US3257178A - Coated metal article - Google Patents

Coated metal article Download PDF

Info

Publication number
US3257178A
US3257178A US3257178DA US3257178A US 3257178 A US3257178 A US 3257178A US 3257178D A US3257178D A US 3257178DA US 3257178 A US3257178 A US 3257178A
Authority
US
United States
Prior art keywords
coating
alloy
laves phase
matrix
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Publication date
Application granted granted Critical
Publication of US3257178A publication Critical patent/US3257178A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/936Chemical deposition, e.g. electroless plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/937Sprayed metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/939Molten or fused coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other

Definitions

  • This invention relates to novel articles of manufacture comprising a metal body having a protective coating which exhibits outstanding resistance to deterioration from one or more of wear, abrasion, oxidation, and corrosion, and to a method for preparing said articles.
  • the invention relates to novel articles of manufacture comprising a metal base to which is bonded a protective metal coating having a surface layer of alloy constituted essentially of -85 volume percent Laves phase comprising at least two metals in its elemental composition present in 70-15 volume percent of a softer matrix formed of the same elemental components as said Laves phase, said matrix being in quasi equilibrium with said Laves phase.
  • an embodiment of the invention relates to such novel articles of manufacture wherein the metal base is selected either from a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least weight percent of a combination of two or more of iron, nickel, and cobalt, and the surface layer of alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent of a softer matrix in which the Laves phase is present comprises in its elemental composition two or more transition elements.
  • Laves phase as used herein and in the claims means one or more metallographic constituents I of an alloy that have the C (hexagonal), C (cubic), or C (hexagonal) crystal structure described in International Tables for X-ruy Crystallography by N. F. M. Henry and K. Lonsdale, International Union of Crystallography, Kynoch Press, Birmingham, England, (1952).
  • Prototypes of the Laves phase crystal structures are, respectively, MgZn MgCu and MgNi Sucfiphase structures, named after Dr. Fritz Laves, who pioneered their study, are unique crystal structures that permit the most complete occupation of space by assemblages of two sizes of spheres.
  • Laves phase can be represented by the stoichiometric composition A13 the large atoms (A) occupying certain sets of crystallographic sites and the small atoms (B) occupying other sites, in which the ratio of atomic radii A:B is in a range of about from 1.05 to 1.68.
  • the chemical natures of the component atoms and the electron-atom ratio of a given composition are factors in determining which of the three types of Laves phase will form or the nonexistence of a Laves phase where the size factor is favorable.
  • Laves phases occur as intermediate phases in numerous alloy systems.
  • Laves phases generally have a homogeneity range, i.e., they can have any of a range of elemental compositions while maintaining their characteristic crystal structure.
  • the atom ratio B:A may range from slightly less to slightly more than 2, possibly the result of some vacant sites in the crystal structure. Also, more than one kind of atom can occupy the large-atom sites, the small-atom sites, or both.
  • Laves phases can be represented stoichiometrically by the formula where C represents the atoms of one or more kinds that substitute for the large atoms, D represents the atoms of one or more kinds that substitute for the small atoms of the binary Laves structure AB and the quantities x and y have values in the range zero to one.
  • a Laves phase can contain atoms of as many as five or six or even more elements in its crystal structure.
  • the ternary MgCu type of Laves phase in the Nb-Cr-Si system is based on NbCr and has at 1000 C. the homogeneity range 31-37 atom percent Nb, 63-69 atom percent Cr, 0-2.5 atom percent Si.
  • the distribution of the silicon between the large-atom sites and the small-atom sites is not known.
  • atom percent will be abbreviated by 21/0, weight percent by w/o, and volume percent by v/o.
  • Laves phases have been primarily concerned with their crystal structures and the atomic properties and relationships favorable to their formation. Such phases are recognized in the prior art as generally hard intermetallic compounds which, depending on their elemental composition, may also exhibit good oxidation or corrosion resistance. Nevertheless, the valuable properties of Laves phases of the various elemental compositions and useful applications thereof in materials of construction have received little recognition since alloys consisting of such phases are invariably brittle and diflicult to work.
  • the object of the present invention to greatly improve the ability of metal bodies to resist wear, abrasion, oxidation, and corrosion, while substantially retaining the inherent physical properties of said bodies by providing said bodies with a metal coating containing in its surface layer a relatively high percentage of Laves phase of certain alloy systems present in a softer matrix of the same multiphase alloy.
  • an article of manufacture comprising a metal base selected either from a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least 50 w/o of a combination of two or more of iron, nickel, and cobalt to which is bonded a protective metal coating having a surface layer of alloy consisting essentially of at least two elements, two or more of which are heavy transition elements aggregating at least 60 a/o of said alloy, the CNl2 Goldschmidt radii of the largest and the smallest of said heavy transition elements having a ratio in the range 1.05-1.68, wherein 30-85 We of said alloy is present as Laves phase in a matrix composed of the remaining -15 v/o of said alloy, which matrix is softer than said Laves phase.
  • inventions include articles comprising other metal bases such as the reactive metals titanium and zirconium; the refractory metals niobium, tantalum, molybdenum, tungsten, and chromium; copper; and uranium.
  • metal bases such as the reactive metals titanium and zirconium; the refractory metals niobium, tantalum, molybdenum, tungsten, and chromium; copper; and uranium.
  • the novel articles of the invention are formed by means of a novel method involving the steps of (a) forming an alloy consisting essentially of from about 30-85 v/o Laves phase and 70-l5 v/o of a matrix, said alloy when in contact with the metal base to be coated having an incipient melting point below the melting point of said metal base, (b) reducing the coating alloy to a powder, (c) depositing the powder on the base metal, (d) melting at least a part of the deposit of powdered alloy by heating in a nonoxidizing atmosphere until the melt wets the unmelted deposit and the underlying surface of the metal body, and (e) cooling the formed article at a rate that leaves the alloy coating with a matrix softer than the Laves phase therein.
  • alloy as used herein and in the claims means a substance having metallic properties and containing in its elemental composition two or more chemical elements of which at least one is a metal.
  • base metal as used herein and in the claims with a designated metal preceding it, such as, for example, ferrous" or nickel
  • base metal means a substance having metallic properties containing the designated metal in a predominant amount, preferably at least 50 w/o.
  • heavy transition metal as used herein and in the claims means a metal selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt of Group VIII; Mn and Re of Group VII-B; Cr, Mo, W, and U of Group VI-B'.
  • Articles of the invention have coatings in which the surface layer is of a binary or higher alloy system containing at least two metals, the atomic radii ratio of said metals permitting the formation of Laves phase.
  • the inclusion of heavy transition metals as such metals in the alloy coating has been found to provide, when an appreciable content of the alloy is present in the surface layer of the coating as Laves phase, a surprising combination of benefits to a metal base including improved wear, abrasion. and corrosion resistance; and greater service life at elevated temperatures. Many of the Laves phases of such alloy systems melt at a temperature several hundred degrees higher than the metal base itself.
  • the inclusion of silicon in the alloy coating having the novel structure of the invention is particularly preferred since this element often confers outstanding oxidation and corrosion resistance to the coated article and serves as well to stabilize the Laves phase of the alloy system present in the coating.
  • the Laves phase in the surface layer of the protective metal coating the Laves phase be present in a matrix formed of the same alloy system as the Laves phase and that the matrix be softer than the Laves phase.
  • the relative proportions of Laves phase to softer matrix in the surface layer of the coating is to be maintained in a range of from 30-85 v/o Laves phase and from -15 v/o softer matrix with the Laves phase content at no level in the surface layer exceeding v/o.
  • the softer matrix which is formed of the same alloy system as the Laves phase may be a substantially pure metal, a solid solution, one or more intermetallic compounds which may form, or a mixture of solid solution and intermetallic compounds, so long as the matrix is softer than the Laves phase present therein.
  • the matrix has less than one-third the Knoop hardness of the Laves phase, especially where a deformable coating is required. Generally, there will be no substantial mitigation of brittlencss obtained where the matrix has more than about of the Knoop hardness of the Laves phase therein.
  • FIG. 1 is a photomicrograph (160x) of a nital-etched cross section through the coating on a mild-steel metal base (M) coated with a 51 w/o W-40 w/o Ni9 w/o Si coating alloy according to the invention.
  • FIG. 2 is a photomicrograph (x) of a nital-etched cross section through the coating on a mild steel base coated with 52 w/o Ta38 w/o Co10 w/o Si coating alloy according to the invention.
  • FIG. 3 is a photomicrograph (140x) of a nital-ctched cross section through the coating on a mild steel base coated with a 40 w/o Nb45 w/o Ni-15 w/o Si coating alloy according to the invention.
  • FIG. 4 is a photomicrograph (400x) of a nital-etched cross section through the coating on a mild steel base coated with a 35 w/o Mo-55 w/o Ni-10 w/o Si coating alloy according to the invention.
  • FIG. 5 is a fragment of a triangular constitution diagram of the molybdenum-nickeI-silicon system showing the nickel-rich portion thereof.
  • FIG. 1 illustrates the preferred structure for articles of the invention involving a metal base, a protective alloy coating metallurgically bonded to said metal base, wherein the surface layer of said alloy coating contains from about 30 to 85 v/o Laves phase and from 70 to 15 v/o softer matrix.
  • FIGS. 1, 2, and 4 show coatings wherein the surface layer thereof consists of hypereutectic alloy, i.e., an alloy consisting essentially of excess Laves phase and a lower melting matrix.
  • the Laves phase occurs mainly as a slceleton structure of interconnected grains interpenetrnted by the matrix.
  • the Laves phase occurs as dispersed grains enveloped by the matrix.
  • FIG. 4 shows coatings wherein the surface layer thereof consists of hypereutectic alloy, i.e., an alloy consisting essentially of excess Laves phase and a lower melting matrix.
  • the Laves phase occurs mainly as a slceleton structure of interconnected grains interpenetrnted by the matrix.
  • the Laves phase occurs as dispersed grains enveloped by the matrix.
  • FIG. 4 shows coatings wherein the surface layer thereof consists of hypereutectic alloy, i.e., an alloy consisting essentially of excess Laves phase and a lower melting matrix.
  • FIG. 3 shows a voidfree coating wherein the surface layer thereof consists substantially of a eutectic wherein the Laves phase occurs mainly as lamellae or thin grains embedded in a matrix.
  • surface layer as used herein and in the claims is intended to refer to the outermost portion of the coating, consflituting at least onethird of the coating, bounded on the outside by the surface of the coating and on the inside by the imaginary surface nearest the surface of the coating and parallel thereto that intersects alloy containing not more than 30 W0 Laves phase.
  • volume percentages of Laves phase and matrix in the surface layer of the coating is made from a photomicrograph, at least 400x, that clearly shows the outlines of the grains of Laves phase in a representative cross-section of the coating taken generally normal to the surface of the coating.
  • the section photographed is polished and etched.
  • the area of the photomicrograph selected for measurement extends over the full thickness of the sunface layer for a distance generally parallel to the coating surface twice this thickness but in no event is said distance less than mils on the actual coating.
  • a thin line generally parallel to the surface of the coating is drawn at the middle of each of three equally wide bands parallel to the surface of the coating into which the surface layer within the measurement area can be divided. The fraction of the length of each of these three lines lying over particles of Laves phase is measured.
  • the three fractions are averaged arithmetically.
  • the average is multiplied by 100 and taken as being equal to the volume percent of Laves phase present in the surface layer of the coating.
  • the volume percent of Laves phase present in the surface layer of the coating is subtracted from 100, and the remainder is taken as being equal to the volume percent of matrix present in the surface layer of the coating.
  • FIG. 4 an illustration of utilizing the above-described technique may be gained by reference to Lines A-A, BB, and C*C. By averaging the fractions of these lines (0.76, 0.55, and 0.65) transvcrsing Laves phase grains, it is determined that the surface layer of the coating of this article contains 65 v/o Laves phase and 35 v/o matrix.
  • the layer of the coating (D) between the surface layer and the bulk of the metal base may vary in thickness as may be seen from FIGS. 1, 2, and 3.
  • This portion of the alloy coating is constituted of less than 30 v/o Laves phase and, for the coated articles shown in FIGS. 1-4 formed in accordance with the method of the invention, is a diffusion zone frequently including part of the metal base and as seen in FIG. 2 may contain small amounts of an innate phase.
  • the diffusion zone forms a continuous metallurgical bond between the surface layer of the coating and the underlying base metal.
  • the presence of a softer matrix in the proportions specified for the surface layer of the coating of the articles of the invention provides multiaxial support for the Laves phase and greatly mitigates the inherent brittleness of the Laves phase.
  • the unique coating structure of the invention present on metal bodies of ferrous base metals, nickel base metals, and cobalt base metals exhibits some definite ductility which is surprisingly superior to what would be available with a continuous layer of Laves phase formed on the same base metal, the actual degree of ductility of articles of the invention obviously will depend in large part on the composition of the alloy coating of the article.
  • alloy coatings of the Mo-Fe-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of silicon and molybdenum in alpha iron have definite but limited ability to undergo plastic deformation without fracture. These alloy coatings are used to best advantage on thick, rigid metal bodies and it is found advantageous to not exceed a coating thickness of approximately 5 mils to avoid the appearance of cracks in the coating.
  • alloy coatings of the Mo-Ni-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of the other elements in nickel can undergo extensive plastic deformation without fracture, particularly at low proportions of Laves phase and high proportions of matrix within the range of limits defined for the invention, owing to the exceptionally high ductility of these solid solutions forming the matrix.
  • Nickel confers its ductility on alloy coatings having a nickel-rich solidsolution matrix, for example, in the W-Ni-Si, Mo-Fe-Ni-Si, Mo-Cr-Ni-Si, and other coating alloy systems suitable for the invention.
  • Formable metal bodies having the more ductile alloy coatings metallurgically bonded thereto can be shaped without disruption of the coating even with coating thicknesses up to 20 mils or more. These coatings, therefore, are highly useful on both thick, rigid metal bodies and flexible metal bodies.
  • the ductility of such alloy coatings is enhanced by decreased proportions of Laves phase relative to the softer matrix, by decreased hardness of the matrix relative to the Lavcs phase. and by occurrence of the Laves phase in discrete nodular grains.
  • such alloy coatings are made less ductile by increased proportion of Laves phase relative to the softer matrix, by increased hardness of the matrix relative to the Laves phase, and by occurrence of the Laves phase as interconnected grains.
  • the coating thickness of the articles of the invention may vary between wide limits depending on various of the considerations discussed hercinabove. Normally, in order to gain a significant degree of improvement in one or more of the properties of wear, abrasion, oxidation, or corrosion resistance, the coating thickness should be at least one mil thick. Coatings in excess of 250 mils normally will not be required or desired for economical reasons although certainly such coatings are contemplated as failling within the invention.
  • a further characteristic of the coating of the articles of the invention is the ability of the Laves phase and the softer matrix of the alloy coating to coexist indefinitely in their mutual presence at elevated temperatures, although such elevated temperatures are limited by the decomposition temperature of the Laves phnsc they usually extend at least to the incipient melting point of the alloy coating.
