower end of the piston rod 49 is a foot 53 made of sturdy material such as metal. As best seen in FIG. 5, the forward end of the foot has a bore 54 and a central longitudinal slot 54a extending a short distance aftwardly therefrom. A plurality of studs 54b pass transversely thru the slot 54a, foot 53, the lowermost of the studs passing thru a portion of the wall of rod 49, to securely hold the foot 53 rigid to the rod 49. Thus the entire foot 53 moves in unison with the piston rod 49 in rotation and translation.
At the aft end of the foot 53 is a transverse hinge defined by a pin 55. The stabilizer element 57, is connected at its aft end to the pin 55 by means of a 'block 59 carrying the pin 55. Studs 60 secure the block 59 to the stabilizer and hold the block in place. The exact shape of the surfaces of stabilizer 57 will be described in more detail in conjunction with FIGS. 5 thru 7.
The upper portion of the stabilizer 57 has a longitudinal central recess 61 into which, as shown in FIGS. 3 and 4, the foot 53 is pushed when the stabilizer 57 is lowered. Secured to the forward end of the recess 61 of the stabilizer is an eyelet 63. The eyelet 63 is located approximately on the axis 35. A depending eyelet 65 is attached to the upper interior end of the piston rod 49. A tension spring 67 has its upper end connected to the eyelet 65 and its lower end connected to the eyelet 63, so that the spring 67 tends to draw the forward end of stabilizer 57 toward the foot 53.
Just aft of the step is provided a roller element 69 having a longitudinal axis of rotation. The stabilizer 57 has a faired leading edge 71 the upper surface of which is held in intimate contact with the bottom surface of the roller 69 by the action of the tension spring 67 thereby providing a pivot for the stabilizer during the initial stages of downward motion of the stabilizer.
A limit stop 73 mounted on each side of the foot 53 is rotatably mounted on a transverse pin 74. The pins 74 are mounted on each side of the recess 61 of the stabilizer. The foot 53 has a pin 75 extending transversely thru the foot 53. The limit stop 73 has an elongated central slot 77 receiving the pin 75 so that the movements of the stabilizer 57 away from the foot 53 are limited.
As previously mentioned, stabilizer 57, shown in a drawn up (retracted) position in FIG. 2 has in that position an attack angle that is negative with respect to the forebody.
The magnitude of the trim angle or positive attack angle of the stabilizer is dependent upon the attack angle of the bottom surface of the foot 53 as installed. Any suitable means may be employed for adjusting the attack angle of the foot during or after the original installation of the equipment. When, as shown in FIG. 3, the foot is initially lowered by applying air to the cylinder via conduit 52, the stabilizer 57 rotates about the pin 55 and pivots with some aftward sliding motion at its leading edge 71 so that the entire bottom surface of the foot 53 is in intimate contact with the floor of the recess 61. Consequently the stabilizer is advantageously supported along nearly its entire length by the foot 53 when the foot is lowered to and below its position shown in FIG. 3. The stabilizer may be lowered to any position until the piston is stopped by spring 51.
When the foot 53 is lowered still further, it loses contact at its leading edge with the roller 69. The stabilizer has a positive trim angle and is completely free to move in modes following local water disturbances. The FIG. 4 position of the stabilizer is the desired position for use in the planing mode of the craft. The movement of water in relation to the stabilizer 57 is exemplarily indicated in FIG. 4. The motion of the stabilizer in its free position (FIG. 4) can be understood by realizing that the stabilizer when planing always tends to remain oriented in a horizontal plane, even when the craft is heeling. Recall that the piston rod 49 may rotate about forwardly canted axis 35. With such a canted axis, when the stabilizer 57 has positive trim angles, rotation of the stabilizer about the canted axis 35 causes one aft corner of the stabilizer to be elevated while the other aft corner is lowered. When the craft heels, the axis 35 of course, moves with the craft and the stabilizer initially heels with the craft. Subsequently, the stabilizer rotates about axis 35. The rotation of the stabilizer is caused by greater drag acting on the low side of the stabilizer. This rotation of the stabilizer about the canted axis 35 causes the initially low side of the stabilizer to return to same, or another horizontal plane with its longitudinal axis different from that of the heeled craft. Thus the stabilizer remains essentially horizontal when the craft is heeled.
