US3254332A - Indication repeating apparatus - Google Patents

Indication repeating apparatus Download PDF

Info

Publication number
US3254332A
US3254332A US462779A US46277965A US3254332A US 3254332 A US3254332 A US 3254332A US 462779 A US462779 A US 462779A US 46277965 A US46277965 A US 46277965A US 3254332 A US3254332 A US 3254332A
Authority
US
United States
Prior art keywords
relay
switch
conductor
smoke
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US462779A
Inventor
Jr Harry C Grant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Specialties Development Corp
Original Assignee
Specialties Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US265740A external-priority patent/US3237180A/en
Application filed by Specialties Development Corp filed Critical Specialties Development Corp
Priority to US462779A priority Critical patent/US3254332A/en
Application granted granted Critical
Publication of US3254332A publication Critical patent/US3254332A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to indication repeating apparatus, and, more particularly, to such apparatus utilized in connection with a condition responsive system to repeat, at a remote location, the indications provided by the system.
  • the present invention although useful for other purposes, is primarily concerned with apparatus to be used in conjunction with a smoke detecting system including the smoke detecting apparatus shown and described in co-pending United States application Serial No. 229,807, filed'October 11, 1962, and the electrical control system shown and described in co-pending United States application Serial No. 260,007 filed February 20, 1963.
  • a plurality of smoke conducting conduits or lines extending from the spaces being monitored are connected through a rotary selector value to a smoke detecting unit.
  • the selector valve is provided with a position indicator for continuously denoting which conduit is connected through the valve to the smoke detecting unit.
  • the electrical control system for such apparatus normally operates the selector valve to sequentially connect each of the conduits to the detecting unit, and, when the detecting unit responds to the presence of smoke, gives an alarm and interrupts the operation of the selector valve so that the source of the smoke may be determined from the valve position indicator.
  • the electrical control system disclosed in the previously mentioned co-pending application in addition to performing the above functions, also gives an indication if a fault occurs in the smoke detecting apparatus or the electrical control system.
  • the detecting equipment In smoke detecting systems for use on ocean going vessels, the detecting equipment is usually located at a main station below deck and it is generally required that the indications given by the detecting equipment be repeated at a remote station, for example, in the wheelhouse of the ship so that the ofiicer in charge may quickly take whatever action is required by the indications given. Therefore, it is extremely important that the indications given at the wheelhouse are accurate reproductions of those given by the detecting equipment.
  • the detecting equipment is frequently separated from the wheelhouse by a considerable distance; wherefore, it is highly desirable that the repeater be connected to the detecting apparatus through a minimum number of lines which are inexpensive in character and occupy a minimum of space.
  • the remote indication of the source of detected smoke was provided by running either a smoke conducting pipe or a wire from the detecting equipment to the repeater equipment for each monitored line. Such arrangements are very costly, particularly where the system monitors a great number of spaces in which smoke is to be detected.
  • an object of the present invention is to provide indication repeating apparatus which accurately reproduces, at a remote station the indications provided by detecting apparatus at a main station.
  • Another object is to provide such repeating apparatus wherein the remote station is connected to the main sta-' tion in a simple, convenient and inexpensive manner.
  • Another object is to provide such repeating apparatus including an indicator which is synchronized with a line selecting device in the detecting apparatus to give a remote indication of the line connected to the detecting unit.
  • Another object is to provide such repeating apparatus including means for monitoring the synchronization of the line selecting device and such a remote indicator.
  • Another object is to provide such repeating apparatus including means for facilitating the re-synchronization of the line selecting device and such a remote indicator should it become necessary.
  • a further object is to provide such repeating apparatus which is accurate and reliable.
  • FIGS. 1a and 1b are schematic views of the repeating apparatus at the remote station and the detecting apparatus at the main station, respectively, including a wiring diagram for such apparatus which, when arranged with FIG. 1a above FIG. 112 so that the terminals A through I of each view are in alignment and connected, provide a complete wiring diagram.
  • FIG. 1a indication repeating apparatus in accordance with the present invention
  • FIG. 1b smoke detecting system
  • the smoke detecting system (FIG. lb), which is disclosed in detail in the aforementioned co-pending applications, generally comprises a photoelectric smoke detecting unit 10, an eight position rotary selector valve 11 having an outlet conduit 12 connected to the air intake of the detecting unit 10, seven input conduits or lines 13 extending from the selector valve 11 to a plurality of spaces which are to be monitored by the detecting unit, an air blower 14 connected to the air outlet of the detecting unit 10, an arrangement for.step-wise rotating the selector valve including a continuously acting torque motor 15 and a stepping brake 16 mounted on a common shaft 17 with the selector valve 11, a number wheel 18 marked (1 to 7 and T) mounted on the shaft 17 to indicate which conduit is connected to the detecting unit 10, and a control system including control circuits schematically represented by a block 19, a brake driver schematically represented by a single pole double throw switch 20, and indicating circuitry described in detail hereinafter.