  • the surface layer of the alloy coating may contain material derived from the underlying metal base. The degree of dilution from such material is dependent in large part on the technique employed for metallurgically bonding the coating to the metal base, more particularly, on the temperatures and time of the coating process and also on the exposure of the finished article to elevated temperature during use.
  • Articles of the invention are preferably formed in accordance with the novel method of the invention involving preforming a coating alloy constituted essentially of Laves phase and matrix, said alloy having an incipient melting point below the melting point of the metal base; reducing the alloy to a powder, depositing the coatingalloy powder on the metal base; melting at least a part of the deposit of powdered alloy by heating to accomplish a metallurgical bond; and cooling the coated metal body at a rate that leaves the coating with a matrix softer than the Laves phase therein.
  • the elemental components of the coating must be prealloyed prior to deposition on the metal base and firing, to insure a coating which is pore-free and integrally bonded to the metal base.
  • Use of the elemental components of the coating in powder form without being prealloyed results in coatings which frequently crack or even spall from the metal base.
  • a coating alloy constituted essentially of about 30-85 We Laves phase and about 70-15 v/o matrix and having an incipient melting point below the melting point of the metal base to be coated is first formed from predetermined proportions of the alloying elements.
  • the present state of the art does not make it possible to reliably predict on purely theoretical grounds the kinds and proportions of elements to form such a coating alloy.
  • reference to published constitution diagrams, where available, will give a first approximation of suitable coating-alloy compositions and serve as a guide for varying the relative proportions of the coating-alloy components to arrive at the volume percentages of Laves phase and of matrix for the coating of the articles of the invention.
  • some trial and error and testing of the finished coated metal bodies must be practiced to obtain in the coating of the finished coated metal body a surface layer constituted of the desired volume percentages of Laves phase and softer matrix.
  • a Kubaschewski plot (the energy ratio defined as H (solute)/H (solvertt) plotted against the radius ratio) is useful in predicting whether two elements will form a Laves phase. (See 0. Kubaschewski, The Physical Chemistry of Metallic Solutions and lntermetallic Compounds," Paper No. 30, H. M.
  • diagrams shows many alloy systems containing a Laves phase that forms with the primary solid solution of one element of the Laves phase in the other element of the Laves phase a eutectic melting below the melting point of both iron and the binary Laves phase.
  • An alloy having a composition intermediate the terminal phases of the eutectic, i.e.. intermediate the composition of the saturated primary solid solution and the composition of Laves phase nearest the primary solid solution, will, in such alloy systems, lie in a two-phase field constituted of the Laves phase and the primary solid solution.
  • the composition of an alloy in such two-phase fields of such alloy systems constituted of about 30-85 v/o Laves phase and about 70-l5 v/o primary solid solution can be readily selected, recognizing that the ratio of the volume percentages of the two phases are usually roughly equal to the ratio of the weight percentages and to the ratio of the atom percentages of the two phases constituting the selected alloy. Since Laves phases are generally hard and primary solid solutions are generally soft, these two-phase alloys will generally have a matrix softer than the Laves phase pres ent in said matrix. More particularly, the iron-zirconium alloy system contains a Laves phase ZrFe (MP.
  • Alloys constituted of the Laves phase ZrFe and the solid solution of zirconium in iron can be formed on an iron base (M.P. 1530 C.) according to the novel method of the invention, using a firing temperature of about 1330- 1350 C.
  • alloys constituted of the Laves phase ZrFe and a solid solution of iron in zirconium can be applied on a zirconium base, using a firing temperature of about 935950 C., since the eutectic of the Laves phase and the primary solid solution of iron in zirconium melts at 934 C., i.c., below both the melting points of the terminal phases of the eutectic and of the zirconium base (MP. 1860" C.).
  • alloys of the iron-niobium, iron-tantalum, iron-titanium, and iron-uranium alloy systems can be formed on an iron base.
  • Alloys of the ironuranium system can also be applied on a uranium base according to the novel method of the invention.
  • the constitution and composition of the surface layer of the finished coated iron base most suited for a particular application will, of course, depend on the requirements of the application and should be determined by appropriate tests of the variously coated metal base.
  • FIG- URE 5 shows a two-phase field (kpr.) occupied by saturated primary solid solutions of molybdenum and silicon in nickel and by the compound Ni Mo Si, a Laves phase Mo(Ni, Si Begin by selecting compositions A, B, and C, each constituted of different proportions of Laves phase and saturated primary solid solution of molybdenum and silicon in nickel, from the slender triangular two-phase field kpr.
  • compositions are separately arcmelted, reduced to powder, and applied to test pieces of low-carbon steel base, and the resultant composites are fired at a temperature just sufiicient to form a melt that wets the metal base and any unmelted Laves ph ase, ac cording to the novel method of the invention.
  • the firing can be continued until the coating alloy is completely melted, it is preferred to discontinue the firing while the coating alloy is in a partly melted, pasty condition, especially where a thick surface layer of coating undiluted by the base metal is desired.
  • the test pieces are then furnace-cooled, and the coating on each is examined metallographically and by X-ray analysis to determine the structure of the coating.
  • a tie line is drawn on triangular coordinate plotting paper from the known or assumed composition of the binary Laves phase AB; across the diagram at constant percentage of the A-atom, plotting the compositions in atom percentages.
  • Ternary Laves phases in the ternary alloy system will in general occur along this tie line and have a homogeneity range extending on both sides of it.
  • Ternary Laves phases composed of two metals and a metalloid, such as silicon or germanium usually contain not over about 33 a/o metalloid.
  • a ternary Laves phase, such as Mo (Ni Si may be stabilized by the metal loid, even though a Laves phase, such as MoNi does not occur in the binary edge of the ternary diagram.
  • binary Laves phases composed of metals and having the same type of Laves phase structure, such as ZrFe and ZrCu (both being MgCu -type Laves phases), form a complete series of solid solutions with the result that a ternary Laves phase is present along the entire tie line.
  • binary Laves phases composed of metals and having dilferent types of Laves phase structure, such as ZrMn (MgZn type) and YMn (MgCu type) occur in the corresponding binary edges of the ternary diagram and have appreciable mutual solubility that is, however, incomplete.
  • ternary Laves phases occur along the end portions of the tie line but not in the central portion.
  • ternary alloys containing a Laves phase are suitable for application, according to the novel method of the invention, to a metal base having a melting point above the temperature of incipient melting of the selected coating alloy.
  • a second tie line is drawn from the estimated composition of ternary Laves phase to an apex of the ternary diagram, recognizing that the greatest probability of success will result from starting with a ternary Laves phase containing less than about 35 a/o of the third element not found in the binary Laves phase A8 and drawing the tie line to the B-atom apex of the ternary diagram.
  • Preparation of the coating alloy and evaluation of the coating on the metal base is then carried out following the procedure described above.
  • Coated bodies having a surface layer of still more complex alloy constituted of 3085 v/o Laves phase and 70-15 v/o matrix can be prepared using as a guide the fact that Laves phases are known in which the large (A) atom is partly substituted by two or more other kinds of metal atoms of comparable size and the small (B) atom is partly substituted by two or more other kinds of atoms, at least one kind being a metal atom, of comparable size to the B-atom.
  • the coating alloy is preferably formed by arc-melting the ingredients in a suitable container, such as, on a watercooled copper hearth.
  • the arcmelting is preferably accomplished under an inert atmosphere, such as, argon.
  • an inert atmosphere such as, argon.
  • molten nickel and molten nickel-tungsten alloy run through the charge and form a covering that dissolves silicon and minimizes volatilization of the silicon.
  • the charge is solidified, turned over, and rcmclted as many as six times to insure a homogeuous alloy.
  • Good results may also be obtained by melting the starting materials in an inert crucible under an inert gas blanket. The melt is then cooled in the crucible or cast into ingots of convenient size. Excessive temperature rise may result from reacting a large charge of alloy components containing silicon. This can be avoided, however, by progressive and stepwise addition of the components to an initial melt of the coating alloy in the crucible.
  • the coating alloy is then powdered by crushing and ball milling to a particle size suitable for the product being made.
  • a powder passing through a mesh, or even finer, screen is preferred.
  • powder made from coarse-grained coating alloy and passed through a IO-mesh, or even coarser, screen can be used.
  • the alloy is so tough as to defy crushing, it is converted to chips in a machine tool with a metal carbide cutting tool.
  • Ball milling of the crushed pieces or chips is carried out in a closed ball mill. It is preferable to employ a container made of plain carbon steel and a grinding medium of a metal carbide material, such as tugnsten carbide, to avoid any contamination of the powder.
  • the coating alloy can also be made by other methods known in the art, such as directly from the melt by spray-cooling in an inert gas.
  • the powdered alloy coating composition is then dcposited on the metal base by any suitable technique. Flame-spraying, plasma-jet spraying, and brushing, dipping, or spraying with a slurry of the powder in a solution of a temporary binder are satisfactory techniques.
  • the powdered coating composition be deposited on the metal base by means of a commercial plasma-jet gun, such as the Model F-40 gun made by Thermodynamics Corp, Riverside, New Hampshire.
  • the metal base is cleaned prior to deposition of the coating composition, for example, by grit blasting.
  • the plasma-jet gun is supplied with dry alloy coating powder preferably in a size range minus 270 mesh plus 325 mesh.
  • a slurry of the'powder by brushing or spraying with one or more coats.
  • Such a slurry can be readily formed by mixing the coating-alloy powder having a particle size passing through a 140-mcsh screen in a solution of an acrylic temporary binder dissolved in acetone or other inorganic solvent having suitable volatility.
  • Firing of the metal base having a deposit of coating alloy is preferably carried out by heating the work in argon at a pressure of 10 mm. Hg in an electric furnace.
  • the article can be heated in an electric vacuum furnace at an air pressure of 0.001 mm. Hg.
  • the article may also be fired in an electric furnace filled with hydrogen at a pressure slightly above atmospheric pressure, but in such a procedure the hydrogen should have a low content of water to insure a good metallurgical bond between coating and substrate.
  • the dew point of the hydrogen preferably is reduced to minus 45 F.
  • the deposit of the alloy coating on the metal base be heated until a melt forms and spreads over the surface of both the metal base underlying the deposit and any unmelted part of the coating alloy.
  • the matrix of the preformed coating alloy melts immediately when heated to its incipient melting point, and rapid heating to this temperature level is preferred since it minimizes the time needed to form sufi'icient melt for formation of the product article. Furthermore, rapid heating to the incipient melting point of the matrix insures metallurgical bonding of the coating to the base metal with minimum damage to the inherent physical properties of the metal base caused by overheating. It is preferred to discontinue the firing while the coating is a semi-fluid mixture of melt and unmelted residue of the deposited powder.
  • the time firing is continued after the first appearance of melt affects the relative thickness of the diffusion zone and the surface layer of the coating. Prolonged firing causes sufiicient dilution of the alloy present in the diffusion zone to result in a reduction in the amount of Laves phase in the diffusion zone, adjoining the surface layer of the coating.
  • the optimum time of firing the product article will obviously vary depending on the coating alloy selected, the relative amounts of Laves phase and matrix present in the coating, and the characteristics of the base metal involved. As an illustration, however, it has been found that the firing of deposits of various powdered coating alloys on chunky 24b. steel bodies can be completed at 1250 C. within approximately min. after the first appearance of melt on the base metal.
  • the cooling technique for the fired article is dependent largely on the intended end use of the finished article as well as the metallurgical characteristics of the initial base metal. Furnace-cooling of the article provides, in the surface layer of the coating, :1 matrix softer than the Laves phase. Rapid quenching or other heat-treatment techniques, for purposes well appreciated in the prior art, may also be practiced if desired.
  • coating techniques can be operated, if desired, to form the novel articles of the invention.
  • One such technique which may be successfully adapted to form the articles hereof, particularly clad sheets and slabs, is cladding either by hot-rolling, by high energy impaction, or by simply heating a close-fitting assembly of a piece of coating alloy and a metal body in inert atmosphere or dry hydrogen to about the incipient melting point of the coating alloy until their contacting surfaces autogenously braze together.
  • added brazing metal and flux may be employed; added brazing metal is necessary where the brazing temperatures used are substantial 1y below the incipient melting point of the cladding alloy in contact with the metal base.
  • the clad metal body is cooled at a rate that leaves the matrix of the protective cladding softer than the Laves phase therein or is otherwise heat-treated by conventional methods to produce this result in combination with desired properties of the metal base itself.
  • the starting materials for the desired coating alloy are melted together to insure formation of a homogenous coating alloy.
  • the more-ductile alloys are formed by conventional methods into sheets of the size and thickness that gives the desired coating of the finished article. This clean sheet is then superimposed on the clean metal base and the composite is hot'rolled to obtain a metallurgical bond between the base metal and the coating alloy.
  • the less-ductile coating alloys are preferably formed by casting and machining to the desired shape and size and then brazing the casting to the metal body as described.
  • the finished article formed by this coating technique will contain, in the manner explained hereinabove, a diffusion zone comprising part of the alloy coating intermediate the surface layer of the alloy coating and the bulk of the base metal. Formation of articles hereof by cladding is best employed for coating alloys which possess high inherent ductility.
  • Another technique which may be employed to form the coated articles of the invention is by hot dipping the metal base into a molten bath of the coating alloy. This method is particularly adaptable where the metal base to be coated has a uniform cross section such as round wires, rods, and bars.
  • the article may be formed by resin bonding the coating alloy to the base metal.
  • the coating alloy is preformed as a homogenous alloy in the shape and size desired as the coating of the article. Thin sheets of coating alloy are made in the manner previously described for the cladding technique whereas special shapes are made by conventional metal-working methods.
  • the coating is then bonded to the base metal by means of an adhesive, such as an epoxy resin or a vinyl-acrylic polymeric binder.
  • an adhesive such as an epoxy resin or a vinyl-acrylic polymeric binder.
  • the article formed in this manner does not have a diffusion zone and the coating is not metallurgically bonded to the substrate. Nevertheless, the bond between coating and substrate is adequate for nearly all end uses, with the possible exception of uses calling for extended service at high temperatures or exposure of the adhesive to solvent or chemical environments which might cause degradation of the adhesive followed by loss of a good bond between coating and substrate.
  • EXAMPLE 1 A coating alloy consisting of 51 w/o W-40 w/o Ni-9 w/o Si was formed by arc-melting weighed amounts of the component elements in argon at a pressure of 700 mm. Hg. The coating alloy contained about v/o of Laves phase which was identified in the alloy by X-ray diffraction; the matrix melted incipiently at about 1300 C. The alloy was crushed and ball-milled to a powder in the size range minus 270 mesh plus 325 mesh, and the powder was deposited by plasma-jet gun on /isdn. and /4-in. plates of S.A.E. 1020 mild steel. The resulting coated specimens were fired 3 min. at 1180 C.
  • Laves phase was identified in the surface layer of the coating of the formed article by X-ray diffraction, the relative amounts of Laves phase and matrix being approximately 48 v/o and 52 v/o, respectively.