As seen in FIGS. 5, 6 and 7, the stabilizer 57 is formed of two continuously curved surfaces symmetrical about the longitudinal axis of the stabilizer and meeting each other at the leading edge and sides. The curved surfaces may be portions of right circular cylinders, or any other cylindrical or continuously curved shape. As an example, but not a limitation, the stabilizer as shown has upper and lower curved surfaces 81 and 83, the curvature of the lower surface being greater than that of the upper. The lower surface is transversely convex with respect to the water, and in all its transverse cross sections the stabilizer has essentially a crescent shape. In longitudinal cross section, the stabilizer has a wedge shape with a faired leading edge (FIGS. 2 thru 4), and in plan view (FIG. 5) the stabilizer has a generally semi-circular shape. A sturdy crescent-shaped strength member 85 supports the aft ends of the surfaces 81 and 83. The surfaces may be made of any suitable material, e.g. metal or Fiberglas, or the like, and may be joined at their edges and at strength member 85 in any suitable manner, as by welding, bonding, etc. Preferably the stabilizer may be formed to have a unitary integral structure by any suitable method, such as by injection molding, lay-up, casting, etc.
Near the outer edge of the deadrise beneath each side of the stem is located a block 87 made of any suitable slippery material such as nylon, Teflon, Kel-F or the like. When the stabilizer 57 is to be drawn up (retracted) from its positions shown in FIG. 4 and FIG. 3 to that shown in FIG. 2 (and FIG. 6), the blocks 85 serve to center the stabilizer. This action is shown in FIG. '7. The upper surface 81 may have one side in a higher position than the other relative to craft 11 due to local water conditions, or due to heeling. As exemplarily shown in FIG. 7 the right hand side of the stabilizer is higher. As the stabilizer is drawn up (by injecting high pressure air into the cylinder via lower conduit 52a), the higher right hand side eventually comes into intimate contact with a block 85. As the stabilizer moves upward the surface 81 slides essentially laterally along past the block-87, the block 87 having a camming action. When the stabilizer is fully retracted (FIG. 6), the longitudinal axis of the stabilizer parallels that of the craft 11.
In FIGS. 8-11, the invention is shown applied to a flying boat 91 having a midships step 93 in the hull. The stabilizer 57 is shown mounted on the afterbody near the tail end of the hull and is depicted in exaggerated positions for purposes of descriptive clarity.
During takeoff, power is applied to the flying boat which is at rest as shown in FIG. 8. Ordinarily a sudden increase in power would tend to cause the flying boat to nose dive. However, according to the invention, the stabilizer is given a suitable negative trim angle so that when power is initially applied, and the flying boat begins to move, the stabilizer tends to pull the afterbody down. The lowering of the afterbody immediately establishes a positive trim angle for the flying boat, reducing total drag. As the flying boat speed is increased, say to about 10 kts., as shown in FIG. 9, the stabilizer 57 is given a suitable positive trim angle, resulting in lifting the afterbody to prevent excessive hull trim angle. Minimizing the trim angle of the hull reduces induced drag and enables greater take off loads and shorter take ft runs than would be possible with large hull trim angles during take off. As can be seen in FIG. 9, the hull planes on the step 93 and the stabilizer 57 in tandem therewith. The advantageous use of the stabilizer thus results in a minimum of wetted area and a minimum trim angle, thus reducing total drag.
As the flying boat speed is further increased, the airfoils in the tail eventually lift the afterbody from the water, as shown in FIG. 10. The stabilizer may then be retracted as shown. The amount of lift necessary to pull the afterbody from the water is reduced according to the invention because of less wetted area in the afterbody and because of the aiding stern-lifting action of the stabilizer. The flying boat is then planing at high speed on its forebody and is ready for lift off.
During landing the stabilizer 57 is maintained in its retracted, negative trim angle position so that, as shown in FIG. 11, as the flying boat touches down, a moment before the forebo-dy touches the water surface, the stabilizer will become submerged at a negative trim angle (shown somewhat exaggerated in FIG. 11). The effect of the action of the stabilizer is to anchor the afterbody to the Water surface while decelerating the hull with its drag.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
l. Stabilizing apparatus for a planing craft of the type having a stepped hull comprising:
a stabilizing element positioned on the afterbody;
said stabilizing element having on its underside a planing surface;
movable body means located in the craft above the location of the stabilizing element;
said movable body means being arranged for movement along, and rotation about, an axis in the longitudinal plane of the craft extending thru a forward portion of said stabilizing element;
said axis being canted whereby the upper end of said axis is forward of the lower end thereof;
a longitudinally disposed elongated body member rigidly connected at its forward end to said movable body means and rotatably connected at its aft end on a transverse axis to the aft end of said stabilizing element;
whereby upon movement of said movable body means the afterbody of said stabilizing element pivots about a transverse axis located approximately at the leading edge portion of the stabilizing element;
said stabilizing element thereby being retractable to negative trim angles and extendable to positive trim angles responsive to movement of said movable body means.