  • the stepping brake 16 includes a disc 21 secured to the shaft 17 for rotation therewith, four armatures 22 on the disc 21 equally spaced about the circumference thereof, and two pairs of diametrically opposite braking electromagnets 24 and 25 positioned adjacent to the disc 21 to cooperate with the armatures 22 to provide a braking force on the shaft 17.
  • Each magnet 24 is positioned forty-five degrees in advance of a magnet 25.
  • the electrical control system receives power from a transformer 26 having a primary winding 27 connected to a volt alternating current line and having three secondary windings 29, 30 and 31.
  • the secondary winding 29 provides alternating current power to the torque motor 15, the winding 30 provides power to a direct current power supply 32, and the winding 31 supplies alternating current power to a pair of conductors 34 and 35.
  • the power supply 32 provides direct current power across a pair of conductors 36 and 37.
  • the conductor 37 is negative and is connected directly to one side of each of the electromagnets 24 and 25.
  • the conductor 36 is positive and is connected to the brake drive 26.
  • the other side of the brake magnets 24 are connected to the brake driver through a conductor 38, and the other side of the brake magnets are connected to the brake driver through a conductor 39.
  • the control system indicating circuitry includes a smoke response relay 40 and a fault relay 41 both under the control of the control circuits 19, a fault lamp 42 controlled by the fault relay 41, a smoke alarm relay 43 controlled by the smoke response relay 40, a smoke lamp 44 and a smoke gong 45 under the control of the alarm relay 43, a gong cut-off switch 46, a test switch 4-7 adjacent the disc 21 to be actuated by a switch operator 48 mounted on the disc 21, and a test relay 49 under the control of the switch 47.
  • the smoke response relay 46 includes a coil 50 connected to the control circuit 19 and a pair of normally open contacts 51.
  • the smoke alarm relay 43 includes a coil 52 connected in series with the contacts 51 and the switch 46 between the conductors 36, 37 and also includes two pairs of normally open contacts 54 and 55.
  • the contacts 54 are connected in series with the smoke lamp 44 between the conductors 34 and 35, and the contacts 55 are connected in series with the smoke gong 45 also between the conductors 34 and 35.
  • the fault relay 41 includes a coil 56 connected to the control circuit unit 19 and normally open contacts, including a stationary contact 57 and a movable contact 59, connected in series with the fault lamp 42 between the conductors 34 and 35.
  • the test relay 49 includes a coil 66 connected in series with the test switch 47 between the conductors 36 and 37 and two pairs of normally closed contacts 61 and 62 connected between the conductor 35 and the contacts 54 and 55 respectively.
  • a switch 63 is ganged to the switch 46 and is connected between the conductor 35 and the lamp 44 whereby the lamp 44 may be connected directly across the conductors 34 and 35.
  • the control circuits 19 include a timer circuit which operates the brake driver 20 to alternately connect the positive conductor 36 to the electromagnets 24 and 25, and thus alternately ener-gize these electromagnets.
  • the torque motor 15 constantly urges the shaft 17 to rotate, therefore, each time the brake driver changes its condition the disc 21 rotates until pair of armatures 22 becomes aligned with the electromagnets 24 or 25 which are then energized.
  • the selector valve .11 is thus moved in eight steps to connect each of the conduits 13 to the smoke detecting unit 10 for a predetermined period of time during each revolution of the valve 11.
  • the blower 14 draws air from the spaces to be monitored through the conduits 13 and the selector valve 11 into the smoke detecting unit 10 which produces an electrical signal if smoke is present.
  • the control circuit unit 19 responds to this electrical signal and energizes the coil 56 of a smoke response relay 40 closing the contacts 51 to energize the coil 52 of the smoke alarm relay 43.
  • the coil 52 closes the contacts 54 and 55 to energize the smoke gong 45 and the smoke lamp 44.
  • the gong 45 may be silenced by opening the switch 46 to de-energize the coil 52.
  • test switch operator 43 actuates the test switch 47 to operate a smoke simulating device in the detector unit 10 such as described in co-pending United States application Serial No. 212,- 097, filed July 24, 1962, to cause the detector unit 10 to 4 produce an output signal.
  • the operation of the test switch 47 also energizes the coil of the test relay 49 to effect opening of the contacts 61 and 62 to prevent the operation of the lamp 44 and the gong 45 when the smoke alarm relay 43 is energized.
  • the operation of the switch 47 transmits a signal to the control circuit unit 19 to actuate circuits for supervising the operation of the detecting system. If the system is not operating properly, the coil 56 of the fault relay 4-1 is energized to 10 bring the contact 59 against the contact 57 and thereby effect illumination of the fault lamp 42.