  • the Laves phase showed a Knoop hardness of 630 and the matrix showed a Knoop hardness of 240.
  • the coated steel (4 x 4 x i-in. plates) had excellent resistance to a spray of aqueous 2O w/o NaCl solution at F. during 14 days exposure.
  • An extrusion die having a 0.l87-in land and a throat diameter of (L867 in. at the land was made of: H-l3 tool steel (5 ⁇ v/o Cr, 1.5 w/o M0, 1.0 w/o V, 0.35 w/o C, bal. Fe).
  • a coating alloy consisting of 51 w/o W40 w/o Ni-9 w/o Si was made by arc-melting and was reduced to powder. The powdered alloy was deposited to a depth of 24 mils on the land and working face of the die by plasma-jet gun.
  • the resulting coated die was fired 20 min. at 1180 C. in an electric furnace at a pressure of 10 mm. Hg and was cooled in the furnace. The fired coating was about 20 mils thick.
  • the hardness of the 11-13 steel was R 49.
  • the throat of the die was then finished to 0.850 in. diameter by Elox machining followed by grinding and polishing.
  • EXAMPLE 3 A coating alloy consisting of 35 w/o Mo-55 w/o Ni 10 W/o Si was formed, reduced to powder, and deposited on S.A.E. 1020 mild steel as in Example 1.
  • the coating alloy contained about 50 We Laves phase having a Knoop hardness of 1040 and 50 v/o matrix having a Knoop hardness of 340.
  • the matrix melted incipiently at about 1230 C.
  • the coated base metal specimens were fired 3 min. at 1300" C. in a vacuum electric furnace at a pressure of 0.001 mm. Hg and were furnace cooled.
  • the coating was metallurgically bonded continuously to the surface of the steel.
  • the coated surface of the specimen was exposed to aqueous l0 w/o HCl at 50 C. for 10 days under static conditions.
  • the coated surface corroded at a rate of 7.2 mils per month, whereas uncoated S.A.E. 1020 steel corroded at a rate of 396 mils/mo. under the same conditions.
  • EXAMPLE 4 A shear-type extrusion die having a 0.184-in. land and a throat diameter of 0.864-in. was made of Hl3 steel. A coating alloy consisting of 45 w/o W40 w/o Co-l5 w/o Si was made by arc-melting the elements in argon and was crushed and ball-milled to minus 400-mesh powder. One volume of powdered alloy was slurried in three volumes of w/o solution of acrylic binder in acetone and was sprayed to a depth of about 14 mils onto the land and working face of the die. The resulting coated die was dried, preheated for 10 min. at 1100 C., fired 10 min. at 1200-1210 C.
  • the measured lattice parameters of the Laves phase (C-14 hexagonal crystal structure type) were 0:4.708 A. and 0 7.673 A.
  • EXAMPLE 5 An alloy consisting of 51 w/o W-40 w/o Co9 w/o Si was made by arc-melting 510 g. of tungsten chips, 400 g. /sdn. cobalt shot, and 90 g. of lump silicon, all ingredients being at least 99.9% pure. The alloy was reduced to minus l40-mesh powder by crushing and ball-milling. One volume of the powder was slurried in three volumes of a 10 w/o solution of acrylic polymer in acetone. The slurry was brushed onto /ts-in. thick pieces of S.A.E. 1020 steel and air-dried, leaving a deposit about 10 mils thick. The coated pieces were fired 3 min. at 1320 C.
  • the coated steel was bent 15 around a z-in. diameter pin at room temperature, placing the coating under tension, without cracking the coating.
  • the coated steel was similarly bent but with the coating in compression, without cracking the coating.
  • EXAMPLE 6 A coating alloy consisting of 35 w/o Mo-55 w/o Co-lO w/o Si was formed by arc-melting weighed amounts of the elements in argon at a pressure of 700 mm. Hg. The alloy contained v/o of Laves phase in a matrix having an incipient melting point of about 1220" C. Laves phase was identified in the alloy by X-ray diffraction. The matrix appeared to be a mixture of phases and melted incipiently at 1220 C. The alloy was crushed and ball-milled in a steel mill to minus 400-mesh powder. A slurry of the powder in an acetone solution of acrylic binder was sprayed onto coupons of S.A.E. 1020 steel.
  • the deposit When dried in the air, the deposit was l012 mils thick.
  • the coupons were fired at 1225 C. for 10 min. in a vacuum electric furnace at a pressure of about 10* mm. Hg, and were cooled in the furnace.
  • Laves phase and (10 8i, the main constituent of the matrix, were identified in the surface layer of the coating by Xray diffraction; the surface layer containing approximately 72 W0 Laves phase (K :l) and 28 v/o of :1 softer, lower-melting matrix (K z340).
  • EXAMPLE 7 A shear-type extrusion die having a 0.186-in. land and a throat diameter of 0.864in. at the land was made of H43 tool steel. A coating alloy consisting of 35 w/o Mo55 w/o Co-lO w/o Si was made and applied to the die as in Example 2. The hardness of the H-l3 steel in the tempered coated die was R 50-51. After the land of the die had been ground to a throat diameter of 0.852-in., the finished die had 6 mils of coating; the surface layer of said coating containing approximately 72 v/o Laves phase and 28 We of a softer lower melting matrix.
  • EXAMPLE 3 A coating alloy consisting of 35 w/o Mo-SS w/o Col w/o Si was made by arc-melting molybdenum chips. Vii-in. cobalt shot, and /4 to /2 -in. silicon lumps, all at least 99.9% pure, and was reduced to powder, as in Example 1. The powder was pressed at room temperaturc under 50 tons/sq. in. pressure into a At-ih. thick slab. The slab was sintered at 1220" C. for 10 min. in a vacuum electric furnace at a pressure of 10 mm. Hg, cooled in the furnace. and machined to a fiat plate 0.203 in. thick.
  • the clean plate was set on a flat clean surface of a piece of H-l3 steel 0.760in. thick, without added braze metal or flux, and the couple was fired in the same furnace at 1195 C. for 10 min., and then cooled in the furnace. Although the sharp corners of the silicon-alloy cladding were retained, sufficient liquid formed autogenously at the interface between the clad metal and the H-l3 substrate to bond the two materials together.
  • the materials were mctallurgically bonded continuously over their en tire contacting surface into an integral piece. This cladding material had exhibited a transverse rupture strength of 75,000 lb./sq.in. at room temperature and 99,000 lb./ sq.in. at 800 C. When exposed to still air for 100 hrs.
  • the product article had 218 mils of coating; the surface layer of said coating containing 85 W0 Laves phase (K :l400) and 15 v/o of a softer, lower-melting matrix nXAuPLu
  • Laves phase K :l400
  • nXAuPLu 15 v/o of a softer, lower-melting matrix
  • the button was crushed, passed through a No. 3V2 U.S. sieve (0.223-in. opening), and then ground with a steel mortar and pestle to minus 100 mesh.
  • a mixture of the ground material and 25 g. of powdered ZrO was milled for l5 min. at 85 rev./min. in an 8-in. diam. cylindrical steel ball mill containing /1 x /2 x L t-in. pieces of tungsten carbide as the grinding medium.
  • Ninety weight percent of the charge to the ball mill was recovered in the minus 230- mesh fraction of the ball-milled product.
  • Powder passed by a ZYO-mesh screen but held by a 325-mesh screen was deposited on grit-blasted S.A.E. 1020 steel plates /2 x /1 x i s-in), using a plasma torch supplied with 104 cu. ft./hr. of argon, 5 cu. ft./hr. of hydrogen, and kw. of electrical power.
  • the resulting coated plates were heated at 1250 C. for 1 hr. in a vacuum furnace containing argon at 10 mm. Hg pressure and were cooled in the furnace.
  • the l7-mil coating thus produced was bright, crackfree, and united to the steel by a continuous metallurgical bond.
  • the nodular phase was identified by X-ray structure analysis and electronbeam microanaly sis as MgZn -type Laves phase having the composition 4-5 w/o Mo-48 w/o Fe7.3 w/o Si (29 21/0 Mo-54 a/o Fel7 a/o Si), which is equivalent to the stoichiometric formula (Mo Si (F 3Slg 2)2.
  • the matrix of the surface layer was identified as alpha iron solid solution having the composition 2.5 w/o Mow/o Fe6.6 w/o Si (1.4 a/o Mo86 a/o Fe-l2.6 a/o Si).
  • the matrix phase consisted of a dark gray rounded phase containing iron, silicon, and a light element, probably oxygen. Since the Laves phase contained only 45 w/o Mo and the matrix phase contained only 2.5 w/o Mo whereas the deposited powder contained 52 w/o M0, the surface layer lost molybdenum during liquid sintering. Likewise, the surface layer lost silicon and gained iron.
  • the calculated over-all composition of the surface layer of the finished coating was 38.8 w/o Mo53.8 w/o Fe 7.2 w/o Si (25 a/o Mo-59 a/o Fe-l6 a/o Si).
  • the matrix was metallurgically bonded to the steel substrate and contained negligible amounts of silicon and molybdenum in the two mils adjacent the substrate. At greater distances from the substrate, the alpha iron matrix contained progressively increasing concentrations of silicon and molybdenum up to the surface layer.
  • the matrix phase extended from the steel substrate to the surface of the coating.
  • the interconnected grains of hard Laves phase constitute an inher ntly rigid structure that is useful for protecting rigid substrates from wear and abrasion.
  • a coating was produced in the same manner on another S.A.E. 1020 steel plate, excepting that it was tired for 1 hr. at 1200 C.
  • the surface layer contained elongated grains of Laves phase to the extent of about 70 v/o near the surface and about 38 We near the opposite side of the surface layer.
  • the matrix was metallurgically bonded to the steel substrate and extended to the surface of the coating.
  • This coating was relatively soft (K composite hardness 350). It is useful to protect the steel from wear and abrasion where the coated body is subject to small deformation.
  • Both the Laves phase based on MoFe and the alpha iron crystal structures were identified in the coating by X-ray diffraction.
  • EXAMPLE 11 A coating alloy consisting of 36 w/o Mo-46 w/o Fc- 18 w/o Ge was arc-melted, reduced to powder, and made into a slurry as in Example 5. Several coats of the slurry were applied to /2 x /2 x 18-in. coupons of S.A.E. 1020 The air-dried coating was about 20 mils thick. The coated coupons were then fired at 1230 C. for 5 min. in a vacuum electric furnace at a pressure of about 10* mm. Hg and were cooled in the furnace.
  • Intermediate the surface layer and the steel substrate was a 4-5 mil diffusion zone free of the nodular grains.
  • the coating was bonded to the substrate by a continuous metallurgical bond.
  • EXAMPLE 12 A coating alloy consisting of 36 w/o Mo, 10 W/o Ni, 36 w/o Fe, 18 w/o Si was arc-melted, reduced to powder,
  • Example 5 Several coats of the slurry were applied to a coupon of S.A.E. 1020 steel. The air-dried coating was about 20 mils thick. The coated coupon was fired at 1205 C. for one minute in a vacuum furnace at an air pressure of about 10- mm. Hg and cooled in the furnace. Total thickness of the surface layer of the fired coating was approximately 8 mils; the surface layer of said coating contained 65 v/o Laves phase and 35 v/o matrix. The Knoop (IOU-gram load) microhardness value of the Laves phase was 850, and the hardness value for matrix phase was 400.
  • the Knoop (IOU-gram load) microhardness value of the Laves phase was 850, and the hardness value for matrix phase was 400.
  • the lattice parameters of the Laves phase were determined by means of X-ray diffraction using 10 kv.10 ma. chromium radiation (vanadium filter).
  • EXAMPLE 14 A SOD-gram arc-melted button was made from a composition consisting of 27 w/o Ta, 58 w/o Mn, 15 w/o Si. The button was reduced to powder and a 10-mil coating was applied to S.A.E. 1020 mild steel according to the procedure of Example 5. The composite was fired at 1320" C. for 3 minutes in a vacuum furnace at l0 mm. Hg air pressure and furnaced cooled. After firing, the surface layer of the coating was 2 mils thick. The surface layer contained 35 v/o Laves phase and 65 W0 matrix phase. The Laves phase Knoop (15 gram load) microhardness value was 400, whereas the matrix microh ardness value was 200.
  • the coating was continuously bonded to the substrate.
  • the width of the diffusion zone was approximately mils.
  • FIGURE 3 depicts the microstructure of this coating alloy on S.A.E. 1020 mild steel.
  • EXAMPLE 16 A coating alloy consisting of 52 w/o Ta, 38 w/o Co, 10 w/o Si was made by arc-melting the elemental constituents according to the procedures of Example 5, reduced to a powder and applied to S.A.E. 1020 mild steel as a SO-mil coating.
  • the 1 x 1 x Aasin. thick coupon was fired in vacuum furnace at 1350 C. for 10 seconds under a vacuum of 10' mm. Hg air pressure and was furnace cooled.
  • FIGURE 2 depicts the microstructure of this coating alloy on mild steel.
  • EXAMPLE 18 A fifty-pound charge of coating alloy consisting of 35 w/o Mo, 58 w/o Ni, 7 w/o Si was induction-melted under an argon atmosphere and atomized into 140 mesh powder by tossing the molten metal from a spinning wheel and quenching the particles by an argon blast such that the particles froze with a generally spherical shape. A 15- mil coating was applied to a sample of pure cobalt plate (approximately 4 thick) according to the procedure of Example 5. The composite was then fired in a vacuum furnace at 1220 C. for 3 min. at an air pressure of 10* mm. Hg and furnace-cooled.
  • the Laves phase microhardness value K was 1039, and the matrix microhardness value was 370 under the same indentor load.
  • the diffusion zone between the surface layer and the substrate was approximately one mil thick.
  • EXAMPLE 19 A coating alloy consisting of 51 w/o W-40 w/o Ni 9 w/o Si made as described in Example 1 was applied to Udimet 700 (0.13C, 0.08Mn, 0.3Si, 15Cr, 3.0Mo, 2.4Cb, 2.2Ti, 3.0Al, 0.8Fe, 29Co, Bal. Ni percent by weight) to a depth of 25 mils.
  • the slurry was prepared and applied as outlined in Example 4.
  • the resultant coating was dried, preheated for 30 min. at 1100 C., fired at l230 C. for 2 min. in an electric furnace at an air pressure of 10* mm. Hg.
  • the sample was cooled to 1150" C. slowly over a period of 16 min.
  • the heat-treated coating was 15 mils thick as determined mctallographically.
  • the thickness of the diffusion zone was less than 10 microns.
  • the coating surface layer consisted of a fine-grained (less than IO-micron particle diameter) Laves phase structure. Microhardness measurement of the individual phases was not feasible, because of the small interconnected grain structure.
  • Electronbeam microanalysis of the surface layer of the coating revealed the composition of the Laves phase to be 58.5 w/o W, 28.4 w/o Ni, 5.7 w/o Si, 0.7 w/o Fe, balance undetermined elements.
  • EXAMPLE 20 Part of the coating alloy described in Example 18 was applied to unalloyed molybdenum (99.9+% Mo) using a plasma torch according to the procedure described in Example 10. The thickness of the unfired deposit of coating alloy was 10 mils. The composite of deposited coating alloy on molybdenum was then fired in a vacuum furnace at 1450 C. for 1 to 3 min. at a pressure of 10- Hg and was furnace-cooled. The resultant coating was 4 to 5 mils thick and was constituted of 85 v/o Laves phase and 15 W0 matrix phase in the surface layer. Microhardness of the Laves phase K 870-965 and K :700, while the microhardness of the matrix was K :210.
  • the molybdenum base was not recrystallized; its microhardncss was K 253.
  • the diffusion zone between the surface layer of the coating and the bulk of the molybdenum base was less than microns.
  • the coating was metallurgically bonded continuously to the molybdenum base.
  • coated metal bodies having the structure of our invention can comprise a metal base other than the metal bases shown in the examples.
  • An article of manufacture comprising a metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent matrix, said Laves phase being present in said matrix, and said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70- volume percent matrix; said Laves phase being present in said matrix and said matrix being softer than said Laves phase.
  • An article of manufacture comprising a nickel base metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent matrix; said Laves phase being present in said matrix and said matrix being softer than said Laves phase.
  • An article of manufacture comprising a cobalt base metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent matrix; said Laves phase being present in said matrix and said matrix being softer than said Laves phase.
  • An article of manufacture comprising a metal base having a protective metal coating the surface layer of said coating being an alloy consisting essentially of at least two elements, at least two of which are heavy transition elements aggregating at least 60 atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base having a protective metal coating, the surface layer of said coating being an alloy consisting essentially of at least two elements, at least two of which are heavy transition elements aggregating at least atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining -15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a nickel base metal base having a protective metal coating, the surface of said coating being an alloy consisting essentially of at least two elements, at least two of which are heavy transition elements aggregating at least 60 atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a cobalt base metal base having a protective metal coating, the surface layer of said coating being an alloy consisting essentially of at least two elements at least two of which are heavy transition elements aggregating at least 60 atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating, the surface layer of said coating being an alloy consisting essentially of at least three elements including silicon and two heavy transition elements having a ratio of the atomic radii of the largest to the smallest of said heavy transition elements in a range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the W-Ni-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the Mo-Ni-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting especially of the W-Co-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the Mo-Co-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
  • An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the Mo-Cr-Ni-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of :the remaining 70-l5 volume percent of said alloy, said matrix being softer than said Laves phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

