US3259632A - Pyrroline production - Google Patents

Pyrroline production Download PDF

Info

Publication number
US3259632A
US3259632A US388300A US38830064A US3259632A US 3259632 A US3259632 A US 3259632A US 388300 A US388300 A US 388300A US 38830064 A US38830064 A US 38830064A US 3259632 A US3259632 A US 3259632A
Authority
US
United States
Prior art keywords
pyrroline
aziridine
reactor
product
acetylenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US388300A
Inventor
Maximilian I Fremery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US388300A priority Critical patent/US3259632A/en
Application granted granted Critical
Publication of US3259632A publication Critical patent/US3259632A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Definitions

  • This invention relates to an improved method for the production of certain heterocyclic compounds. More particularly, it relates to an improved method for the production of pyrrolines.
  • a more particular object is to provide an improved process for the production of pyrrolines.
  • the aziridine reactants of the process of the invention which are also commonly referred to as enimines, contain a three-membered heterocyclic ring comprising one atom of nitrogen and two atoms of carbon.
  • Suitable aziridines are hydrocarbon aziridines, that is, contain only atoms of carbon and hydrogen besides the nitrogen moiety of the :three-membered ring and are free from non-aromatic unsaturation.
  • Illustrative compounds of this type contain from 2 to 10 carbon atoms, preferably 2 to 6, and are represented by the formula wherein R and R independently are hydrogen, alkyl of up to 8 carbon atoms, aralkyl of up to 8 carbon atoms, phenyl, or alkarylv having from 6 to 8 carbon atoms.
  • Illustrative of such compounds are ethylenimine, N-methylethylenimine, 1,2-dimethylaziridine, 1,2,3-triethylaziridine, 2,2-dimethylaziridine, N-butylethylenimine, N-phenylethylenimine, 2-tolylaziridine, N-benzylethylenimine, N-amylethylenimine and 2-octylaziridine.
  • Preferred aziridines of the above-depicted formula are Wholely aliphatic, that is, contain no aromatic moieties.
  • the aziridine is reacted with an acetylenic compound, i.e., a compound containing a carbon-carbon triple bond.
  • acetylenic compounds of varying type e.g., hydrocarbon acetylenes and non-hydrocarbon acetylenes
  • any non-hydrocarbyl substituents do not possess active hydrogens
  • the non-hydrocarbon acetylenes are United States Patent "ice generally difficult to obtain and/or economically expensive, and largely for these reasons the utilization of hydrocarbon acetylenes is preferred.
  • the preferred acetylenic compounds therefore contain only atoms of carbon and hydrogen and preferably contain only a single carboncarbon triple bond as the only non-aromatic unsaturation in the molecule.
  • Suitable acetylenic compounds contain from 2 to 10 carbon atoms, preferably from 2 to 8, and are represented by the formula wherein R has the previously stated significance.
  • Exemplary acetylenic compounds include acetylene, propyne, l-butyne, Z-butyne, l-hexyne, 2-octyne, 3-octyne, phenylacetylene, 3-phenylpropyne and the like.
  • terminal acetylenes are preferred over the corresponding internal acetylenes, and particularly preferred as the acetylenic reactant is acetylene.
  • the process of the invention involves thermal cleavage of a carbon-nitrogen bond of the aziridine ring to form a 1,3-diradical and subsequent 1,3-cycloaddition of the diradical to the multiple linkage of the acetylenic reactant to form a five-membered, nitrogen-containing ring.
  • the process of the invention involves thermal cleavage of a carbon-nitrogen bond of the aziridine ring to form a 1,3-diradical and subsequent 1,3-cycloaddition of the diradical to the multiple linkage of the acetylenic reactant to form a five-membered, nitrogen-containing ring.