  • the indication repeating apparatus (FIG. la), which is utilized in conjunction with the detecting system just described, generally comprises a remote valve position indicator including a continuously acting torque motor 64, an eight position stepping brake 65, and a number wheel 66 (marked 1 to 7 and T) all mounted on a common shaft 67; circuitry to monitor the synchronization of the number wheel 66 with the valve 11 and to re-synchronize them when an out of synchronization condition is indicated; remote smoke and fault indicating circuitry; and power failure'indicating circuitry as will be described hereinafter.
  • a remote valve position indicator including a continuously acting torque motor 64, an eight position stepping brake 65, and a number wheel 66 (marked 1 to 7 and T) all mounted on a common shaft 67; circuitry to monitor the synchronization of the number wheel 66 with the valve 11 and to re-synchronize them when an out of synchronization condition is indicated; remote smoke and fault indicating circuitry; and power failure'indicating circuitry as will be described hereinafter.
  • the stepping brake includes a disc 69 secured to the shaft 67 for rotation therewith, four brake engaging members 70 carried by the disc and equally spaced about the circumference thereof, and a pair of brake solenoids 71 and 72 positioned adjacent the circumference of the disc 69 and provided with armatures 74 and 75 respectively which are extended to be engaged by one of the members 76 to stop the disc 69 when the solenoids 71 and 72 are energized.
  • One side of the solenoid 71 is connected through a conductor 76 to the conductor 38 leading from the brake driver 20, and one side 'of the solenoid 72 is similarly connected through a conductor 77 to the conductor 39.
  • the other sides of the solenoids 71 and 72 are both connected through a conductor 79 to the negative conductor 37.
  • the solenoid 74 is therefore energized when the brake magnet 24 is energized, and the solenoid 75 is energized at the same time as the brake magnet 25 is energized. In this manner, when the detecting apparatus and the repeating apparatus are in synchronism, the numbers wheels 18 and 66 give the same indication.
  • the synchronization circuitry includes a synchronization test switch Stl adjacent the disc 69, a synchronization 5 fault relay 81 and lamp 82 in the repeater, a synchronization fault relay 84 and lamp 85, a re-synchronization switch 86 in the repeater, two synchronization switches 87 and 89, an additional pair of normally closed contacts 90 in the test relay 49, and an additional stationary contact 91 in the fault relay 41 normally in contact with the movable contact 59.
  • the relay 84, lamp 85, switches 87 and 89, and contacts 96 and 91 are in the circuitry at the main station (FIG. 1b).
  • the test switch is positioned adjacent the circumference of the disc 69 to be actuated by a switch operator 92 on the disc 69 each time the number wheel 66 indicates that the valve 11 is in the test position.
  • the repeater synchronism fault relay 81 includes a coil 94, a pair of normally open contacts 95, and a pair of normally closed contacts 96.
  • the synchronism fault relay 84 (FIG. 1b) includes a coil 97 and a pair of normally open contacts 98.
  • One side of the coil 94 is connected to the conductor 79.
  • the other side of the coil 94 F is connected through a conductor 99, the switch 87, and 69 a conductor 100 to the conductor 38.
  • the conductor 100 is also connected through the contact to the conductor 39.
  • One side of the normally open contacts is connected to the conductor 35 through a conductor 101 and the other side is connected through the lamp 82 and a con- 70 ductor 10-2 to the conductor 34.
  • the normally closed contacts 96 are connected between the conductor 102 and a conductor 104 leading to one side of the coil 97 of the relay 84.
  • the other side of the coil 97 is connected to the conductor 34 through the contacts 91 and 59 of the 75 relay 41.
  • the torque motor 64 is connected across the winding 29 through the switch 86 and a conductor 105 on one side and through a conductor 106 and the switch 89 on the other side.
  • the repeater torque motor 64 constantly urges the shaft 67 to rotate.
  • the solenoids 71 and 72 are alternately energized by the action of the brake driver 20 to stop the rotation of the shaft 67.
  • the solenoid holding the disc 69 from rotating is released and the other solenoid is energized, therefore, the disc rotates one eighth of a revolution.
  • the number wheel 66 is stepped through eight positions during each revolution. Since the solenoids 71 and 72 respectively are energized at the same time that the brake magnets 24 and 25 are energized, the number Wheel 66 will keep in step with the selector valve 11 and give the same indications at the main and remote stations.
  • the relay coil 94 When the conductor 38 is energized by the brake driver 20, the relay coil 94 receives current from the conductor 38 directly through the conductor 100, and, when the conductor 39 is energized, the relay coil 94 receives current from the conductor 39 through the contacts 90 of the test relay 49. In this manner, the relay 81 is held energized as the selector valve 11 moves through the positions indicated as 1 through 7 on the number wheel 18. When the selector valve 11 moves into the test posi tion T the conductor 39 is energized to actuate the brake magnets 25, and the test switch 47 is closed by the operator 48 to energize the test relay coil 60 and open the contacts 90 The current flow through the switch 87 to the relay coil 94 is thus interrupted.