June 21, 1966 w, V s, JR" ETAL 3,257,178
COATED METAL ARTICLE Filed April 1, 1963 3 Sheets-Sheet 1 INVENTORS WILLIAM HARRISON SEVERNS, JR. GAYLURD BARREL SMITH TTORNEY June 21, 1966 Filed April 1, 1965 W. H. SEVERNS, .JR.. ET AL COATED METAL ARTICLE 3 Sheets-Sheet 2 INVENTORS WILLIAM HARRISON SEVERNS JR GAYLORD BARREL SMITH June 21, 1966 w. H. SEVERNS, JR. ETAL 3,257,178
COATED METAL ARTICLE Filed April 1. 1965 3 Sheets-Sheet 5 INVENTORS WILLIAM H. SEVERNS, JR. GAYLORD D. SMITH A'ITORNEY United States Patent This invention relates to novel articles of manufacture comprising a metal body having a protective coating which exhibits outstanding resistance to deterioration from one or more of wear, abrasion, oxidation, and corrosion, and to a method for preparing said articles.
More particularly, the invention relates to novel articles of manufacture comprising a metal base to which is bonded a protective metal coating having a surface layer of alloy constituted essentially of -85 volume percent Laves phase comprising at least two metals in its elemental composition present in 70-15 volume percent of a softer matrix formed of the same elemental components as said Laves phase, said matrix being in quasi equilibrium with said Laves phase. Still more particularly, an embodiment of the invention relates to such novel articles of manufacture wherein the metal base is selected either from a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least weight percent of a combination of two or more of iron, nickel, and cobalt, and the surface layer of alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent of a softer matrix in which the Laves phase is present comprises in its elemental composition two or more transition elements.
The term Laves phase as used herein and in the claims means one or more metallographic constituents I of an alloy that have the C (hexagonal), C (cubic), or C (hexagonal) crystal structure described in International Tables for X-ruy Crystallography by N. F. M. Henry and K. Lonsdale, International Union of Crystallography, Kynoch Press, Birmingham, England, (1952). Prototypes of the Laves phase crystal structures are, respectively, MgZn MgCu and MgNi Sucfiphase structures, named after Dr. Fritz Laves, who pioneered their study, are unique crystal structures that permit the most complete occupation of space by assemblages of two sizes of spheres. Fundamentally, Laves phase can be represented by the stoichiometric composition A13 the large atoms (A) occupying certain sets of crystallographic sites and the small atoms (B) occupying other sites, in which the ratio of atomic radii A:B is in a range of about from 1.05 to 1.68. The chemical natures of the component atoms and the electron-atom ratio of a given composition are factors in determining which of the three types of Laves phase will form or the nonexistence of a Laves phase where the size factor is favorable.
Laves phases occur as intermediate phases in numerous alloy systems. Laves phases generally have a homogeneity range, i.e., they can have any of a range of elemental compositions while maintaining their characteristic crystal structure. The atom ratio B:A may range from slightly less to slightly more than 2, possibly the result of some vacant sites in the crystal structure. Also, more than one kind of atom can occupy the large-atom sites, the small-atom sites, or both. Such Laves phases can be represented stoichiometrically by the formula where C represents the atoms of one or more kinds that substitute for the large atoms, D represents the atoms of one or more kinds that substitute for the small atoms of the binary Laves structure AB and the quantities x and y have values in the range zero to one. A Laves phase can contain atoms of as many as five or six or even more elements in its crystal structure. For a simple example, the ternary MgCu type of Laves phase in the Nb-Cr-Si system is based on NbCr and has at 1000 C. the homogeneity range 31-37 atom percent Nb, 63-69 atom percent Cr, 0-2.5 atom percent Si. The distribution of the silicon between the large-atom sites and the small-atom sites is not known. For simplicity, hereinafter, atom percent will be abbreviated by 21/0, weight percent by w/o, and volume percent by v/o.
The bulk of the numerous published investigations of Laves phases have been primarily concerned with their crystal structures and the atomic properties and relationships favorable to their formation. Such phases are recognized in the prior art as generally hard intermetallic compounds which, depending on their elemental composition, may also exhibit good oxidation or corrosion resistance. Nevertheless, the valuable properties of Laves phases of the various elemental compositions and useful applications thereof in materials of construction have received little recognition since alloys consisting of such phases are invariably brittle and diflicult to work.
It is, therefore, the object of the present invention to greatly improve the ability of metal bodies to resist wear, abrasion, oxidation, and corrosion, while substantially retaining the inherent physical properties of said bodies by providing said bodies with a metal coating containing in its surface layer a relatively high percentage of Laves phase of certain alloy systems present in a softer matrix of the same multiphase alloy.
In accordance with an embodiment of the present invention, the above and other objects, which will become clear from the following description, are accomplished by providing an article of manufacture comprising a metal base selected either from a ferrous base metal, a nickel base metal, a cobalt base metal, or an alloy containing at least 50 w/o of a combination of two or more of iron, nickel, and cobalt to which is bonded a protective metal coating having a surface layer of alloy consisting essentially of at least two elements, two or more of which are heavy transition elements aggregating at least 60 a/o of said alloy, the CNl2 Goldschmidt radii of the largest and the smallest of said heavy transition elements having a ratio in the range 1.05-1.68, wherein 30-85 We of said alloy is present as Laves phase in a matrix composed of the remaining -15 v/o of said alloy, which matrix is softer than said Laves phase.
Other embodiments of the invention include articles comprising other metal bases such as the reactive metals titanium and zirconium; the refractory metals niobium, tantalum, molybdenum, tungsten, and chromium; copper; and uranium.
As a part of the invention, the novel articles of the invention are formed by means of a novel method involving the steps of (a) forming an alloy consisting essentially of from about 30-85 v/o Laves phase and 70-l5 v/o of a matrix, said alloy when in contact with the metal base to be coated having an incipient melting point below the melting point of said metal base, (b) reducing the coating alloy to a powder, (c) depositing the powder on the base metal, (d) melting at least a part of the deposit of powdered alloy by heating in a nonoxidizing atmosphere until the melt wets the unmelted deposit and the underlying surface of the metal body, and (e) cooling the formed article at a rate that leaves the alloy coating with a matrix softer than the Laves phase therein.
The term alloy as used herein and in the claims means a substance having metallic properties and containing in its elemental composition two or more chemical elements of which at least one is a metal. The term base metal" as used herein and in the claims with a designated metal preceding it, such as, for example, ferrous" or nickel," means a substance having metallic properties containing the designated metal in a predominant amount, preferably at least 50 w/o. The term "heavy transition metal as used herein and in the claims means a metal selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt of Group VIII; Mn and Re of Group VII-B; Cr, Mo, W, and U of Group VI-B'. V, Nb, and Ta of Group V-B; Ti, Zr, Hf, and Th of Group IV-B; and Sc, Y, La, and Ce of Group III-B of the Periodic Table as shown on page 255 of H. G. Demings "Fundamental Chemistry, N.Y., John Wiley & Sons, 2nd Ed. (1947).
Articles of the invention have coatings in which the surface layer is of a binary or higher alloy system containing at least two metals, the atomic radii ratio of said metals permitting the formation of Laves phase. The inclusion of heavy transition metals as such metals in the alloy coating has been found to provide, when an appreciable content of the alloy is present in the surface layer of the coating as Laves phase, a surprising combination of benefits to a metal base including improved wear, abrasion. and corrosion resistance; and greater service life at elevated temperatures. Many of the Laves phases of such alloy systems melt at a temperature several hundred degrees higher than the metal base itself. The inclusion of silicon in the alloy coating having the novel structure of the invention is particularly preferred since this element often confers outstanding oxidation and corrosion resistance to the coated article and serves as well to stabilize the Laves phase of the alloy system present in the coating.
Numerous binary and higher Laves phases which are suitable for purposes of the invention, including those 3 containing at least two heavy transition metals, are shown in the prior art. Such binary Laves phases are shown in Alloy Chemistry of Transition Elements, by M. V. Nevitt, Table XIII, pp. 101-478, appearing in P. A. Beck, Ed., "Electronic Structure and Alloy Chemistry of the Transition Elements," New York, Interscience-Wiley, 1963. Such ternary Laves phases are shown in Table XIV of the same reference. Other illustrative examples of alloys consisting largely or entirely of ternary and higher Laves phases, many containing at least two heavy transition elements, are listed below with their melting point values where such is known:
TABLE I Melting points of alloys consisting largely or entirely of 5 Laves phase Alloy \lclting Alloy Melting I'ontt, C. l'otnt, C.
1,000 3, 100 2, IUD
1, use 1,100 1.101) 1. m0 1, sin
Zr I 1 ZrtY,
range 22-39 at'o Nb, 4l-66 a/o Cr, and 8-27 a/o Si. T
(ill
Such limits represent an approximation to the irregularly shaped phase boundary as it appears in the 1000 C. section of the constitution diagram of the Nb-Cr-Si system. Cr Nb Si can be represented by such stoichiometric formulas as (Nh Si )(Ct' Si and (Nb Cr (Cr Si The distribution of the Cr and Si between the large-atom sites and the small-atom sites is not known, although a majority of the Si probably occupies smallatom sites. Similarly, some of the few published constitution diagrams of other ternary alloy systems which form Laves phases offer a phase boundary from which an approximation of the composition of the Laves phase in adjoining multi-phase fields of those alloy systems may be made.
It is an essential feature of the articles of the invention that in the surface layer of the protective metal coating the Laves phase be present in a matrix formed of the same alloy system as the Laves phase and that the matrix be softer than the Laves phase. In accordance with the invention, the relative proportions of Laves phase to softer matrix in the surface layer of the coating is to be maintained in a range of from 30-85 v/o Laves phase and from -15 v/o softer matrix with the Laves phase content at no level in the surface layer exceeding v/o. The softer matrix which is formed of the same alloy system as the Laves phase may be a substantially pure metal, a solid solution, one or more intermetallic compounds which may form, or a mixture of solid solution and intermetallic compounds, so long as the matrix is softer than the Laves phase present therein. Preferably the matrix has less than one-third the Knoop hardness of the Laves phase, especially where a deformable coating is required. Generally, there will be no substantial mitigation of brittlencss obtained where the matrix has more than about of the Knoop hardness of the Laves phase therein.
A better understanding of the invention will be gained from the following detailed description and the drawings in which:
FIG. 1 is a photomicrograph (160x) of a nital-etched cross section through the coating on a mild-steel metal base (M) coated with a 51 w/o W-40 w/o Ni9 w/o Si coating alloy according to the invention.
FIG. 2 is a photomicrograph (x) of a nital-etched cross section through the coating on a mild steel base coated with 52 w/o Ta38 w/o Co10 w/o Si coating alloy according to the invention.
FIG. 3 is a photomicrograph (140x) of a nital-ctched cross section through the coating on a mild steel base coated with a 40 w/o Nb45 w/o Ni-15 w/o Si coating alloy according to the invention.
FIG. 4 is a photomicrograph (400x) of a nital-etched cross section through the coating on a mild steel base coated with a 35 w/o Mo-55 w/o Ni-10 w/o Si coating alloy according to the invention.
FIG. 5 is a fragment of a triangular constitution diagram of the molybdenum-nickeI-silicon system showing the nickel-rich portion thereof.
The drawings illustrate the preferred structure for articles of the invention involving a metal base, a protective alloy coating metallurgically bonded to said metal base, wherein the surface layer of said alloy coating contains from about 30 to 85 v/o Laves phase and from 70 to 15 v/o softer matrix.
As is evident from FIGS. 14, the metallographic detail of the novel structure of the articles may vary considerably, especially in the surface layer of the coating (S) and the layer of the coating (D) between the surface layer and the bulk of the metal base (M). FIGS. 1, 2, and 4 show coatings wherein the surface layer thereof consists of hypereutectic alloy, i.e., an alloy consisting essentially of excess Laves phase and a lower melting matrix. In FIG. 1, the Laves phase occurs mainly as a slceleton structure of interconnected grains interpenetrnted by the matrix. In FIG. 2, the Laves phase occurs as dispersed grains enveloped by the matrix. In FIG. 4,
the Laves phase occurs partly as dispersed nodular grains and partly as interconnected nodular grains. The nodular Laves phase grains are believed to result from partial solution of Laves phase grains in the deposited coating alloy during formation of the alloy coating; a portion of which apparently interconnect by liquid sintering. FIG. 3 shows a voidfree coating wherein the surface layer thereof consists substantially of a eutectic wherein the Laves phase occurs mainly as lamellae or thin grains embedded in a matrix.
The term surface layer" as used herein and in the claims is intended to refer to the outermost portion of the coating, consflituting at least onethird of the coating, bounded on the outside by the surface of the coating and on the inside by the imaginary surface nearest the surface of the coating and parallel thereto that intersects alloy containing not more than 30 W0 Laves phase.
The determination of volume percentages of Laves phase and matrix in the surface layer of the coating is made from a photomicrograph, at least 400x, that clearly shows the outlines of the grains of Laves phase in a representative cross-section of the coating taken generally normal to the surface of the coating. The section photographed is polished and etched. The area of the photomicrograph selected for measurement extends over the full thickness of the sunface layer for a distance generally parallel to the coating surface twice this thickness but in no event is said distance less than mils on the actual coating. A thin line generally parallel to the surface of the coating is drawn at the middle of each of three equally wide bands parallel to the surface of the coating into which the surface layer within the measurement area can be divided. The fraction of the length of each of these three lines lying over particles of Laves phase is measured. The three fractions are averaged arithmetically. The average is multiplied by 100 and taken as being equal to the volume percent of Laves phase present in the surface layer of the coating. The volume percent of Laves phase present in the surface layer of the coating is subtracted from 100, and the remainder is taken as being equal to the volume percent of matrix present in the surface layer of the coating. Referring to FIG. 4, an illustration of utilizing the above-described technique may be gained by reference to Lines A-A, BB, and C*C. By averaging the fractions of these lines (0.76, 0.55, and 0.65) transvcrsing Laves phase grains, it is determined that the surface layer of the coating of this article contains 65 v/o Laves phase and 35 v/o matrix.
The layer of the coating (D) between the surface layer and the bulk of the metal base may vary in thickness as may be seen from FIGS. 1, 2, and 3. This portion of the alloy coating is constituted of less than 30 v/o Laves phase and, for the coated articles shown in FIGS. 1-4 formed in accordance with the method of the invention, is a diffusion zone frequently including part of the metal base and as seen in FIG. 2 may contain small amounts of an innate phase. The diffusion zone forms a continuous metallurgical bond between the surface layer of the coating and the underlying base metal.
Other alloy coatings of various composition suitable for the purposes of the invention on a metal base exhibit a variety of grain shapes, grain sizes, and diffusion layer thicknesses, depending on the crystal habit and conditions of formation of the coating; it being understood that the foregoing drawings merely illustrate certain structural embodiments of the unique articles of the invention and in no way are to be considered limiting the invention.