  • the reaction is conducted at temperatures above that which is required for aziridine ring cleavage, but below temperatures at which extensive polymerization or decomposition of the reacting species or product is observed. Suitable temperatures vary from about 250 C. to about 500 C., although temperatures from about 300 C. to about 450 C. are preferred.
  • the efficiency of the pyrroline production is favored by an excess of the acetylenic compound over the aziridine whereby the likelihood of the acetylene trapping of the diradical produced by aziridine ring cleavage is increased.
  • a molar excess of the acetylenic reactant is preferably employed. From practical considerations, however, utilization of too great an excess of acetylenic compound renders process operation and product recovery more difficult due to the bulk of the product mixture.
  • Molar ratios of acetylenic compound to aziridine from about 1.5 :1 to about :1 are generally satisfactory, while molar ratios from about 2:1 to about 25:1 are preferred.
  • the reaction process is desirably conducted in a manner whereby the contact time of the reactants can be controlled, as undesirable side reactions may occur at extended reactant contact times.
  • a preferred modification of a continuous process comprises conducting the reaction in the vapor phase, as by passing a gaseous mixture of the acetylenic compound and the aziridine through a reactor maintained at the desired reaction temperature.
  • the reactants may be mixed prior to or simultaneously with introduction into the reactor which is customarily tubular in shape.
  • acetylenes which are normally liquid at ambient temperature it is preferred to employ preheating means to promote extensive vaporization of the acetylene prior to mixing with the aziridine or introduction into the reactor, and it is also useful to pack the reactor with an inert material, e.g., glass helices, to promote more even heat transfer.
  • an inert material e.g., glass helices
  • the reaction is conducted at atmospheric, subatmospheric or superatmospheric pressure, so long as the reactants remain in the vapor phase.
  • the pressure at which the gaseous materials are introduced to the reactor will in part determine the reactant residence time, and at the substantially atmospheric reaction pressures preferably employed, e.g., from about 0.5 atmosphere to about 2 atmospheres, residence times of up to about minutes are encountered. Preferred reactant residence times vary from about 0.5 minute to about 7 minutes.
  • the effluent from the reactor is separated and recovered by conventional means, e.g., by fractional distillation, selective extraction, crystallization or the like after cooling the efiluent to condense the product mixture.
  • the unreacted acetylenic compound is recoverable for further reaction.
  • the heterocyclic product of the processes comprises the pyrroline product, generally with lesser amounts of the corresponding pyrrole.
  • the aziridine and acetylenic compound react to initially produce a A -pyrroline, which product gains stability by isomerization to the corresponding A -pyrroline or by elimination of hydrogen to produce the corresponding pyrrole.
  • the principal products typically observed comprise a mixture of a A -pyrroline and the corresponding pyrrole.
  • the illustrative reaction of ethylenimine and propyne is shown by the equation below.
  • the pyrroline and any pyrrole products contain corresponding substituents upon the fivemembered ring.
  • substituents upon the fivemembered ring For example, from N-methylaziridine and l-hexyne is obtained 1 methyl-3-butyl A pyrroline.
  • the preferred terminal acetylenes are employed, the group attached to the carbon-carbon triple bond is observed as a 3-substituent upon the heterocyclic product, and such products constitute a preferred class.
  • illustrative pyrroline products include l-ethyl-A -pyrroline, 2,3-dimethyl-A -pyrroline, 3-benzyl-A -pyrroline, 1-phenyl-3-hexyl-A -pyrroline and 2,4-dimethyl-A -pyrroline.