  • the operator.92 will close the switch 80 at the same time that the switch 47 is closed. Current will then flow from the conductor 39 through the conductor 77 and the switch 80 to the coil 94 and the relay 81 will remain energized. If the number wheel 66 is not synchronized with the selector valve 11, the switch 80 will not be closed at this time and the relay 81 will drop out closing the contacts 95 to light' the lamp 82 and opening the contacts 96 to de-energize the relay 84 and light the lamp 85.
  • re-synchronization may be accomplished from either the main station or the repeater station by the following procedures.
  • Re-synchronization may'be accomplished from the repeater station by opening the switch 86 when the number wheel 66 is in number 1 position, and holding the switch 86 open until the lamp 82 lights and goes out again. Opening of the switch 86 stops the motor 64 and holds the number wheel 66 in the number 1 position.
  • the valve 11 moves to the test position T the lamp 82 is illurninated as described herein before. The lamp 82 is extinguished when the valve 11 moves to the next position in which it connects line number 1 to the detector 10. Therefore, when the lamp 82 goes out, the number wheels 66 and 18 are both indicating line number '1.
  • the switch 86 is closed while the valve 11 is in this position to re-start the moto 64 so that the number wheel 66 remains synchronized with the number wheel 18.
  • Re-synchronization from the main station may be accomplished by opening switch 87 to de-energize the relay 81 which in turn de-energizes the relay 84 and lights the lamp 85, holding the switch 87 open at least until the operator 92 closes the switch 80 (when the number wheel 18 is in the test position T) and reenergizes the relays 81 and 84 to extinguish the lamp 85, opening switch 89 when the lamp goes out to cle-energize the motor 64 and hold the number wheel 66 in the test position T, holding the switch 89 open until the number wheel 18 indicates that the valve 11 is in the test position T, and closing the switches 87 and 89 to re-connect the relay 81 and re-energize the motor 64.
  • the remote smoke and fault indicating circuitry cornprises a faulty relay 109, including a coil 110 and a pair of contacts 111, a fault lamp 112, a smoke lamp 114, a smoke gong 115, a gong cut-off switch 116, a switch 117 ganged to the switch 116, and an additional pair of contacts 118 in the alarm relay 43.
  • the coil 110 of the fault relay 109 is connected between the sync fault lamp 82 and the conductor 102.
  • the contacts 111 of the fault relay 109 are connected in series between the conductors 102 and 101.
  • the smoke gong 115 is connected between the conductors 79 and 102, and the smoke lamp 114 is connected between the conductors 105 and 102.
  • the negative side of the coil 52 of the alarm relay 43 is connected through the switch 46, a conductor 119 leading to the repeater, and the switch 116 to the conductor 79.
  • the switch 117 is connected between the conductors 101 and to provide current to the lamp 114 when the switches 116 and 117 are operated.
  • the contacts 118 are connected between the contacts 61 of the test relay 49 and the conductor 79 to provide AC. to the repeater gong 115.
  • the closing of the contacts 54 also provides a current path from the conductor 35 through the contacts 61 and 54, the conductor 105, the repeater smoke lamp 114, and the conductor 102 to the conductor 34.
  • the closing of the contacts 118 provides a current path from the conductor 35 through the conductor 79, the repeater smoke gong 115, and the conductor 102' to the conductor 34.
  • the movable contact 59 is moved from the contact 91 to the contact 57.
  • the fault lamp 42 is thus connected across the conductors 34 and 35, and the current flow between the conductors 34 and 35 through the coil 97 of the relay 84, and the coil 110 of the fault relay 109, is interrupted.
  • the fault relay 109 is thus de-energized thereby closing the contacts 111 to connect the fault lamp 112 between the conductors 34 and 35.
  • the synchronism fault relay 84 is also de-energized at this time, the lamp 85 is not illuminated since the operation of the fault relay 41 disconnects the contact 91 from the conductor 35.
  • the power failure indicating circuitry includes a relay 120 having a coil 121 and a pair of contacts 122, a battery 124, and a lamp 125.
  • the coil 121 is connected between conductors 101 and 102 and the contacts 122 are connected in series with the battery 124, and a lamp 125.
  • the coil 121 is normally energized and maintains the contacts 122 open. In the event of a power failure, the power supplied to the conductors 101 and 102 from the con- "2 ductors 34 and 35 disappears and the coil 121 is de-energized.
  • the contacts 122 then close to connect the lamp 125 across the battery 124 to give a power failure indication.
  • the indication repeating apparatus described herein requires only ten conductors 76, 77, 99, 101, 102, 104 to 106, and 119 extending between the main station and the repeater station. While the apparatus has been described in connection with a smoke detecting system having an eight position valve for monitoring seven smoke lines 13, it will be understood that such apparatus can be utilized in connection with a valve having a greater number of positions divisible by four, for example, up to forty-eight, without requiring any additional conductors between the main and repeater stations or additional components other than the required number of brake members 22 and '70 for stepping the number wheels 18 and 66 correspondingly to the number of positions.