The presence of a softer matrix in the proportions specified for the surface layer of the coating of the articles of the invention provides multiaxial support for the Laves phase and greatly mitigates the inherent brittleness of the Laves phase. Although the unique coating structure of the invention present on metal bodies of ferrous base metals, nickel base metals, and cobalt base metals exhibits some definite ductility which is surprisingly superior to what would be available with a continuous layer of Laves phase formed on the same base metal, the actual degree of ductility of articles of the invention obviously will depend in large part on the composition of the alloy coating of the article. For example, alloy coatings of the Mo-Fe-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of silicon and molybdenum in alpha iron have definite but limited ability to undergo plastic deformation without fracture. These alloy coatings are used to best advantage on thick, rigid metal bodies and it is found advantageous to not exceed a coating thickness of approximately 5 mils to avoid the appearance of cracks in the coating. On the other hand, alloy coatings of the Mo-Ni-Si system constituted, in the surface layer of the coating, essentially of Laves phase and a softer matrix of solid solution of the other elements in nickel can undergo extensive plastic deformation without fracture, particularly at low proportions of Laves phase and high proportions of matrix within the range of limits defined for the invention, owing to the exceptionally high ductility of these solid solutions forming the matrix. Nickel confers its ductility on alloy coatings having a nickel-rich solidsolution matrix, for example, in the W-Ni-Si, Mo-Fe-Ni-Si, Mo-Cr-Ni-Si, and other coating alloy systems suitable for the invention. Formable metal bodies having the more ductile alloy coatings metallurgically bonded thereto can be shaped without disruption of the coating even with coating thicknesses up to 20 mils or more. These coatings, therefore, are highly useful on both thick, rigid metal bodies and flexible metal bodies. The ductility of such alloy coatings is enhanced by decreased proportions of Laves phase relative to the softer matrix, by decreased hardness of the matrix relative to the Lavcs phase. and by occurrence of the Laves phase in discrete nodular grains. On the other hand, such alloy coatings are made less ductile by increased proportion of Laves phase relative to the softer matrix, by increased hardness of the matrix relative to the Laves phase, and by occurrence of the Laves phase as interconnected grains. An outstanding feature of the invention, therefore, is the adaptability of the articles hereof to the requirements of different end uses. Obviously, the coating thickness of the articles of the invention may vary between wide limits depending on various of the considerations discussed hercinabove. Normally, in order to gain a significant degree of improvement in one or more of the properties of wear, abrasion, oxidation, or corrosion resistance, the coating thickness should be at least one mil thick. Coatings in excess of 250 mils normally will not be required or desired for economical reasons although certainly such coatings are contemplated as failling within the invention.
A further characteristic of the coating of the articles of the invention is the ability of the Laves phase and the softer matrix of the alloy coating to coexist indefinitely in their mutual presence at elevated temperatures, Although such elevated temperatures are limited by the decomposition temperature of the Laves phnsc they usually extend at least to the incipient melting point of the alloy coating. The surface layer of the alloy coating may contain material derived from the underlying metal base. The degree of dilution from such material is dependent in large part on the technique employed for metallurgically bonding the coating to the metal base, more particularly, on the temperatures and time of the coating process and also on the exposure of the finished article to elevated temperature during use. As with all alloy coatings metallurgically bonded on a metal body of different composition than the alloy coating, sulliciently long exposure at sufficiently high temperature alters the alloy coating composition by interditlusion between the coating and the metal body. Despite the possibility of interdillusion as explained above, articles of the invention exhibit outstanding useful life at elevated temperature encountered in numerous applications particularly in comparison to the corresponding unprotected base metals.
Articles of the invention are preferably formed in accordance with the novel method of the invention involving preforming a coating alloy constituted essentially of Laves phase and matrix, said alloy having an incipient melting point below the melting point of the metal base; reducing the alloy to a powder, depositing the coatingalloy powder on the metal base; melting at least a part of the deposit of powdered alloy by heating to accomplish a metallurgical bond; and cooling the coated metal body at a rate that leaves the coating with a matrix softer than the Laves phase therein.
In carrying out the method of the invention, it has been found that the elemental components of the coating must be prealloyed prior to deposition on the metal base and firing, to insure a coating which is pore-free and integrally bonded to the metal base. Use of the elemental components of the coating in powder form without being prealloyed results in coatings which frequently crack or even spall from the metal base.
Accordingly, in executing the method of the invention, a coating alloy constituted essentially of about 30-85 We Laves phase and about 70-15 v/o matrix and having an incipient melting point below the melting point of the metal base to be coated is first formed from predetermined proportions of the alloying elements. The present state of the art does not make it possible to reliably predict on purely theoretical grounds the kinds and proportions of elements to form such a coating alloy. However, reference to published constitution diagrams, where available, will give a first approximation of suitable coating-alloy compositions and serve as a guide for varying the relative proportions of the coating-alloy components to arrive at the volume percentages of Laves phase and of matrix for the coating of the articles of the invention. Usually, some trial and error and testing of the finished coated metal bodies must be practiced to obtain in the coating of the finished coated metal body a surface layer constituted of the desired volume percentages of Laves phase and softer matrix.
As an example of the execution of the invention, let it be desired to form a coating on a pure iron base using a binary coating alloy according to the novel method of the invention. A Kubaschewski plot (the energy ratio defined as H (solute)/H (solvertt) plotted against the radius ratio) is useful in predicting whether two elements will form a Laves phase. (See 0. Kubaschewski, The Physical Chemistry of Metallic Solutions and lntermetallic Compounds," Paper No. 30, H. M. Stationery Office, London, 1959.) diagrams shows many alloy systems containing a Laves phase that forms with the primary solid solution of one element of the Laves phase in the other element of the Laves phase a eutectic melting below the melting point of both iron and the binary Laves phase. An alloy having a composition intermediate the terminal phases of the eutectic, i.e.. intermediate the composition of the saturated primary solid solution and the composition of Laves phase nearest the primary solid solution, will, in such alloy systems, lie in a two-phase field constituted of the Laves phase and the primary solid solution. Using the well-known inverse lever-arm relationship, the composition of an alloy in such two-phase fields of such alloy systems constituted of about 30-85 v/o Laves phase and about 70-l5 v/o primary solid solution can be readily selected, recognizing that the ratio of the volume percentages of the two phases are usually roughly equal to the ratio of the weight percentages and to the ratio of the atom percentages of the two phases constituting the selected alloy. Since Laves phases are generally hard and primary solid solutions are generally soft, these two-phase alloys will generally have a matrix softer than the Laves phase pres ent in said matrix. More particularly, the iron-zirconium alloy system contains a Laves phase ZrFe (MP. 1645 C.) that forms with the saturated primary solid solution Reference to published binary constitution of zirconium in iron an eutectic melting at 1330 C. Alloys constituted of the Laves phase ZrFe and the solid solution of zirconium in iron can be formed on an iron base (M.P. 1530 C.) according to the novel method of the invention, using a firing temperature of about 1330- 1350 C. Likewise, alloys constituted of the Laves phase ZrFe and a solid solution of iron in zirconium can be applied on a zirconium base, using a firing temperature of about 935950 C., since the eutectic of the Laves phase and the primary solid solution of iron in zirconium melts at 934 C., i.c., below both the melting points of the terminal phases of the eutectic and of the zirconium base (MP. 1860" C.). Similarly, alloys of the iron-niobium, iron-tantalum, iron-titanium, and iron-uranium alloy systems can be formed on an iron base. Alloys of the ironuranium system can also be applied on a uranium base according to the novel method of the invention. The constitution and composition of the surface layer of the finished coated iron base most suited for a particular application will, of course, depend on the requirements of the application and should be determined by appropriate tests of the variously coated metal base.
As a further example of the execution of the invention, let it be desired to select the composition of a molybdenum-nickel-silicon alloy for use in coating low-carbon steel according to the novel method of the invention. Reference to the published constitution diagram of the molybdenum-nickcl-silicon system (H. Pfautsch, Zeitschrift fiir Mctallkunde 17, 48-52 (1925)) given in FIG- URE 5, shows a two-phase field (kpr.) occupied by saturated primary solid solutions of molybdenum and silicon in nickel and by the compound Ni Mo Si, a Laves phase Mo(Ni, Si Begin by selecting compositions A, B, and C, each constituted of different proportions of Laves phase and saturated primary solid solution of molybdenum and silicon in nickel, from the slender triangular two-phase field kpr. The compositions are separately arcmelted, reduced to powder, and applied to test pieces of low-carbon steel base, and the resultant composites are fired at a temperature just sufiicient to form a melt that wets the metal base and any unmelted Laves ph ase, ac cording to the novel method of the invention. Although the firing can be continued until the coating alloy is completely melted, it is preferred to discontinue the firing while the coating alloy is in a partly melted, pasty condition, especially where a thick surface layer of coating undiluted by the base metal is desired. The test pieces are then furnace-cooled, and the coating on each is examined metallographically and by X-ray analysis to determine the structure of the coating. Attention is given to the volume percent and manner of occurrence of the Laves phase and the matrix in the surface layer of the coating, to the continuity of the metallurgical bond bctween the coating and the metal base, and to the microhardness of the phases present. This examination is necessary because the volume percentages of Laves phase and matrix in the surface layer, the thickness of the surface layer and of the diffusion zone, and related characteristics of the coated metal are determined not only by the composition of the metal base and the starting composition of the coating alloys, but also by the temperature and time of firing. Less important factors that influence the structure of the coating on the metal base are purity of the coating alloy, particle size of the applied coating alloy, the method of application of the powdered coating alloy onto the metal base, and the furnace atmosphere, as will be appreciated by those skilled in the coating arts. Upon completion of the series of experimental coatings, a set of curves is made showing such information as the volume percent Laves phase in the surface layer of the coating, the thickness of the surface layer, the microhardness of. the Laves phase and of the matrix, etc., plotted against coating-alloy composition. These data are used to match coating characteristics with application requirements.
Where constitution diagrams are not available for a ternary alloy system known to form Lavcs phase and suitable as an alloy coating for articles of the invention, a guide to the selection of relative proportions of the alloying elements in order to obtain proportions of Laves phase and softer matrix falling within the limits set for the alloy coating may be gained as follows.
A tie line is drawn on triangular coordinate plotting paper from the known or assumed composition of the binary Laves phase AB; across the diagram at constant percentage of the A-atom, plotting the compositions in atom percentages. Ternary Laves phases in the ternary alloy system will in general occur along this tie line and have a homogeneity range extending on both sides of it. Ternary Laves phases composed of two metals and a metalloid, such as silicon or germanium, usually contain not over about 33 a/o metalloid. A ternary Laves phase, such as Mo (Ni Si may be stabilized by the metal loid, even though a Laves phase, such as MoNi does not occur in the binary edge of the ternary diagram. Other binary Laves phases composed of metals and having the same type of Laves phase structure, such as ZrFe and ZrCu (both being MgCu -type Laves phases), form a complete series of solid solutions with the result that a ternary Laves phase is present along the entire tie line. Still other binary Laves phases composed of metals and having dilferent types of Laves phase structure, such as ZrMn (MgZn type) and YMn (MgCu type) occur in the corresponding binary edges of the ternary diagram and have appreciable mutual solubility that is, however, incomplete. Hence, ternary Laves phases occur along the end portions of the tie line but not in the central portion. Still other binary Laves phases composed of metals and having the MgCu type structure (one in the upper band of stability and one in the lower band of stability discussed by A. E. Dwight, Trans. Am. Soc. Metals 53, 479-500 (1961)), such as HfV and HfCo have incomplete mutual solubility but form in addition a ternary Laves phase in the central portion of the tie line.
Many ternary alloys containing a Laves phase are suitable for application, according to the novel method of the invention, to a metal base having a melting point above the temperature of incipient melting of the selected coating alloy. In order to select the compositions of potentially suitable coating alloys constituted of about 30-85 v/o Laves phase and about 7015 v/o matrix for initial coating experiments, a second tie line is drawn from the estimated composition of ternary Laves phase to an apex of the ternary diagram, recognizing that the greatest probability of success will result from starting with a ternary Laves phase containing less than about 35 a/o of the third element not found in the binary Laves phase A8 and drawing the tie line to the B-atom apex of the ternary diagram. Preparation of the coating alloy and evaluation of the coating on the metal base is then carried out following the procedure described above.
Coated bodies having a surface layer of still more complex alloy constituted of 3085 v/o Laves phase and 70-15 v/o matrix can be prepared using as a guide the fact that Laves phases are known in which the large (A) atom is partly substituted by two or more other kinds of metal atoms of comparable size and the small (B) atom is partly substituted by two or more other kinds of atoms, at least one kind being a metal atom, of comparable size to the B-atom.
The coating alloy is preferably formed by arc-melting the ingredients in a suitable container, such as, on a watercooled copper hearth. The arcmelting is preferably accomplished under an inert atmosphere, such as, argon. As an illustration, for the 51 w/o W-40 w/o Ni-9 w/o Si alloy, found suitable as a coating composition for the invention, /4-in. lumps of silicon are placed on the hearth, tungsten in the form of 5 x fia-in. chips is placed over the silicon, and /3 to Ax-in. nickel shot are placed over the tungsten. When the arc is struck, molten nickel and molten nickel-tungsten alloy run through the charge and form a covering that dissolves silicon and minimizes volatilization of the silicon. The charge is solidified, turned over, and rcmclted as many as six times to insure a homogeuous alloy. Good results may also be obtained by melting the starting materials in an inert crucible under an inert gas blanket. The melt is then cooled in the crucible or cast into ingots of convenient size. Excessive temperature rise may result from reacting a large charge of alloy components containing silicon. This can be avoided, however, by progressive and stepwise addition of the components to an initial melt of the coating alloy in the crucible.
The coating alloy is then powdered by crushing and ball milling to a particle size suitable for the product being made. For making smooth coatings, a powder passing through a mesh, or even finer, screen is preferred. For making rough coatings, powder made from coarse-grained coating alloy and passed through a IO-mesh, or even coarser, screen can be used. Where the alloy is so tough as to defy crushing, it is converted to chips in a machine tool with a metal carbide cutting tool. Ball milling of the crushed pieces or chips is carried out in a closed ball mill. It is preferable to employ a container made of plain carbon steel and a grinding medium of a metal carbide material, such as tugnsten carbide, to avoid any contamination of the powder. Use of a porcelain container and silicious grinding medium produces a debris in the alloy coating powder which is found to result in porous coatings and incomplete metallurgical bonding of the coating to the base metal. It is preferable to limit ball-milling time to about one hour per batch in order to minimize contamination of the alloy coating powder as well as attrition of the equipment. This is made possible by reducing the alloy to pieces 2 in. or less in cross-section, ball-milling the pieces as described, separating the fraction of the charge having the desired size as product, and recycling the over-sized ball-milled material for additional ball-milling. It is a safety precaution to ball-mill the alloy under a blanket of inert gas or in the presence of enough liquid hydrocarbon, such as benzene, to thoroughly wet the powder formed. The dry product powder can be handled in the open air without detrimental reaction with oxygen or moisture; however, the powder should be stored in wellfilled gas-tight containers. The coating alloy can also be made by other methods known in the art, such as directly from the melt by spray-cooling in an inert gas.