  • the pyrroline products find utility as solvents and as chemical intermediates, particularly in the production of agricultural chemicals, e.g., insecticides, and pharmaceutical chemicals.
  • the unsaturated linkage serves as a reactive site for processes of polymerization or alternatively is epoxidized to form useful epoxy resin precursors.
  • the pyrrolines are reacted with inorganic acids to form useful quaternary ammonium salts and when the nitrogen substituent is hydrogen, reaction with carboxylic acids produces useful amides.
  • the pyrrole portion of the product mixture has similar utility, and in addition is reucked by conventional methods to the pyrroline and either may be reduced to the corresponding pyrrolidine.
  • the pyrroline products are dehydrogenated to corresponding pyrroles by treatment with a dehydrogenation catalyst, either in a subsequent operation, or, in a novel further modification of the present process, by inclusion of the catalyst within the reactor where the pyrroline is produced.
  • Example I The vapor-phase reactor employed in this and subsequent examples was a vertically-mounted stainless steel tube having an internal diameter of 0.75 inch and a length of about two feet.
  • the reactor was equipped with a coaxial thermocouple well and a thermoelectric-controlled heating furnace and was packed with glass helices.
  • the effiuent from the reactor was condensed in ice and Dry Ice traps. After removal of the pentane and approximately 2 g. of unreacted aziridine by fractional distillation, the product, 9 g., was found to be 52% A pyrroline and 48% pyrrole. The total yield of product was 56% based upon the aziridine charged. Product identification was made by mass spectrographic analysis, by the nuclear magnetic resonance and infrared spectra and by comparative gas-liquid chromatographic analysis.
  • Example ll Under reaction conditions similar to those of Example I, 10 g. of N-methylethylenimine were introduced in the vapor phase, to the reactor together with 10-15 mole equivalents of propyne and nitrogen as a carrier gas.
  • the product mixture 8.5 g. after removal of the excess propyne and 1.8 g. of unreacted aziridine, was a mixture of 73% l-methyl-h -pyrroline and 27% N-methylpyrrole. The total yield of product was 59% based on the N- methylethylenimine charged.
  • Example III The procedure of Example I was repeated employing an equivalent amount of propyne in place of the acetylene. After removal of pentane and approximately 1.5
  • Example IV Under reaction conditions similar to those of Example I, a mixture of 10 g. of N-methylethylenimine and 42 g. (3 mole equivalents) of hexyne-l was introduced to the reactor employing nitrogen as a carrier gas. After removal of excess hexyne-l and 3.2 g. of unreacted aziridine, 10 g. of product was obtained which was substan tially entirely 1-methyl-3-butyl-A -pyrroline, 13.1. C. at 20 mm. The yield based on the aziridine charged was 42%. Product identification was made by mass spectrographic analysis and the nuclear magnetic resonance spectrum was consistent with the above formula.
  • Example V When the procedure of Example IV is repeated employing butyne-2 and N-phenylethylenimine as reactants, a good yield of 1-phenyl-2,3-dimethyl-A -pyrroline is obtained.
  • Example VI A reactor similar to that described in Example I was prepared containing, as packing, equal amounts of glass helices and 10% Pd-on-carbon, the latter serving as a solid metal dehydrogenation catalyst.
  • the reactor was maintained at 375 C.
  • the product mixture 8.2 g. after removal of approximately 1.2 g. unreacted aziridine, was found to consist of 25% 1-methyl-A -pyrroline and N-methylpyrrole.
  • Product identification was made by mass spectrographic analysis, by the nuclear magnetic resonance and infrared spectra, and by comparative gas-liquid chromatography.
  • R and R independently are hydrogen, alkyl, ar-