  • the present invention provides simple, inexpensive and reliable indication repeating apparatus which is connected to main station detecting apparatus in a simple and inexpensive manner and which accurately reproduces the indications provided by the detecting apparatus.
  • an audible alarm device in one of said stations a first visual alarm device in said main station, a second visual alarm device in said remote station, a first switch in said main station, a second switch in said remote station, said first and second switches normally being closed, a third switch ganged to said first switch, a fourth switch ganged to said second switch, said third and fourth switches normally being open, a relay for actuating said alarm devices including a coil and first and second contact pairs, and a fifth switch for controlling the energization of said relay, said coil being connected in series with said first and second switches and with said fifth switch across a source of electrical power, said first visual alarm device being connected in series with said first relay contact pair across a source of electrical energy, said second visual alarm device being connected in parallel with said first lamp, said third and fourth switches each being connected in parallel with said first relay contact pair, and said audible alarm device being connected in series with said second relay contact pair across a source

Description

y 1966 H (3. GRANT, JR 3,254,332
INDICATION REPEATING APPARATUS Original Filed March 18, 1963 2 sheets-Sheet 1 U INVENTOR. HARRY C GRANT JR.
BY 0 h- /rrv u.
AGENT 2 Sheets-Sheet 2 H. C. GRANT, JR
INDICATION REPEATING APPARATUS May 31, 1966 Original Filed March 18, 1963 INVENTOR. H ARRY C G RANT. JR.
dl l/r United States Patent 1 Claim. or. 340-2131) This is a division of application Serial No. 265,740, filed March 18, 1963.
The present invention relates to indication repeating apparatus, and, more particularly, to such apparatus utilized in connection with a condition responsive system to repeat, at a remote location, the indications provided by the system.
The present invention, although useful for other purposes, is primarily concerned with apparatus to be used in conjunction with a smoke detecting system including the smoke detecting apparatus shown and described in co-pending United States application Serial No. 229,807, filed'October 11, 1962, and the electrical control system shown and described in co-pending United States application Serial No. 260,007 filed February 20, 1963.
In smoke detecting apparatus of the type disclosed in the above identified co-pending application, a plurality of smoke conducting conduits or lines extending from the spaces being monitored are connected through a rotary selector value to a smoke detecting unit. The selector valve is provided with a position indicator for continuously denoting which conduit is connected through the valve to the smoke detecting unit.
The electrical control system for such apparatus normally operates the selector valve to sequentially connect each of the conduits to the detecting unit, and, when the detecting unit responds to the presence of smoke, gives an alarm and interrupts the operation of the selector valve so that the source of the smoke may be determined from the valve position indicator. The electrical control system disclosed in the previously mentioned co-pending application, in addition to performing the above functions, also gives an indication if a fault occurs in the smoke detecting apparatus or the electrical control system.
In smoke detecting systems for use on ocean going vessels, the detecting equipment is usually located at a main station below deck and it is generally required that the indications given by the detecting equipment be repeated at a remote station, for example, in the wheelhouse of the ship so that the ofiicer in charge may quickly take whatever action is required by the indications given. Therefore, it is extremely important that the indications given at the wheelhouse are accurate reproductions of those given by the detecting equipment.
The detecting equipment is frequently separated from the wheelhouse by a considerable distance; wherefore, it is highly desirable that the repeater be connected to the detecting apparatus through a minimum number of lines which are inexpensive in character and occupy a minimum of space. In previously known smoke detecting systems of this type, the remote indication of the source of detected smoke was provided by running either a smoke conducting pipe or a wire from the detecting equipment to the repeater equipment for each monitored line. Such arrangements are very costly, particularly where the system monitors a great number of spaces in which smoke is to be detected.
Accordingly, an object of the present inventionis to provide indication repeating apparatus which accurately reproduces, at a remote station the indications provided by detecting apparatus at a main station.
Another object is to provide such repeating apparatus wherein the remote station is connected to the main sta-' tion in a simple, convenient and inexpensive manner.
Another object is to provide such repeating apparatus including an indicator which is synchronized with a line selecting device in the detecting apparatus to give a remote indication of the line connected to the detecting unit.
Another object is to provide such repeating apparatus including means for monitoring the synchronization of the line selecting device and such a remote indicator.
Another object is to provide such repeating apparatus including means for facilitating the re-synchronization of the line selecting device and such a remote indicator should it become necessary.
A further object is to provide such repeating apparatus which is accurate and reliable.
Other and further objects of the invention will be obvio-us upon an understanding of the illustrative embodiment about to be described, or will be indicated in the appended claim, and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice.