The powdered alloy coating composition is then dcposited on the metal base by any suitable technique. Flame-spraying, plasma-jet spraying, and brushing, dipping, or spraying with a slurry of the powder in a solution of a temporary binder are satisfactory techniques. For flat surfaces it is preferred that the powdered coating composition be deposited on the metal base by means of a commercial plasma-jet gun, such as the Model F-40 gun made by Thermodynamics Corp, Lebanon, New Hampshire. Preferably the metal base is cleaned prior to deposition of the coating composition, for example, by grit blasting. The plasma-jet gun is supplied with dry alloy coating powder preferably in a size range minus 270 mesh plus 325 mesh. For dcposition on the walls of holes, undercuts, and the like, that are not satisfactorily coated by the plasma-jet gun, it is preferred to employ a slurry of the'powder by brushing or spraying with one or more coats. Such a slurry can be readily formed by mixing the coating-alloy powder having a particle size passing through a 140-mcsh screen in a solution of an acrylic temporary binder dissolved in acetone or other inorganic solvent having suitable volatility.
Firing of the metal base having a deposit of coating alloy is preferably carried out by heating the work in argon at a pressure of 10 mm. Hg in an electric furnace. Alternatively, the article can be heated in an electric vacuum furnace at an air pressure of 0.001 mm. Hg. The article may also be fired in an electric furnace filled with hydrogen at a pressure slightly above atmospheric pressure, but in such a procedure the hydrogen should have a low content of water to insure a good metallurgical bond between coating and substrate. The dew point of the hydrogen preferably is reduced to minus 45 F.
It is essential in the above firing technique that the deposit of the alloy coating on the metal base be heated until a melt forms and spreads over the surface of both the metal base underlying the deposit and any unmelted part of the coating alloy. The matrix of the preformed coating alloy melts immediately when heated to its incipient melting point, and rapid heating to this temperature level is preferred since it minimizes the time needed to form sufi'icient melt for formation of the product article. Furthermore, rapid heating to the incipient melting point of the matrix insures metallurgical bonding of the coating to the base metal with minimum damage to the inherent physical properties of the metal base caused by overheating. It is preferred to discontinue the firing while the coating is a semi-fluid mixture of melt and unmelted residue of the deposited powder. Moreover, the time firing is continued after the first appearance of melt affects the relative thickness of the diffusion zone and the surface layer of the coating. Prolonged firing causes sufiicient dilution of the alloy present in the diffusion zone to result in a reduction in the amount of Laves phase in the diffusion zone, adjoining the surface layer of the coating. The optimum time of firing the product article will obviously vary depending on the coating alloy selected, the relative amounts of Laves phase and matrix present in the coating, and the characteristics of the base metal involved. As an illustration, however, it has been found that the firing of deposits of various powdered coating alloys on chunky 24b. steel bodies can be completed at 1250 C. within approximately min. after the first appearance of melt on the base metal.
The cooling technique for the fired article is dependent largely on the intended end use of the finished article as well as the metallurgical characteristics of the initial base metal. Furnace-cooling of the article provides, in the surface layer of the coating, :1 matrix softer than the Laves phase. Rapid quenching or other heat-treatment techniques, for purposes well appreciated in the prior art, may also be practiced if desired.
Other coating techniques can be operated, if desired, to form the novel articles of the invention. One such technique which may be successfully adapted to form the articles hereof, particularly clad sheets and slabs, is cladding either by hot-rolling, by high energy impaction, or by simply heating a close-fitting assembly of a piece of coating alloy and a metal body in inert atmosphere or dry hydrogen to about the incipient melting point of the coating alloy until their contacting surfaces autogenously braze together. However, added brazing metal and flux may be employed; added brazing metal is necessary where the brazing temperatures used are substantial 1y below the incipient melting point of the cladding alloy in contact with the metal base. In each of the cladding methods, the clad metal body is cooled at a rate that leaves the matrix of the protective cladding softer than the Laves phase therein or is otherwise heat-treated by conventional methods to produce this result in combination with desired properties of the metal base itself. To employ this technique, the starting materials for the desired coating alloy are melted together to insure formation of a homogenous coating alloy. The more-ductile alloys are formed by conventional methods into sheets of the size and thickness that gives the desired coating of the finished article. This clean sheet is then superimposed on the clean metal base and the composite is hot'rolled to obtain a metallurgical bond between the base metal and the coating alloy. The less-ductile coating alloys are preferably formed by casting and machining to the desired shape and size and then brazing the casting to the metal body as described. The finished article formed by this coating technique will contain, in the manner explained hereinabove, a diffusion zone comprising part of the alloy coating intermediate the surface layer of the alloy coating and the bulk of the base metal. Formation of articles hereof by cladding is best employed for coating alloys which possess high inherent ductility.
Another technique which may be employed to form the coated articles of the invention is by hot dipping the metal base into a molten bath of the coating alloy. This method is particularly adaptable where the metal base to be coated has a uniform cross section such as round wires, rods, and bars.
Where articles of the invention are not intended for high temperature use, the article may be formed by resin bonding the coating alloy to the base metal. In forming the article in accordance with such a technique, the coating alloy is preformed as a homogenous alloy in the shape and size desired as the coating of the article. Thin sheets of coating alloy are made in the manner previously described for the cladding technique whereas special shapes are made by conventional metal-working methods. The coating is then bonded to the base metal by means of an adhesive, such as an epoxy resin or a vinyl-acrylic polymeric binder. The article formed in this manner, of course, does not have a diffusion zone and the coating is not metallurgically bonded to the substrate. Nevertheless, the bond between coating and substrate is adequate for nearly all end uses, with the possible exception of uses calling for extended service at high temperatures or exposure of the adhesive to solvent or chemical environments which might cause degradation of the adhesive followed by loss of a good bond between coating and substrate.
The following examples illustrate the preparation of preferred articles hereof wherein the alloy coating is metallurgically bonded to the metal base both by the novel method of the invention and also by cladding. in the sake of brevity, the metal base is largely limited in these examples to ferrous base metals. It is to be understood, however, that the same coatings and other coatings within the invention can be readily formed on other metal bases as well.
EXAMPLE 1 A coating alloy consisting of 51 w/o W-40 w/o Ni-9 w/o Si was formed by arc-melting weighed amounts of the component elements in argon at a pressure of 700 mm. Hg. The coating alloy contained about v/o of Laves phase which was identified in the alloy by X-ray diffraction; the matrix melted incipiently at about 1300 C. The alloy was crushed and ball-milled to a powder in the size range minus 270 mesh plus 325 mesh, and the powder was deposited by plasma-jet gun on /isdn. and /4-in. plates of S.A.E. 1020 mild steel. The resulting coated specimens were fired 3 min. at 1180 C. in a vacuum electric furnace at a pressure of about 0.00l mm. Hg and were furnacecooled. The surface layer of the finished coating was about 11 mils thick. Laves phase was identified in the surface layer of the coating of the formed article by X-ray diffraction, the relative amounts of Laves phase and matrix being approximately 48 v/o and 52 v/o, respectively. In the surface layer of the product article, the Laves phase showed a Knoop hardness of 630 and the matrix showed a Knoop hardness of 240. The coated steel (4 x 4 x i-in. plates) had excellent resistance to a spray of aqueous 2O w/o NaCl solution at F. during 14 days exposure.
An extrusion die having a 0.l87-in land and a throat diameter of (L867 in. at the land was made of: H-l3 tool steel (5 \v/o Cr, 1.5 w/o M0, 1.0 w/o V, 0.35 w/o C, bal. Fe). A coating alloy consisting of 51 w/o W40 w/o Ni-9 w/o Si was made by arc-melting and was reduced to powder. The powdered alloy was deposited to a depth of 24 mils on the land and working face of the die by plasma-jet gun. The resulting coated die was fired 20 min. at 1180 C. in an electric furnace at a pressure of 10 mm. Hg and was cooled in the furnace. The fired coating was about 20 mils thick. After the coated die was tempered for one hour at 610 C. and furnace cooled, which heat-treatment was repeated, the hardness of the 11-13 steel was R 49. The throat of the die was then finished to 0.850 in. diameter by Elox machining followed by grinding and polishing. In the finished die, the land had 11 mils of coating, including 89 mils of surface layer consisting of approximately 50 v/o Laves phase (K =9001000) and 50 v/o of a softer matrix (K =600), and the coating was free of pits or cracks. The measured lattice parameters of the Laves phase ((3-14 hexagonal crystal structure type) were a=4.731 A. and 0:7.546 A.
Twenty billets (9 in. diam. x 28 in. long) of cast aluminum alloy AA 6063 (0.7 w/o Mg, 0.4 w/o Si) were extruded through the preheated (400-430 C.) die at speeds up to 325 ft./min. into bars having good commercial finish. Oil dag lubricant was applied to the die before each extrusion. Under comparable conditions, extrusion through conventional uncoated steel dies was limited to about 175 ft./n1in.
EXAMPLE 3 A coating alloy consisting of 35 w/o Mo-55 w/o Ni 10 W/o Si was formed, reduced to powder, and deposited on S.A.E. 1020 mild steel as in Example 1. The coating alloy contained about 50 We Laves phase having a Knoop hardness of 1040 and 50 v/o matrix having a Knoop hardness of 340. The matrix melted incipiently at about 1230 C. The coated base metal specimens were fired 3 min. at 1300" C. in a vacuum electric furnace at a pressure of 0.001 mm. Hg and were furnace cooled. The coating was metallurgically bonded continuously to the surface of the steel. By electron beam microanalysis, the surface layer consisted of 35 v/o matrix (K =200) composed of 2.3 w/o Mo34.l w/o Ni60.6 w/o Fe3.8 w/o Si and 65 v/o Laves phase (K =810) composed of 40.5 w/o Mo-2l.7 w/o Ni28.3 w/o Fe-9.2 w/o Si. The coated surface of the specimen was exposed to aqueous l0 w/o HCl at 50 C. for 10 days under static conditions. The coated surface corroded at a rate of 7.2 mils per month, whereas uncoated S.A.E. 1020 steel corroded at a rate of 396 mils/mo. under the same conditions.
EXAMPLE 4 A shear-type extrusion die having a 0.184-in. land and a throat diameter of 0.864-in. was made of Hl3 steel. A coating alloy consisting of 45 w/o W40 w/o Co-l5 w/o Si was made by arc-melting the elements in argon and was crushed and ball-milled to minus 400-mesh powder. One volume of powdered alloy was slurried in three volumes of w/o solution of acrylic binder in acetone and was sprayed to a depth of about 14 mils onto the land and working face of the die. The resulting coated die was dried, preheated for 10 min. at 1100 C., fired 10 min. at 1200-1210 C. in an electric furnace at a pressure of about 10" mm. Hg, and cooled in the furnace. The fired coating was 7 mils thick as determined from the throat dimensions. After the coated die was tempered for one hour at 610 C. and furnace cooled, which treatment was repeated, the hardness of the Hl3 steel was R 47- 49. The land was then ground to a throat diameter of 0.857-in. In the finished die, the land had 3.5 mils of coating, the surface layer of which contained approximately 38 v/o Laves phase (K =530) and 62 W0 of a softer matrix (K =240). The measured lattice parameters of the Laves phase (C-14 hexagonal crystal structure type) were 0:4.708 A. and 0 7.673 A.
Forty-five billets (9-in. diam. x 28-in. long) of cast aluminum alloy AA 6063 preheated to about 430 C. were extruded through the preheated die (400430 C.) at speeds up to 250 ft./min. into 130-ft. bars having good commercial finish and cross-sectional dimensions. Graphite-in-oil lubricant was applied to the die. The die was fit for further use. Extrusion of the same alloy through conventional uncoated steel dies, with an application of caustic solution after each push to clean the die, was limited to about 175 ft./n1in. when producing bars with comparable surface finish. Extrusion at 250 ft./min. using conventional uncoated steel dies and grapliite-in-oil lubricant, instead of caustic solution, produced bars having inferior finish.
EXAMPLE 5 An alloy consisting of 51 w/o W-40 w/o Co9 w/o Si was made by arc-melting 510 g. of tungsten chips, 400 g. /sdn. cobalt shot, and 90 g. of lump silicon, all ingredients being at least 99.9% pure. The alloy was reduced to minus l40-mesh powder by crushing and ball-milling. One volume of the powder was slurried in three volumes of a 10 w/o solution of acrylic polymer in acetone. The slurry was brushed onto /ts-in. thick pieces of S.A.E. 1020 steel and air-dried, leaving a deposit about 10 mils thick. The coated pieces were fired 3 min. at 1320 C. in a vacuum electric furnace and were cooled in the furnace. Laves phase was identified in both the coating alloy and the surface layer of the coating by X-ray diffraction; the surface layer containing approximately 64 W0 Laves phase (K =800-1040) and 36 v/o of a softer matrix (K :470). The measured lattice parameters of the Laves phase (C-l4 hexagonal crystal-structure type) were a=4.72l A. and c=7.599 A. The coated steel was bent 15 around a z-in. diameter pin at room temperature, placing the coating under tension, without cracking the coating. The coated steel was similarly bent but with the coating in compression, without cracking the coating.
EXAMPLE 6 A coating alloy consisting of 35 w/o Mo-55 w/o Co-lO w/o Si was formed by arc-melting weighed amounts of the elements in argon at a pressure of 700 mm. Hg. The alloy contained v/o of Laves phase in a matrix having an incipient melting point of about 1220" C. Laves phase was identified in the alloy by X-ray diffraction. The matrix appeared to be a mixture of phases and melted incipiently at 1220 C. The alloy was crushed and ball-milled in a steel mill to minus 400-mesh powder. A slurry of the powder in an acetone solution of acrylic binder was sprayed onto coupons of S.A.E. 1020 steel. When dried in the air, the deposit was l012 mils thick. The coupons were fired at 1225 C. for 10 min. in a vacuum electric furnace at a pressure of about 10* mm. Hg, and were cooled in the furnace. Laves phase and (10 8i, the main constituent of the matrix, were identified in the surface layer of the coating by Xray diffraction; the surface layer containing approximately 72 W0 Laves phase (K :l) and 28 v/o of :1 softer, lower-melting matrix (K z340).
EXAMPLE 7 A shear-type extrusion die having a 0.186-in. land and a throat diameter of 0.864in. at the land was made of H43 tool steel. A coating alloy consisting of 35 w/o Mo55 w/o Co-lO w/o Si was made and applied to the die as in Example 2. The hardness of the H-l3 steel in the tempered coated die was R 50-51. After the land of the die had been ground to a throat diameter of 0.852-in., the finished die had 6 mils of coating; the surface layer of said coating containing approximately 72 v/o Laves phase and 28 We of a softer lower melting matrix.
Forty-six billets (9-in. diam. x 28-in. long) of cast aluminum alloy AA 6063 preheated to about 430 C. were extruded through the preheated die (400430 C.) at speeds up to 250 ft./min. into -ft. bars having good commercial finish and cross-sectional dimensions, Graphite-in-oil lubricant was applied to the die, but the die was not cleaned. The die was fit for further use after this series of extrusions.
Under comparable conditions, extrusion through conventional uneoated steel dies, with conventional cleaning was caustic solution after each push, was limited to about 175 ft./rnin.
EXAMPLE 3 A coating alloy consisting of 35 w/o Mo-SS w/o Col w/o Si was made by arc-melting molybdenum chips. Vii-in. cobalt shot, and /4 to /2 -in. silicon lumps, all at least 99.9% pure, and was reduced to powder, as in Example 1. The powder was pressed at room temperaturc under 50 tons/sq. in. pressure into a At-ih. thick slab. The slab was sintered at 1220" C. for 10 min. in a vacuum electric furnace at a pressure of 10 mm. Hg, cooled in the furnace. and machined to a fiat plate 0.203 in. thick. The clean plate was set on a flat clean surface of a piece of H-l3 steel 0.760in. thick, without added braze metal or flux, and the couple was fired in the same furnace at 1195 C. for 10 min., and then cooled in the furnace. Although the sharp corners of the silicon-alloy cladding were retained, sufficient liquid formed autogenously at the interface between the clad metal and the H-l3 substrate to bond the two materials together. The materials were mctallurgically bonded continuously over their en tire contacting surface into an integral piece. This cladding material had exhibited a transverse rupture strength of 75,000 lb./sq.in. at room temperature and 99,000 lb./ sq.in. at 800 C. When exposed to still air for 100 hrs. at 850 C., it changed 0.012 mg./sq.cm. in weight, indicating good resistance to oxidation. The product article had 203 mils of coating; the surface layer of said coating containing approximately 80 v/o Laves phase and 20 We of a softer, lower-melting matrix EXAMPLE 9 A coating alloy consisting of 44 w/o Mo--50 w/o Co6 w/o Si was made and applied as a cladding to l-l-l3 steel according to a procedure similar to that of Example 8. The cold pressed slab was sintered at 1300 C. for 10 min, and the couple consisting of clad metal and H-l3 steel was fired at 1280 C. for 10 min. The product article had 218 mils of coating; the surface layer of said coating containing 85 W0 Laves phase (K :l400) and 15 v/o of a softer, lower-melting matrix nXAuPLu One hundred and fifty grams of Fe powder, 260 g. of Mo powder, and 90 g. of Si powder, all at least 99.9% pure, were arc-melted under argon, making an alloy composed of 52 \v/o Mo30 w/o Fel8 w/o Si. The alloy button was turned over and remelted six times to ensure homogeneity. There was no detectable weight change during the arc-melting. Laves phase, alpha iron, and a cubic phase with a lattice parameter of 9.09 A. were identified in the button by X-ray dilfraction. The button was crushed, passed through a No. 3V2 U.S. sieve (0.223-in. opening), and then ground with a steel mortar and pestle to minus 100 mesh. A mixture of the ground material and 25 g. of powdered ZrO was milled for l5 min. at 85 rev./min. in an 8-in. diam. cylindrical steel ball mill containing /1 x /2 x L t-in. pieces of tungsten carbide as the grinding medium. Ninety weight percent of the charge to the ball mill was recovered in the minus 230- mesh fraction of the ball-milled product. Powder passed by a ZYO-mesh screen but held by a 325-mesh screen was deposited on grit-blasted S.A.E. 1020 steel plates /2 x /1 x i s-in), using a plasma torch supplied with 104 cu. ft./hr. of argon, 5 cu. ft./hr. of hydrogen, and kw. of electrical power. The resulting coated plates were heated at 1250 C. for 1 hr. in a vacuum furnace containing argon at 10 mm. Hg pressure and were cooled in the furnace.