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

ware
No Drawing. Filed Aug. 7, 1964, Ser. No. 388,300
7 Claims. (Cl. 260-3131) This invention relates to an improved method for the production of certain heterocyclic compounds. More particularly, it relates to an improved method for the production of pyrrolines.
Few methods are available for the production of pyrrolines. Probably the most frequently employed method comprises chemical reduction of the corresponding pyrrole, as with active metal and acid. Such a method suffers from the disadvantage that the pyrrole reactant, particularly if a substituted pyrrole, may be difiicult to prepare and/ or economically expensive. It would be of advantage to provide a method whereby pyrrolines are easily and economically produced.
It is the object of the present invention to provide an improved process for the production of certain nitrogencontaining heterocyclic compounds. A more particular object is to provide an improved process for the production of pyrrolines.
It has now been found that these objects are accomplished by reacting hydrocarbon aziridines with acetylenic compounds at elevated temperature, Under the reaction conditions of the process, pyrrolines, frequently together with lesser amounts of the corresponding pyrroles, are produced easily and efficiently and in good yield by a onestep addition process.
The aziridine reactants of the process of the invention, which are also commonly referred to as enimines, contain a three-membered heterocyclic ring comprising one atom of nitrogen and two atoms of carbon. Suitable aziridines are hydrocarbon aziridines, that is, contain only atoms of carbon and hydrogen besides the nitrogen moiety of the :three-membered ring and are free from non-aromatic unsaturation. Illustrative compounds of this type contain from 2 to 10 carbon atoms, preferably 2 to 6, and are represented by the formula wherein R and R independently are hydrogen, alkyl of up to 8 carbon atoms, aralkyl of up to 8 carbon atoms, phenyl, or alkarylv having from 6 to 8 carbon atoms.
Illustrative of such compounds are ethylenimine, N-methylethylenimine, 1,2-dimethylaziridine, 1,2,3-triethylaziridine, 2,2-dimethylaziridine, N-butylethylenimine, N-phenylethylenimine, 2-tolylaziridine, N-benzylethylenimine, N-amylethylenimine and 2-octylaziridine. Preferred aziridines of the above-depicted formula are Wholely aliphatic, that is, contain no aromatic moieties. Further preferred are those above-depicted aziridines wherein all R substituents are hydrogen, i.e., a l-(nonto mono-)alkylaziridine wherein any l-alkyl substituent has from 1 to 8 carbon atoms, preferably 1 to 4. From consideration of economics and of product utility, most preferred as the aziridine reactant is ethylenimine.
In the process of the invention, the aziridine is reacted with an acetylenic compound, i.e., a compound containing a carbon-carbon triple bond. Although acetylenic compounds of varying type, e.g., hydrocarbon acetylenes and non-hydrocarbon acetylenes, are operable provided that any non-hydrocarbyl substituents do not possess active hydrogens, the non-hydrocarbon acetylenes are United States Patent "ice generally difficult to obtain and/or economically expensive, and largely for these reasons the utilization of hydrocarbon acetylenes is preferred. The preferred acetylenic compounds therefore contain only atoms of carbon and hydrogen and preferably contain only a single carboncarbon triple bond as the only non-aromatic unsaturation in the molecule. Suitable acetylenic compounds contain from 2 to 10 carbon atoms, preferably from 2 to 8, and are represented by the formula wherein R has the previously stated significance. Exemplary acetylenic compounds include acetylene, propyne, l-butyne, Z-butyne, l-hexyne, 2-octyne, 3-octyne, phenylacetylene, 3-phenylpropyne and the like. In general, regardless of the number of carbon atoms present, terminal acetylenes are preferred over the corresponding internal acetylenes, and particularly preferred as the acetylenic reactant is acetylene.
Without Wishing to be bound by any specific theory, it appears that the process of the invention involves thermal cleavage of a carbon-nitrogen bond of the aziridine ring to form a 1,3-diradical and subsequent 1,3-cycloaddition of the diradical to the multiple linkage of the acetylenic reactant to form a five-membered, nitrogen-containing ring. In view of the known highly reactive character of the free radicals as well as the acetylenic compounds at the elevated temperature of the reaction, it is surprising that high selectivity towards the 1,3-cycloaddition process is observed. The reaction is conducted at temperatures above that which is required for aziridine ring cleavage, but below temperatures at which extensive polymerization or decomposition of the reacting species or product is observed. Suitable temperatures vary from about 250 C. to about 500 C., although temperatures from about 300 C. to about 450 C. are preferred.