A preferred embodiment of the invention has been chosen for purposes of illustration and description, and is shown in the accompanying drawings, forming a part of the specification, wherein:
FIGS. 1a and 1b are schematic views of the repeating apparatus at the remote station and the detecting apparatus at the main station, respectively, including a wiring diagram for such apparatus which, when arranged with FIG. 1a above FIG. 112 so that the terminals A through I of each view are in alignment and connected, provide a complete wiring diagram.
Referring to the drawings in detail, there is shown indication repeating apparatus in accordance with the present invention (FIG. 1a), utilized in conjunction with a smoke detecting system (FIG. 1b).
The smoke detecting system (FIG. lb), which is disclosed in detail in the aforementioned co-pending applications, generally comprises a photoelectric smoke detecting unit 10, an eight position rotary selector valve 11 having an outlet conduit 12 connected to the air intake of the detecting unit 10, seven input conduits or lines 13 extending from the selector valve 11 to a plurality of spaces which are to be monitored by the detecting unit, an air blower 14 connected to the air outlet of the detecting unit 10, an arrangement for.step-wise rotating the selector valve including a continuously acting torque motor 15 and a stepping brake 16 mounted on a common shaft 17 with the selector valve 11, a number wheel 18 marked (1 to 7 and T) mounted on the shaft 17 to indicate which conduit is connected to the detecting unit 10, and a control system including control circuits schematically represented by a block 19, a brake driver schematically represented by a single pole double throw switch 20, and indicating circuitry described in detail hereinafter.
The stepping brake 16 includes a disc 21 secured to the shaft 17 for rotation therewith, four armatures 22 on the disc 21 equally spaced about the circumference thereof, and two pairs of diametrically opposite braking electromagnets 24 and 25 positioned adjacent to the disc 21 to cooperate with the armatures 22 to provide a braking force on the shaft 17. Each magnet 24 is positioned forty-five degrees in advance of a magnet 25.
The electrical control system receives power from a transformer 26 having a primary winding 27 connected to a volt alternating current line and having three secondary windings 29, 30 and 31. The secondary winding 29 provides alternating current power to the torque motor 15, the winding 30 provides power to a direct current power supply 32, and the winding 31 supplies alternating current power to a pair of conductors 34 and 35. The power supply 32 provides direct current power across a pair of conductors 36 and 37. The conductor 37 is negative and is connected directly to one side of each of the electromagnets 24 and 25. The conductor 36 is positive and is connected to the brake drive 26. The other side of the brake magnets 24 are connected to the brake driver through a conductor 38, and the other side of the brake magnets are connected to the brake driver through a conductor 39.
The control system indicating circuitry includes a smoke response relay 40 and a fault relay 41 both under the control of the control circuits 19, a fault lamp 42 controlled by the fault relay 41, a smoke alarm relay 43 controlled by the smoke response relay 40, a smoke lamp 44 and a smoke gong 45 under the control of the alarm relay 43, a gong cut-off switch 46, a test switch 4-7 adjacent the disc 21 to be actuated by a switch operator 48 mounted on the disc 21, and a test relay 49 under the control of the switch 47.
The smoke response relay 46 includes a coil 50 connected to the control circuit 19 and a pair of normally open contacts 51. The smoke alarm relay 43 includes a coil 52 connected in series with the contacts 51 and the switch 46 between the conductors 36, 37 and also includes two pairs of normally open contacts 54 and 55. The contacts 54 are connected in series with the smoke lamp 44 between the conductors 34 and 35, and the contacts 55 are connected in series with the smoke gong 45 also between the conductors 34 and 35. The fault relay 41 includes a coil 56 connected to the control circuit unit 19 and normally open contacts, including a stationary contact 57 and a movable contact 59, connected in series with the fault lamp 42 between the conductors 34 and 35. The test relay 49 includes a coil 66 connected in series with the test switch 47 between the conductors 36 and 37 and two pairs of normally closed contacts 61 and 62 connected between the conductor 35 and the contacts 54 and 55 respectively.
A switch 63 is ganged to the switch 46 and is connected between the conductor 35 and the lamp 44 whereby the lamp 44 may be connected directly across the conductors 34 and 35.
The control circuits 19 include a timer circuit which operates the brake driver 20 to alternately connect the positive conductor 36 to the electromagnets 24 and 25, and thus alternately ener-gize these electromagnets. The torque motor 15 constantly urges the shaft 17 to rotate, therefore, each time the brake driver changes its condition the disc 21 rotates until pair of armatures 22 becomes aligned with the electromagnets 24 or 25 which are then energized. The selector valve .11 is thus moved in eight steps to connect each of the conduits 13 to the smoke detecting unit 10 for a predetermined period of time during each revolution of the valve 11. The blower 14 draws air from the spaces to be monitored through the conduits 13 and the selector valve 11 into the smoke detecting unit 10 which produces an electrical signal if smoke is present. The control circuit unit 19 responds to this electrical signal and energizes the coil 56 of a smoke response relay 40 closing the contacts 51 to energize the coil 52 of the smoke alarm relay 43. The coil 52 closes the contacts 54 and 55 to energize the smoke gong 45 and the smoke lamp 44. If desired, the gong 45 may be silenced by opening the switch 46 to de-energize the coil 52. By virtue of the mechanical connection between the ganged switches 46 and 63, when the switch 46 is opened, the switch 63 closes to keep the lamp 44 illuminated.