2. Apparatus according to claim 1 including elastic means connecting the forebody portion of said stabilizing element to said movable body means whereby the leading edge portion thereof is further held in place.
3. Apparatus according to claim 1 wherein said stabilizing element is comprised of an upper curved surface and a lower curved surface of greater curvature than the upper surface and coextensive therewith, said surfaces being joined at their edges, to define in plan view semicircular shape, said stabilizing element having elongated essentially wedge-shaped longitudinal cross sections.
4. Apparatus according to claim 3 wherein said upper curved surface has a longitudinal recess therein for receiving said elongated body member.
5. Apparatus according to claim 3 wherein each of said curved surfaces is cylindrical about a longitudinal axis of the stabilizing element.
6. Apparatus according to claim 3 including a body of relatively slippery material mounted on the bottom of the after body on each side of the centerline for intimate sliding contact with the after portions of the upper surface of said stabilizing element whereby-said bodies provide camming means for enhancing centering of the stabilizing element when drawn up.
7. Apparatus according to claim 3 including a rotatable element mounted for rotation about a longitudinal axis of the craft, said rotatable element bearing against the upper portion of the leading edge of said stabilizing element.
8. Apparatus according to claim 1 wherein said movable means comprises a piston mounted within a closed cylinder coaxial with said axis, said piston having a depending tube rigidly attached thereto.
9. Apparatus according to claim 8 wherein said movable means further comprises a spring positioned within said tube and connecting said piston to said stabilizing element along said axis.
10. Apparatus according to claim 9 wherein said movable means further comprises controllable means for providing fluid under pressure for acting on said piston to move it upwardly and downwardly along said axis, and a further spring arrangeed within said cylinder to urge an upward force against said piston.
11. Apparatus according to claim 10 but further comprising means attached to said piston for indicating the axial position of said piston in the cylinder, whereby the position of said stabilizing element is accurately determined.
12. Stabilizing apparatus for a planing craft of the type having a stepped hull, said hull being provided in its afterbody with a shallow recessed portion, said apparatus comprising:
a stabilizing element positioned in the recessed portion of the afterbody;
said stabilizing element having gently curved closely overlying upper and lower surfaces at least approximately circular in transverse cross section;
said stabilizing element in plan view being generally delta shaped with a curved leading edge;
a reciprocating piston located in the craft above the stabilizing element;
said reciprocating piston being arranged within a closed cylinder for sealed sliding movement therein both axially and rotationally about the axis of the cylinder;
said reciprocating piston having rigidly attached thereto a depending element protruding into said recessed portion;
the axis of said cylinder being in the longitudinal plane of the craft and canted whereby the upper end of the axis is forward of the lower end thereof, the lower end of the axis extending thru the stabilizing element at a point thereon near the leading edge, the aftwardfacing angle at which the axis meets the longitudinal section of the stabilizing element being at least obtuse;
a longitudinally disposed elongated body member having a given attack angle rigidly connected at its forward end to the protruding portion of said reciprocating element and rotatably connected at its aft end on a transverse axis to the aft end of said stabilizing element;
whereby upon movement of said movable body means the afterbody of said stabilizing element is rotatable about a transverse axis located approximately at the leading edge portion of the stabilizing element, said leading edge portion capable of being held in place in the recessed portion of the craft by the planing action of the stabilizing element;
said stabilizing element thereby being retractable to negative trim angles and extendable to positive trim angles responsive to movement of said movable body means and further being rotatable about said axis.
13. Apparatus according to claim 12 wherein said depending element comprises a tube;
and a tension spring disposed within said tube connected at its upper end to said piston and at its lower end to said stabilizing element.
14. Apparatus according to claim 12 wherein said stabilizing element has a longitudinally disposed recess in its upper surface for receiving said elongated body member when said piston is moved downwardly, said elongated body providing support for the stabilizing element along a substantial longitudinal length of the stabilizing element.
15. Apparatus according to claim 14 including retaining means connecting said stabilizing element and said elongated member to prevent excessive relative movement therebetween.
Plum 114-66.5 Plum l14-66.5 Berger l14-66.5 Doolittle 244-105 Headrick et al. 1l4-66.5 Jenney et al 244-105 Handler 114-66.5 Thomas et al. 114-126 Popkin 114-126 15 MILTON BUCHLER, Primary Examiner. A. H. FARRELL, Assistant Examiner.