The efficiency of the pyrroline production is favored by an excess of the acetylenic compound over the aziridine whereby the likelihood of the acetylene trapping of the diradical produced by aziridine ring cleavage is increased. Thus, a molar excess of the acetylenic reactant is preferably employed. From practical considerations, however, utilization of too great an excess of acetylenic compound renders process operation and product recovery more difficult due to the bulk of the product mixture. Molar ratios of acetylenic compound to aziridine from about 1.5 :1 to about :1 are generally satisfactory, while molar ratios from about 2:1 to about 25:1 are preferred.
The reaction process is desirably conducted in a manner whereby the contact time of the reactants can be controlled, as undesirable side reactions may occur at extended reactant contact times. Thus, although batch type processes are not precluded, best results are obtained when the process is conducted in a continuous manner. A preferred modification of a continuous process comprises conducting the reaction in the vapor phase, as by passing a gaseous mixture of the acetylenic compound and the aziridine through a reactor maintained at the desired reaction temperature. The reactants may be mixed prior to or simultaneously with introduction into the reactor which is customarily tubular in shape. In the case of higher molecular weight acetylenes which are normally liquid at ambient temperature it is preferred to employ preheating means to promote extensive vaporization of the acetylene prior to mixing with the aziridine or introduction into the reactor, and it is also useful to pack the reactor with an inert material, e.g., glass helices, to promote more even heat transfer. Customarily the excess of acetylene or alternatively an inert gas such as nitrogen, helium, methane or other unreactive hydrocarbon, argon or the like is employed as a transport agent to facilitate passage of the gaseous reactants through the reactor. The reaction is conducted at atmospheric, subatmospheric or superatmospheric pressure, so long as the reactants remain in the vapor phase. The pressure at which the gaseous materials are introduced to the reactor will in part determine the reactant residence time, and at the substantially atmospheric reaction pressures preferably employed, e.g., from about 0.5 atmosphere to about 2 atmospheres, residence times of up to about minutes are encountered. Preferred reactant residence times vary from about 0.5 minute to about 7 minutes.
Subsequent to reaction the effluent from the reactor is separated and recovered by conventional means, e.g., by fractional distillation, selective extraction, crystallization or the like after cooling the efiluent to condense the product mixture. The unreacted acetylenic compound is recoverable for further reaction.
The heterocyclic product of the processes comprises the pyrroline product, generally with lesser amounts of the corresponding pyrrole. Without wishing to be bound by any specific theory, it appears that the aziridine and acetylenic compound react to initially produce a A -pyrroline, which product gains stability by isomerization to the corresponding A -pyrroline or by elimination of hydrogen to produce the corresponding pyrrole. In any event, the principal products typically observed comprise a mixture of a A -pyrroline and the corresponding pyrrole. The illustrative reaction of ethylenimine and propyne is shown by the equation below.
When the aziridine possesses substituents or when other acetylenes are employed, the pyrroline and any pyrrole products contain corresponding substituents upon the fivemembered ring. For example, from N-methylaziridine and l-hexyne is obtained 1 methyl-3-butyl A pyrroline. When the preferred terminal acetylenes are employed, the group attached to the carbon-carbon triple bond is observed as a 3-substituent upon the heterocyclic product, and such products constitute a preferred class. Other illustrative pyrroline products include l-ethyl-A -pyrroline, 2,3-dimethyl-A -pyrroline, 3-benzyl-A -pyrroline, 1-phenyl-3-hexyl-A -pyrroline and 2,4-dimethyl-A -pyrroline.
The pyrroline products find utility as solvents and as chemical intermediates, particularly in the production of agricultural chemicals, e.g., insecticides, and pharmaceutical chemicals. The unsaturated linkage serves as a reactive site for processes of polymerization or alternatively is epoxidized to form useful epoxy resin precursors. The pyrrolines are reacted with inorganic acids to form useful quaternary ammonium salts and when the nitrogen substituent is hydrogen, reaction with carboxylic acids produces useful amides. The pyrrole portion of the product mixture has similar utility, and in addition is re duced by conventional methods to the pyrroline and either may be reduced to the corresponding pyrrolidine. The pyrroline products are dehydrogenated to corresponding pyrroles by treatment with a dehydrogenation catalyst, either in a subsequent operation, or, in a novel further modification of the present process, by inclusion of the catalyst within the reactor where the pyrroline is produced.
To further illustrate the process of the invention, the following examples are provided. It should be understood that the details thereof are not to be regarded as limitations, as they may be varied as will be understood by one skilled in this art.