During each revolution; when the selector valve 11 moves into its eighth or test position and is not connected to any of the seven sampling conduits 13, the test switch operator 43 actuates the test switch 47 to operate a smoke simulating device in the detector unit 10 such as described in co-pending United States application Serial No. 212,- 097, filed July 24, 1962, to cause the detector unit 10 to 4 produce an output signal. The operation of the test switch 47 also energizes the coil of the test relay 49 to effect opening of the contacts 61 and 62 to prevent the operation of the lamp 44 and the gong 45 when the smoke alarm relay 43 is energized. Furthermore, the operation of the switch 47 transmits a signal to the control circuit unit 19 to actuate circuits for supervising the operation of the detecting system. If the system is not operating properly, the coil 56 of the fault relay 4-1 is energized to 10 bring the contact 59 against the contact 57 and thereby effect illumination of the fault lamp 42.
The indication repeating apparatus according to the present invention (FIG. la), which is utilized in conjunction with the detecting system just described, generally comprises a remote valve position indicator including a continuously acting torque motor 64, an eight position stepping brake 65, and a number wheel 66 (marked 1 to 7 and T) all mounted on a common shaft 67; circuitry to monitor the synchronization of the number wheel 66 with the valve 11 and to re-synchronize them when an out of synchronization condition is indicated; remote smoke and fault indicating circuitry; and power failure'indicating circuitry as will be described hereinafter.
The stepping brake includes a disc 69 secured to the shaft 67 for rotation therewith, four brake engaging members 70 carried by the disc and equally spaced about the circumference thereof, and a pair of brake solenoids 71 and 72 positioned adjacent the circumference of the disc 69 and provided with armatures 74 and 75 respectively which are extended to be engaged by one of the members 76 to stop the disc 69 when the solenoids 71 and 72 are energized. One side of the solenoid 71 is connected through a conductor 76 to the conductor 38 leading from the brake driver 20, and one side 'of the solenoid 72 is similarly connected through a conductor 77 to the conductor 39. The other sides of the solenoids 71 and 72 are both connected through a conductor 79 to the negative conductor 37. The solenoid 74 is therefore energized when the brake magnet 24 is energized, and the solenoid 75 is energized at the same time as the brake magnet 25 is energized. In this manner, when the detecting apparatus and the repeating apparatus are in synchronism, the numbers wheels 18 and 66 give the same indication.
The synchronization circuitry includes a synchronization test switch Stl adjacent the disc 69, a synchronization 5 fault relay 81 and lamp 82 in the repeater, a synchronization fault relay 84 and lamp 85, a re-synchronization switch 86 in the repeater, two synchronization switches 87 and 89, an additional pair of normally closed contacts 90 in the test relay 49, and an additional stationary contact 91 in the fault relay 41 normally in contact with the movable contact 59. As shown herein, the relay 84, lamp 85, switches 87 and 89, and contacts 96 and 91 are in the circuitry at the main station (FIG. 1b).
The test switch is positioned adjacent the circumference of the disc 69 to be actuated by a switch operator 92 on the disc 69 each time the number wheel 66 indicates that the valve 11 is in the test position.
The repeater synchronism fault relay 81 includes a coil 94, a pair of normally open contacts 95, and a pair of normally closed contacts 96. The synchronism fault relay 84 (FIG. 1b) includes a coil 97 and a pair of normally open contacts 98. One side of the coil 94 is connected to the conductor 79. The other side of the coil 94 F is connected through a conductor 99, the switch 87, and 69 a conductor 100 to the conductor 38. The conductor 100 is also connected through the contact to the conductor 39. One side of the normally open contacts is connected to the conductor 35 through a conductor 101 and the other side is connected through the lamp 82 and a con- 70 ductor 10-2 to the conductor 34. The normally closed contacts 96 are connected between the conductor 102 and a conductor 104 leading to one side of the coil 97 of the relay 84. The other side of the coil 97 is connected to the conductor 34 through the contacts 91 and 59 of the 75 relay 41.
The torque motor 64 is connected across the winding 29 through the switch 86 and a conductor 105 on one side and through a conductor 106 and the switch 89 on the other side.
The operation of the synchronizing circuitry will now be explained. The repeater torque motor 64 constantly urges the shaft 67 to rotate. The solenoids 71 and 72 are alternately energized by the action of the brake driver 20 to stop the rotation of the shaft 67. Each time the brake driver 20 changes its condition, the solenoid holding the disc 69 from rotating is released and the other solenoid is energized, therefore, the disc rotates one eighth of a revolution. In this manner, the number wheel 66 is stepped through eight positions during each revolution. Since the solenoids 71 and 72 respectively are energized at the same time that the brake magnets 24 and 25 are energized, the number Wheel 66 will keep in step with the selector valve 11 and give the same indications at the main and remote stations.