Claims (1)

1. STABILIZING APPARATUS FOR A PLANING CRAFT OF THE TYPE HAVING A STEPPED HULL COMPRISING: A STABILIZING ELEMENT POSITIONED ON THE AFTERBODY; SAID STABILIZING ELEMENT HAVING ON ITS UNDERSIDE A PLANING SURFACE; MOVABLE BODY MEANS LOCATED IN THE CRAFT ABOVE THE LOCATION OF THE STABILIZING ELEMENT; SAID MOVABLE BODY MEANS BEING ARRANGED FOR MOVEMENT ALONG, AND ROTATION ABOUT, AN AXIS IN THE LONGITUDINAL PLANE OF THE CRAFT EXTENDING THRU A FORWARD PORTION OF SAID STABILIZING ELEMENT; SAID AXIS BEING CANTED WHEREBY THE UPPER END OF SAID AXIS IS FORWARD OF THE LOWER END THEREOF; A LONGITUDINALLY DISPOSED ELONGATED BODY MEMBER RIGIDLY CONNECTED AT ITS FORWARD END TO SAID MOVABLE BODY MEANS AND ROTATABLY CONNECTED AT ITS AFT END ON A TRANSVERSE AXIS TO THE AFT END OF SAID STABILIZING ELEMENT; WHEREBY UPON MOVEMENT OF SAID MOVABLE BODY MEANS THE AFTERBODY OF SAID STABILIZING ELEMENT PIVOTS ABOUT A TRANSVESE AXIS LOCATED APPROXIMATELY AT THE LEADING EDGE PORTION OF THE STABILIZING ELEMENT; SAID STABILIZING ELEMENT THEREBY BEING RETRACTABLE TO NEGATIVE TRIM ANGLES AND EXTENDABLE TO POSITIVE TRIM ANGLES RESPONSIVE TO MOVEMENT OF SAID MOVABLE BODY MEANS.
US435383A 1965-02-25 1965-02-25 Automatic stabilizer for watercraft Expired - Lifetime US3260229A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US435383A US3260229A (en) 1965-02-25 1965-02-25 Automatic stabilizer for watercraft
US550071A US3379158A (en) 1965-02-25 1966-03-01 Automatic stabilizer for watercraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US435383A US3260229A (en) 1965-02-25 1965-02-25 Automatic stabilizer for watercraft