' mild steel.
The l7-mil coating thus produced was bright, crackfree, and united to the steel by a continuous metallurgical bond. Interconnected nodular grains of a hard phase (K ll00), which are characteristic of liquid sintering, constituted We of the 6-mil surface layer of the coating and were interpenetrated and embedded in a softer matrix (K 340). The nodular phase was identified by X-ray structure analysis and electronbeam microanaly sis as MgZn -type Laves phase having the composition 4-5 w/o Mo-48 w/o Fe7.3 w/o Si (29 21/0 Mo-54 a/o Fel7 a/o Si), which is equivalent to the stoichiometric formula (Mo Si (F 3Slg 2)2. The matrix of the surface layer was identified as alpha iron solid solution having the composition 2.5 w/o Mow/o Fe6.6 w/o Si (1.4 a/o Mo86 a/o Fe-l2.6 a/o Si). About 5 v/o of the matrix phase consisted of a dark gray rounded phase containing iron, silicon, and a light element, probably oxygen. Since the Laves phase contained only 45 w/o Mo and the matrix phase contained only 2.5 w/o Mo whereas the deposited powder contained 52 w/o M0, the surface layer lost molybdenum during liquid sintering. Likewise, the surface layer lost silicon and gained iron. The calculated over-all composition of the surface layer of the finished coating was 38.8 w/o Mo53.8 w/o Fe 7.2 w/o Si (25 a/o Mo-59 a/o Fe-l6 a/o Si).
Underlying the surface layer of the coating was a dispersion of a fine acicular phase (25 w/o Mo25 w/o Fla-50 w/o Si) in the solid solution matrix. Still nearer the steel substrate, the matrix was free of the fine acicular phase. The matrix was metallurgically bonded to the steel substrate and contained negligible amounts of silicon and molybdenum in the two mils adjacent the substrate. At greater distances from the substrate, the alpha iron matrix contained progressively increasing concentrations of silicon and molybdenum up to the surface layer. The matrix phase extended from the steel substrate to the surface of the coating. The interconnected grains of hard Laves phase constitute an inher ntly rigid structure that is useful for protecting rigid substrates from wear and abrasion.
A coating was produced in the same manner on another S.A.E. 1020 steel plate, excepting that it was tired for 1 hr. at 1200 C. The surface layer contained elongated grains of Laves phase to the extent of about 70 v/o near the surface and about 38 We near the opposite side of the surface layer. The matrix was metallurgically bonded to the steel substrate and extended to the surface of the coating. This coating was relatively soft (K composite hardness 350). It is useful to protect the steel from wear and abrasion where the coated body is subject to small deformation. Both the Laves phase based on MoFe and the alpha iron crystal structures were identified in the coating by X-ray diffraction.
Further firing of this specimen for 17 /2 hrs. at 1000 C. reduced the Laves phase in the surface of the coating to about 26 v/o. The proportion of soft matrix in the surface layer, as well as the thickness of the Laves-free matrix between the surface layer and the steel body, was increased. This coating was integrally bonded to the steel substrate continuously over the surface of the steel.
EXAMPLE 11 A coating alloy consisting of 36 w/o Mo-46 w/o Fc- 18 w/o Ge was arc-melted, reduced to powder, and made into a slurry as in Example 5. Several coats of the slurry were applied to /2 x /2 x 18-in. coupons of S.A.E. 1020 The air-dried coating was about 20 mils thick. The coated coupons were then fired at 1230 C. for 5 min. in a vacuum electric furnace at a pressure of about 10* mm. Hg and were cooled in the furnace. Total thickness of the fired coating was 6-9 mils; the surface layer of said coating containing 55 We Laves phase (K =770) and 45 We of a softer, lower-melting matrix (K =570). Laves phase was identified in the surface layer of the coating by X-ray diffraction (11:4.754 A., c=7.730 A.; C-l4 hexagonal crystal structure type); microscopic examination revealed hard nodular grains in a softer 1 7 matrix in the surface layer. Intermediate the surface layer and the steel substrate was a 4-5 mil diffusion zone free of the nodular grains. The coating was bonded to the substrate by a continuous metallurgical bond.
EXAMPLE 12 A coating alloy consisting of 36 w/o Mo, 10 W/o Ni, 36 w/o Fe, 18 w/o Si was arc-melted, reduced to powder,
and made into a slurry as in Example 5. Several coats of the slurry were applied to a coupon of S.A.E. 1020 steel. The air-dried coating was about 20 mils thick. The coated coupon was fired at 1205 C. for one minute in a vacuum furnace at an air pressure of about 10- mm. Hg and cooled in the furnace. Total thickness of the surface layer of the fired coating was approximately 8 mils; the surface layer of said coating contained 65 v/o Laves phase and 35 v/o matrix. The Knoop (IOU-gram load) microhardness value of the Laves phase was 850, and the hardness value for matrix phase was 400.
The lattice parameters of the Laves phase were determined by means of X-ray diffraction using 10 kv.10 ma. chromium radiation (vanadium filter). The measured lattice parameters for the Laves phase were a=4.740i-0.002 Angstroms and c=7.718:0.002 Angstroms (C-14 hexagonal crystal structure type).
EXAMPLE 13 A coating alloy consisting of 36 w/o Mo, 10 w/o Cr, 36 w/o Ni, 18 w/o Si was arc-melted, reduced to powder, and made into a slurry as in Example 5. A layer of coating about 20 mils thick was applied to a 1 x 1 x Ai-in. coupon of S.A.E. 1020 mild steel and fired in a vacuum of 10- mm. Hg at 1190 C. for 10 minutes. The measured thickness of the surface layer was 11 mils after firing and contained 63 W Laves phase (K =9501200) and 37 W0 matrix (K =253). Measured lattice parameters of the Laves phase crystal structure were a=4.732 A. and c=7.624 A. (C-l4 hexagonal crystal structure type).
EXAMPLE 14 A SOD-gram arc-melted button was made from a composition consisting of 27 w/o Ta, 58 w/o Mn, 15 w/o Si. The button was reduced to powder and a 10-mil coating was applied to S.A.E. 1020 mild steel according to the procedure of Example 5. The composite was fired at 1320" C. for 3 minutes in a vacuum furnace at l0 mm. Hg air pressure and furnaced cooled. After firing, the surface layer of the coating was 2 mils thick. The surface layer contained 35 v/o Laves phase and 65 W0 matrix phase. The Laves phase Knoop (15 gram load) microhardness value was 400, whereas the matrix microh ardness value was 200. By X-ray diffraction, the measured Laves phase lattice parameters were 0:4.774 A., c=7.742 A. (C-14 hexagonal crystal structure type). The coating was continuously bonded to the substrate. The width of the diffusion zone was approximately mils.
EXAMPLE 15 A coating alloy consisting of 40 w/o Nb, 45 w/o Ni, 15 w/o Si was arc-melted, reduced to powder, and applied as a 20-mil coating to S.A.E. 1020 mild steel according to the procedures of Example 5. The composite was then fired in a vacuum furnace at 1300 C. for minutes at an air pressure of 10- mm. Hg and was furnace cooled. The resultant coating was 12 mils thick and was constituted of 33 v/o Laves phase (a=4.821 A.; c=7.758 A.; C-14 hexagonal crystal structure type) and 67 v/o matrix phase. The Laves phase microhardness value (K was 400, and the matrix microhardness value was 185 under the same indentor load. FIGURE 3 depicts the microstructure of this coating alloy on S.A.E. 1020 mild steel.
EXAMPLE 16 A coating alloy consisting of 52 w/o Ta, 38 w/o Co, 10 w/o Si was made by arc-melting the elemental constituents according to the procedures of Example 5, reduced to a powder and applied to S.A.E. 1020 mild steel as a SO-mil coating. The 1 x 1 x Aasin. thick coupon was fired in vacuum furnace at 1350 C. for 10 seconds under a vacuum of 10' mm. Hg air pressure and was furnace cooled. The resultant crackand pore-free coating was 30 mils thick. Examination of the coating revealed that the microstructure contained 35 We Laves phase (K =530) and 65 v/o matrix phase (K, =175). X-ray diffraction analysis substantiated the presence of Laves phase of the C-14 hexagonal crystal structure type (a=4.789 A., 0:7.679 A.). FIGURE 2 depicts the microstructure of this coating alloy on mild steel.
EXAMPLE 17 A coating alloy of 30 w/o Ti, 60 w/o Co, 10 w/o Si was arc-melted, reduced to powder, and made into a slurry as in Example 5. Several coats of the slurry were applied to a l x l x Ms-in. S.A.E. 1020 mild steel coupon; the air dried coating was 60 mils thick. The coated coupon was then fired at 1400 C. for if) seconds in a vacuum electric furnace at a pressure of about 10" mm. Hg and was cooled in the furnace. The fired coating had a surface layer 40 mils thick which contained about 25 W0 Laves phase (K =237) and about W0 matrix phase (K =l60). X-ray diffraction data revealed the presence of the Laves phase (12:4.795 A., c:7.692; C-l4 hexagonal) in the coating.
EXAMPLE 18 A fifty-pound charge of coating alloy consisting of 35 w/o Mo, 58 w/o Ni, 7 w/o Si was induction-melted under an argon atmosphere and atomized into 140 mesh powder by tossing the molten metal from a spinning wheel and quenching the particles by an argon blast such that the particles froze with a generally spherical shape. A 15- mil coating was applied to a sample of pure cobalt plate (approximately 4 thick) according to the procedure of Example 5. The composite was then fired in a vacuum furnace at 1220 C. for 3 min. at an air pressure of 10* mm. Hg and furnace-cooled. The resultant coating was 8 mils thick and was sonstituted of v/o Laves phase (a=4.732 A.; c=7.622 A.; C-14 hexagonal crystal structure type) and 20 v/o matrix phase. The Laves phase microhardness value (K was 1039, and the matrix microhardness value was 370 under the same indentor load. The diffusion zone between the surface layer and the substrate was approximately one mil thick.
EXAMPLE 19 A coating alloy consisting of 51 w/o W-40 w/o Ni 9 w/o Si made as described in Example 1 was applied to Udimet 700 (0.13C, 0.08Mn, 0.3Si, 15Cr, 3.0Mo, 2.4Cb, 2.2Ti, 3.0Al, 0.8Fe, 29Co, Bal. Ni percent by weight) to a depth of 25 mils. The slurry was prepared and applied as outlined in Example 4. The resultant coating was dried, preheated for 30 min. at 1100 C., fired at l230 C. for 2 min. in an electric furnace at an air pressure of 10* mm. Hg. The sample was cooled to 1150" C. slowly over a period of 16 min. and then furnace-cooled to room temperature in approximately 2 hrs. The heat-treated coating was 15 mils thick as determined mctallographically. The thickness of the diffusion zone was less than 10 microns. The coating surface layer consisted of a fine-grained (less than IO-micron particle diameter) Laves phase structure. Microhardness measurement of the individual phases was not feasible, because of the small interconnected grain structure. The composite microhardness value was K =8891039 and the matrix K =330. Approximately 50 v/o of the structure was Laves phase and 50 v/o was the softer matrix phase. Electronbeam microanalysis of the surface layer of the coating revealed the composition of the Laves phase to be 58.5 w/o W, 28.4 w/o Ni, 5.7 w/o Si, 0.7 w/o Fe, balance undetermined elements.
EXAMPLE 20 Part of the coating alloy described in Example 18 was applied to unalloyed molybdenum (99.9+% Mo) using a plasma torch according to the procedure described in Example 10. The thickness of the unfired deposit of coating alloy was 10 mils. The composite of deposited coating alloy on molybdenum was then fired in a vacuum furnace at 1450 C. for 1 to 3 min. at a pressure of 10- Hg and was furnace-cooled. The resultant coating was 4 to 5 mils thick and was constituted of 85 v/o Laves phase and 15 W0 matrix phase in the surface layer. Microhardness of the Laves phase K 870-965 and K :700, while the microhardness of the matrix was K :210. The molybdenum base was not recrystallized; its microhardncss was K 253. The diffusion zone between the surface layer of the coating and the bulk of the molybdenum base was less than microns. The coating was metallurgically bonded continuously to the molybdenum base.
It will be understood that many additional combinations of elements comprising at least two metals in the elemental composition of each can also be used to form the coating of coated metal bodies having the structure of our invention. Likewise, coated metal bodies having the structure of our invention as stated hereinabove can comprise a metal base other than the metal bases shown in the examples.
As many apparently widely different embodiments of this invention can be made without departing from the spirit and scope thereof, the invention is intended to include all such embodiments as may be comprised within the following claims.
We claim:
1. An article of manufacture comprising a metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent matrix, said Laves phase being present in said matrix, and said matrix being softer than said Laves phase.
2. An article of manufacture comprising a ferrous base metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70- volume percent matrix; said Laves phase being present in said matrix and said matrix being softer than said Laves phase.
3. An article of manufacture comprising a nickel base metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent matrix; said Laves phase being present in said matrix and said matrix being softer than said Laves phase.
4. An article of manufacture comprising a cobalt base metal base having a protective metal coating, the surface layer of said coating being an alloy constituted essentially of 30-85 volume percent Laves phase and 70-15 volume percent matrix; said Laves phase being present in said matrix and said matrix being softer than said Laves phase.
5. An article of manufacture comprising a metal base having a protective metal coating the surface layer of said coating being an alloy consisting essentially of at least two elements, at least two of which are heavy transition elements aggregating at least 60 atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
6. An article of manufacture comprising a ferrous base metal base having a protective metal coating, the surface layer of said coating being an alloy consisting essentially of at least two elements, at least two of which are heavy transition elements aggregating at least atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining -15 volume percent of said alloy, said matrix being softer than said Laves phase.
7. An article of manufacture comprising a nickel base metal base having a protective metal coating, the surface of said coating being an alloy consisting essentially of at least two elements, at least two of which are heavy transition elements aggregating at least 60 atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
8. An article of manufacture comprising a cobalt base metal base having a protective metal coating, the surface layer of said coating being an alloy consisting essentially of at least two elements at least two of which are heavy transition elements aggregating at least 60 atomic percent of said alloy, the ratio of the atomic radii of the largest to the smallest of said heavy transition elements being in the range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
9. An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating, the surface layer of said coating being an alloy consisting essentially of at least three elements including silicon and two heavy transition elements having a ratio of the atomic radii of the largest to the smallest of said heavy transition elements in a range of from 1.05 to 1.68; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
10. An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the W-Ni-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
11. An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the Mo-Ni-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
12. An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting especially of the W-Co-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
13. An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the Mo-Co-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of the remaining 70-15 volume percent of said alloy, said matrix being softer than said Laves phase.
14. An article of manufacture comprising a ferrous base metal base to which is metallurgically bonded a protective metal coating having in its surface layer an alloy consisting essentially of the Mo-Cr-Ni-Si system; wherein 30-85 volume percent of said alloy is present as Laves phase in a matrix composed of :the remaining 70-l5 volume percent of said alloy, said matrix being softer than said Laves phase.
15. The article of claim 2 in the form of an extrusion die, wherein the surface of the protective coating of said article is present as the extruding land of said die.
16. The article of claim 5 in the form of an extrusion die, wherein the surface of the protective coating of said article is present as the extruding land of said die.
17. The article of claim 6 in the form of an extrusion die, wherein the surface of the protective coating of said article is present as the extruding land of said die.
18. The article of claim 9 in the form of an extrusion die, wherein the surface of the protective coating of said article is present as the extruding land of said die.
References Cited by the Examiner UNITED STATES PATENTS 2,032,926 3/1936 Ford 29-196 2,271,706 2/1942 Morris 1l7l30 2,401,851 6/1946 Wright 75-123 2,484,231 10/1949 Kent 75l23 2,520,310 8/1950 Frazier 29196 2,737,463 3/1956 Lawton 117l30 HYLAND BIZOT, Primary Examiner.
DAVID L. RECK, Examiner.