Example I The vapor-phase reactor employed in this and subsequent examples was a vertically-mounted stainless steel tube having an internal diameter of 0.75 inch and a length of about two feet. The reactor was equipped with a coaxial thermocouple well and a thermoelectric-controlled heating furnace and was packed with glass helices.
To the reactor maintained at 375 C., over a 5-6 hour period, was introduced 10 g. of ethylenimine, 15 cc. of pentane and acetylene (10-15 mole equivalents based on the ethylenimine) together with nitrogen as a carrier gas. The total gas flow rate was 35 cc./min.
The effiuent from the reactor was condensed in ice and Dry Ice traps. After removal of the pentane and approximately 2 g. of unreacted aziridine by fractional distillation, the product, 9 g., was found to be 52% A pyrroline and 48% pyrrole. The total yield of product was 56% based upon the aziridine charged. Product identification was made by mass spectrographic analysis, by the nuclear magnetic resonance and infrared spectra and by comparative gas-liquid chromatographic analysis.
Example ll Under reaction conditions similar to those of Example I, 10 g. of N-methylethylenimine were introduced in the vapor phase, to the reactor together with 10-15 mole equivalents of propyne and nitrogen as a carrier gas. The product mixture, 8.5 g. after removal of the excess propyne and 1.8 g. of unreacted aziridine, was a mixture of 73% l-methyl-h -pyrroline and 27% N-methylpyrrole. The total yield of product was 59% based on the N- methylethylenimine charged.
Example III The procedure of Example I was repeated employing an equivalent amount of propyne in place of the acetylene. After removal of pentane and approximately 1.5
' g. of unreacted aziridine, 9 g. of product was obtained which was found to contain 68% 3-methyl-A -pyrroline and 32% Z-methylpyrrole. Product identification was made by means of mass spectrographic analysis and the nuclear magnetic resonance spectrum.
Example IV Under reaction conditions similar to those of Example I, a mixture of 10 g. of N-methylethylenimine and 42 g. (3 mole equivalents) of hexyne-l was introduced to the reactor employing nitrogen as a carrier gas. After removal of excess hexyne-l and 3.2 g. of unreacted aziridine, 10 g. of product was obtained which was substan tially entirely 1-methyl-3-butyl-A -pyrroline, 13.1. C. at 20 mm. The yield based on the aziridine charged was 42%. Product identification was made by mass spectrographic analysis and the nuclear magnetic resonance spectrum was consistent with the above formula.
Example V When the procedure of Example IV is repeated employing butyne-2 and N-phenylethylenimine as reactants, a good yield of 1-phenyl-2,3-dimethyl-A -pyrroline is obtained.
Example VI A reactor similar to that described in Example I Was prepared containing, as packing, equal amounts of glass helices and 10% Pd-on-carbon, the latter serving as a solid metal dehydrogenation catalyst. A mixture of 10 g. of N-methylethylenimine, 10-15 mole equivalents of acetylene and a 10:1 mixture of nitrogen and hydrogen was introduced to this reactor at a constant rate. The reactor was maintained at 375 C. The product mixture, 8.2 g. after removal of approximately 1.2 g. unreacted aziridine, was found to consist of 25% 1-methyl-A -pyrroline and N-methylpyrrole. Product identification was made by mass spectrographic analysis, by the nuclear magnetic resonance and infrared spectra, and by comparative gas-liquid chromatography.
wherein R and R independently are hydrogen, alkyl, ar-
alkyl, phenyl or alkaryl and a hydrocarbon acetylenic compound of from 2 to carbon atoms of the formula wherein R has the previously stated significance at a temperature from about 250 C. to about 500 C.
2. The process of claim 1 wherein the acetylenic compound is a l-alkyne.
3. The process of producing a A -pyrroline by reacting l-(nonto mono-)alkylaziridine wherein any alkyl substituent has from 1 to 8 carbon atoms with alkyne having from 2 to 10 carbon atoms, in the vapor phase, at a temperature from about 250 C. to about 500 C.
4. The process of producing a A -pyrroline by reacting l-(nonto mono-)alkylaziridine wherein any alkyl substituent has from 1 to 4 carbon atoms with acetylene, in the vapor phase at a temperature from about 300 C. to about 450 C.
5. The process of claim 4 wherein the aziridine is 1- methylaziridine.
6. The process of claim 4 wherein the aziridine is ethylenimine.
7. The process of producing a pyrroline and substantially immediately converting the pyrroline to the corresponding pyrrole by reacting a hydrocarbon aziridine of from 2 to 10 carbon atoms of the formula wherein R and R independently are hydrogen, alkyl, aralkyl, .phenyl or alkaryl and a hydrocarbon acetylenic compound of from 2 to 10 carbon atoms of the formula wherein R has the previously stated significance at a temperature from about 250 C. to about 500 C. in the presence of a solid metal dehydrogenation catalyst.
No references cited.
HENRY R. JILES, Acting Primary Examiner.
MARY E. OBRIEN, Assistant Examiner.