Publications (1)

Publication Number Publication Date
US3260229A true US3260229A (en) 1966-07-12

Family

ID=23728161

Family Applications (1)

Application Number Title Priority Date Filing Date
US435383A Expired - Lifetime US3260229A (en) 1965-02-25 1965-02-25 Automatic stabilizer for watercraft

Country Status (1)

Country Link
US (1) US3260229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383419A (en) * 1993-10-26 1995-01-24 Stevens; Ewell E. Watercraft trim system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1779075A (en) * 1928-10-17 1930-10-21 Fantail Boat Corp Speed boat
US1875135A (en) * 1931-01-28 1932-08-30 Fantail Boat Corp Speed boat
US2438493A (en) * 1944-01-05 1948-03-30 Emric W Berger Water vehicle
US2718368A (en) * 1953-04-08 1955-09-20 All American Eng Co Planing surfaces for aircraft
US3114343A (en) * 1960-04-18 1963-12-17 E & R Hydrofoil Company Hydrofoil apparatus
US3145954A (en) * 1962-03-07 1964-08-25 Robert W Jenny Vehicle for non-air, semi-air, and full-air supported travel
US3162166A (en) * 1963-02-28 1964-12-22 Eugene H Handler Variable sweep hydrofoil
US3176644A (en) * 1963-06-26 1965-04-06 Movible Offshore Inc Retractable dampener for vessels
US3179078A (en) * 1962-12-04 1965-04-20 John R Popkin Dual hydrofoil mechanism for sailboats

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1779075A (en) * 1928-10-17 1930-10-21 Fantail Boat Corp Speed boat
US1875135A (en) * 1931-01-28 1932-08-30 Fantail Boat Corp Speed boat
US2438493A (en) * 1944-01-05 1948-03-30 Emric W Berger Water vehicle
US2718368A (en) * 1953-04-08 1955-09-20 All American Eng Co Planing surfaces for aircraft
US3114343A (en) * 1960-04-18 1963-12-17 E & R Hydrofoil Company Hydrofoil apparatus
US3145954A (en) * 1962-03-07 1964-08-25 Robert W Jenny Vehicle for non-air, semi-air, and full-air supported travel
US3179078A (en) * 1962-12-04 1965-04-20 John R Popkin Dual hydrofoil mechanism for sailboats
US3162166A (en) * 1963-02-28 1964-12-22 Eugene H Handler Variable sweep hydrofoil
US3176644A (en) * 1963-06-26 1965-04-06 Movible Offshore Inc Retractable dampener for vessels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383419A (en) * 1993-10-26 1995-01-24 Stevens; Ewell E. Watercraft trim system

Similar Documents

Publication Publication Date Title
US4926773A (en) High performance sea-going craft
US4237810A (en) Hydrodynamically and aerodynamically designed boat
US7182036B2 (en) Shock limited hydrofoil system
US2858788A (en) Water craft
EP2440455B1 (en) Wingtip and sponson interaction on an amphibious aircraft
US3871317A (en) Watercraft
US10532812B2 (en) Multi-hull seaplane
US11077918B2 (en) Stabilized hull for a keeled monohull sailboat or sail and motor boat
EP0545878B1 (en) Multi-hull vessel
US3789789A (en) Hydrofoil sailing craft
US7040574B2 (en) Aircraft and watercraft adapted to float on main wing
US3797434A (en) Hydrofoil control means
US3104642A (en) Carrier wing unit for a craft with a constant predetermined lift, and selfvariable incidence
US3145954A (en) Vehicle for non-air, semi-air, and full-air supported travel
US3742890A (en) Free trailing forward hydrofoil strut
US3424120A (en) Hydrotunnel boat
US3118411A (en) Aero-glide boat
US3379158A (en) Automatic stabilizer for watercraft
US3260229A (en) Automatic stabilizer for watercraft
US3785319A (en) Hydrofoil vessel
US3031999A (en) Adjustable hydrofoil
US3225728A (en) Hulled body equipped with wave-riding device
US3081727A (en) High speed water surface craft
US3168067A (en) Surface watercraft
US3498248A (en) Hydrodynamic trimming method and device