Claims (1)

1. AN ARTICLE OF MANUFACTURE COMPRISING A METAL BASE HAVING A PORTECTIVE METAL COATING, THE SURFACE LAYER OF SAID COATING BEING AN ALLOY CONSTITUTED ESSENTIALLY OF 30-85 VOLUME PERCENT LAVES PHASE AND 70-15 VOLUME PERCENT MATRIX, SAID LAVES PHASE BEING PRESENT IN SAID MATRIX, AND SAID MATRIX BEING SOFTER THAN SAID LAVES PHASE.
US3257178D Coated metal article Expired - Lifetime US3257178A (en)

Publications (1)

Publication Number Publication Date
US3257178A true US3257178A (en) 1966-06-21

Family

ID=3458236

Family Applications (1)

Application Number Title Priority Date Filing Date
US3257178D Expired - Lifetime US3257178A (en) Coated metal article

Country Status (1)

Country Link
US (1) US3257178A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598156A (en) * 1968-07-15 1971-08-10 Jordan Band Bimetal tubing and method of making same
USRE28552E (en) * 1965-04-30 1975-09-16 Cobalt-base alloys
FR2488912A1 (en) * 1980-08-25 1982-02-26 Ramsey Corp Plasma spray powder coated piston rings - with coating of iron, molybdenum and silicon
US6485678B1 (en) 2000-06-20 2002-11-26 Winsert Technologies, Inc. Wear-resistant iron base alloys
US20040033154A1 (en) * 2002-08-16 2004-02-19 Winsert Technologies, Inc. Wear and corrosion resistant austenitic iron base alloy
US20040057863A1 (en) * 2002-07-17 2004-03-25 Wu James B. C. Wear-Resistant, Corrosion-Resistant Cobalt-Based Alloys
US20050142026A1 (en) * 2003-12-29 2005-06-30 Wu James B.C. Ductile cobalt-based Laves phase alloys
US20060134455A1 (en) * 2004-12-15 2006-06-22 Deloro Stellite Holdings Corporation Imparting high-temperature degradation resistance to components for internal combustion engine systems
US20060283526A1 (en) * 2004-07-08 2006-12-21 Xuecheng Liang Wear resistant alloy for valve seat insert used in internal combustion engines
US20070086910A1 (en) * 2005-10-14 2007-04-19 Xuecheng Liang Acid resistant austenitic alloy for valve seat insert
US20080253918A1 (en) * 2007-04-13 2008-10-16 Xuecheng Liang Acid resistant austenitic alloy for valve seat inserts
US20100055339A1 (en) * 2008-08-26 2010-03-04 Shinde Sachin R Method of forming molybdenum based wear resistant coating on a workpiece
US20100205877A1 (en) * 2009-02-13 2010-08-19 Uday Varde Mounting system for securing a photovoltaic device and method for its use
US8962154B2 (en) 2011-06-17 2015-02-24 Kennametal Inc. Wear resistant inner coating for pipes and pipe fittings
EP1482156B1 (en) * 2003-05-29 2016-09-14 Eaton Corporation High temperature corrosion and oxidation resistant valve guide for engine application
US20190063485A1 (en) * 2017-08-25 2019-02-28 The Boeing Company Method and systems for inserting a coated fastener in an assembly

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28552E (en) * 1965-04-30 1975-09-16 Cobalt-base alloys
US3598156A (en) * 1968-07-15 1971-08-10 Jordan Band Bimetal tubing and method of making same
FR2488912A1 (en) * 1980-08-25 1982-02-26 Ramsey Corp Plasma spray powder coated piston rings - with coating of iron, molybdenum and silicon
US6485678B1 (en) 2000-06-20 2002-11-26 Winsert Technologies, Inc. Wear-resistant iron base alloys
EP1947208A1 (en) 2000-06-20 2008-07-23 Alloy Technology Solutions, Inc. Wear-resistant iron base alloy
US6852176B2 (en) 2002-07-17 2005-02-08 Deloro Stellite Holdings Corporation Wear-resistant, corrosion-resistant cobalt-based alloys
US20040057863A1 (en) * 2002-07-17 2004-03-25 Wu James B. C. Wear-Resistant, Corrosion-Resistant Cobalt-Based Alloys
US20040033154A1 (en) * 2002-08-16 2004-02-19 Winsert Technologies, Inc. Wear and corrosion resistant austenitic iron base alloy
US6866816B2 (en) 2002-08-16 2005-03-15 Alloy Technology Solutions, Inc. Wear and corrosion resistant austenitic iron base alloy
EP1482156B1 (en) * 2003-05-29 2016-09-14 Eaton Corporation High temperature corrosion and oxidation resistant valve guide for engine application
US20050142026A1 (en) * 2003-12-29 2005-06-30 Wu James B.C. Ductile cobalt-based Laves phase alloys
US7572408B2 (en) 2003-12-29 2009-08-11 Deloro Stellite Holdings Corporation Ductile cobalt-based Laves phase alloys
US20060283526A1 (en) * 2004-07-08 2006-12-21 Xuecheng Liang Wear resistant alloy for valve seat insert used in internal combustion engines
US7611590B2 (en) 2004-07-08 2009-11-03 Alloy Technology Solutions, Inc. Wear resistant alloy for valve seat insert used in internal combustion engines
US8383203B2 (en) * 2004-12-15 2013-02-26 Kennametal Inc. Imparting high-temperature degradation resistance to components for internal combustion engine systems
US8668959B2 (en) 2004-12-15 2014-03-11 Kennametal Inc. Imparting high-temperature degradation resistance to metallic components
US20060134455A1 (en) * 2004-12-15 2006-06-22 Deloro Stellite Holdings Corporation Imparting high-temperature degradation resistance to components for internal combustion engine systems
US20070086910A1 (en) * 2005-10-14 2007-04-19 Xuecheng Liang Acid resistant austenitic alloy for valve seat insert
US20080253918A1 (en) * 2007-04-13 2008-10-16 Xuecheng Liang Acid resistant austenitic alloy for valve seat inserts
US7754142B2 (en) 2007-04-13 2010-07-13 Winsert, Inc. Acid resistant austenitic alloy for valve seat inserts
US20100055339A1 (en) * 2008-08-26 2010-03-04 Shinde Sachin R Method of forming molybdenum based wear resistant coating on a workpiece
US20100205877A1 (en) * 2009-02-13 2010-08-19 Uday Varde Mounting system for securing a photovoltaic device and method for its use
US8962154B2 (en) 2011-06-17 2015-02-24 Kennametal Inc. Wear resistant inner coating for pipes and pipe fittings
US20190063485A1 (en) * 2017-08-25 2019-02-28 The Boeing Company Method and systems for inserting a coated fastener in an assembly
US10808749B2 (en) * 2017-08-25 2020-10-20 The Boeing Company Method and systems for inserting a coated fastener in an assembly

Similar Documents

Publication Publication Date Title
US3257178A (en) Coated metal article
Wadsworth et al. Recent advances in aerospace refractory metal alloys
EP0433072B1 (en) Oxidation resistant low expansion superalloys
Watanabe et al. Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility
US4668470A (en) Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications
US4419130A (en) Titanium-diboride dispersion strengthened iron materials
US3752655A (en) Sintered hard metal product
US4507151A (en) Coating material for the formation of abrasion-resistant and impact-resistant coatings on workpieces
US3767385A (en) Cobalt-base alloys
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
US3837930A (en) Method of producing iron-chromium-aluminum alloys with improved high temperature properties
EP0229499B1 (en) Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications
EP0312966B1 (en) Alloys containing gamma prime phase and process for forming same
JPS63109151A (en) High hardness composite material
JPS6283446A (en) High strength corrosion resistant magnesium base metal alloysolidified quickly, its production and metal article compressed from said alloy
US3361560A (en) Nickel silicon and refractory metal alloy
EP0217299A2 (en) Tri-nickel aluminide compositions alloyed to overcome hot-short phenomena
US5980659A (en) Surface-treated metallic part and processing method thereof
US3664889A (en) TERNARY, QUATERNARY AND MORE COMPLEX ALLOYS OF Be-Al
US3912552A (en) Oxidation resistant dispersion strengthened alloy
US3626570A (en) Two-phase cobalt iron alloys prepared by powder metallurgy
US4735770A (en) Method for producing an amorphous material in powder form by performing a milling process
EP0132371B1 (en) Process for making alloys having a coarse elongated grain structure
US3331700A (en) Method of coating metals
JP3091690B2 (en) Method for producing TiB2-based coating