Claims (1)

1. THE PROCESS OF PRODUCING A $3-PYRROLINE BY REACTING A HYDROCARBON AZIRIDINE OF FROM 2 TO 10 CARBON ATOMS OF THE FORMULA
US388300A 1964-08-07 1964-08-07 Pyrroline production Expired - Lifetime US3259632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US388300A US3259632A (en) 1964-08-07 1964-08-07 Pyrroline production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US388300A US3259632A (en) 1964-08-07 1964-08-07 Pyrroline production

Publications (1)

Publication Number Publication Date
US3259632A true US3259632A (en) 1966-07-05

Family

ID=23533544

Family Applications (1)

Application Number Title Priority Date Filing Date
US388300A Expired - Lifetime US3259632A (en) 1964-08-07 1964-08-07 Pyrroline production

Country Status (1)

Country Link
US (1) US3259632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890345A (en) * 1973-02-21 1975-06-17 Diamond Shamrock Corp Preparation of pyrrolines by the amination of ketones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890345A (en) * 1973-02-21 1975-06-17 Diamond Shamrock Corp Preparation of pyrrolines by the amination of ketones

Similar Documents

Publication Publication Date Title
Crabbé et al. Efficient homologation of acetylenes to allenes
US3342833A (en) Pyrrolidine production from aziridines and olefins
US4764309A (en) Preparation of chlorocarboxylic acid chlorides
Scalzi et al. Alkylation of pyridine with tert-butyllithium. Convenient syntheses of 2, 6-di-tert-butylpyridine and 2, 4, 6-tri-tert-butylpyridine
US3259632A (en) Pyrroline production
Branchaud Studies on the development of the tritylsulfenyl group as a nitrogen protecting group and application in a synthesis of. delta.-coniceine
US3228957A (en) Pyrrolidine production
US3951996A (en) Process for making nicotinic acid hydrazides
US3634510A (en) Preparation of n-alkylcarboxamides
US3505403A (en) Amidoximes and amidhydrazones and method of preparation
Josey The Preparation of 1-Amino-1-fluoroalkylethylenes by the Addition of Active Methylene Compounds to Fluoroalkyl Cyanides
US3277114A (en) N-ethyl-pyrrolidines and method of preparation
US3401161A (en) Preparation of epsilon-caprolactam
US3962270A (en) Process for preparing 2-vinyl oxazolines
US5484941A (en) Preparation of 3(5)-methylpyrazoles
US3141034A (en) Production of unsaturated nitriles
Bissinger et al. A study of the reaction of phenol with thionyl chloride
US2956051A (en) Process for preparing cyclic amides
US3437663A (en) Addition reactions of aminoacetylenes
US2864851A (en) Preparation of nitriles from cyanogen and ketones
JPS639495B2 (en)
US4658032A (en) Process for producing 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine
JPS63503063A (en) Method for producing methyl isocyanate
US3933848A (en) Process for the preparation of phenylamines and carbazoles
US3711532A (en) Preparation of beta-halogenopropionitriles