When the conductor 38 is energized by the brake driver 20, the relay coil 94 receives current from the conductor 38 directly through the conductor 100, and, when the conductor 39 is energized, the relay coil 94 receives current from the conductor 39 through the contacts 90 of the test relay 49. In this manner, the relay 81 is held energized as the selector valve 11 moves through the positions indicated as 1 through 7 on the number wheel 18. When the selector valve 11 moves into the test posi tion T the conductor 39 is energized to actuate the brake magnets 25, and the test switch 47 is closed by the operator 48 to energize the test relay coil 60 and open the contacts 90 The current flow through the switch 87 to the relay coil 94 is thus interrupted. If the number wheel 66 is synchronized with the selector valve 11, the operator.92 will close the switch 80 at the same time that the switch 47 is closed. Current will then flow from the conductor 39 through the conductor 77 and the switch 80 to the coil 94 and the relay 81 will remain energized. If the number wheel 66 is not synchronized with the selector valve 11, the switch 80 will not be closed at this time and the relay 81 will drop out closing the contacts 95 to light' the lamp 82 and opening the contacts 96 to de-energize the relay 84 and light the lamp 85.
If the repeater valve position indicator is out of synchronization with the valve 11, re-synchronization may be accomplished from either the main station or the repeater station by the following procedures.
Re-synchronization may'be accomplished from the repeater station by opening the switch 86 when the number wheel 66 is in number 1 position, and holding the switch 86 open until the lamp 82 lights and goes out again. Opening of the switch 86 stops the motor 64 and holds the number wheel 66 in the number 1 position. When the valve 11 moves to the test position T the lamp 82 is illurninated as described herein before. The lamp 82 is extinguished when the valve 11 moves to the next position in which it connects line number 1 to the detector 10. Therefore, when the lamp 82 goes out, the number wheels 66 and 18 are both indicating line number '1. The switch 86 is closed while the valve 11 is in this position to re-start the moto 64 so that the number wheel 66 remains synchronized with the number wheel 18.
Re-synchronization from the main station may be accomplished by opening switch 87 to de-energize the relay 81 which in turn de-energizes the relay 84 and lights the lamp 85, holding the switch 87 open at least until the operator 92 closes the switch 80 (when the number wheel 18 is in the test position T) and reenergizes the relays 81 and 84 to extinguish the lamp 85, opening switch 89 when the lamp goes out to cle-energize the motor 64 and hold the number wheel 66 in the test position T, holding the switch 89 open until the number wheel 18 indicates that the valve 11 is in the test position T, and closing the switches 87 and 89 to re-connect the relay 81 and re-energize the motor 64.
The remote smoke and fault indicating circuitry cornprises a faulty relay 109, including a coil 110 and a pair of contacts 111, a fault lamp 112, a smoke lamp 114, a smoke gong 115, a gong cut-off switch 116, a switch 117 ganged to the switch 116, and an additional pair of contacts 118 in the alarm relay 43.
The coil 110 of the fault relay 109 is connected between the sync fault lamp 82 and the conductor 102. The contacts 111 of the fault relay 109 are connected in series between the conductors 102 and 101. The smoke gong 115 is connected between the conductors 79 and 102, and the smoke lamp 114 is connected between the conductors 105 and 102. In order that the smoke gongs and 115 may both be turned ofi from either the main station or the repeater station, the negative side of the coil 52 of the alarm relay 43 is connected through the switch 46, a conductor 119 leading to the repeater, and the switch 116 to the conductor 79. The switch 117 is connected between the conductors 101 and to provide current to the lamp 114 when the switches 116 and 117 are operated. The contacts 118 are connected between the contacts 61 of the test relay 49 and the conductor 79 to provide AC. to the repeater gong 115.
The operation of the remote smoke and fault indicating circuitry will now be explained.
When the control circuit unit 19 energizes the smoke response relay 50, current flows from the positive conductor 36 through the contacts 51 of the relay 50, the coil 52 of the alarm relay 43, the contacts 46, and the conductor 119 to the repeater, through the switch 116 to the conductor 79, through the conductor 79 back to the negative conductor 37 in the main station. In response to the current fiow through the coil 52, the contacts 54, 55, and 118 close. As previously described, the contacts 55 connect the main station gong 45 across the conductors 34 and 35, and the contacts 54 connect the lamp 44 across the conductors 34 and 35. The closing of the contacts 54 also provides a current path from the conductor 35 through the contacts 61 and 54, the conductor 105, the repeater smoke lamp 114, and the conductor 102 to the conductor 34. The closing of the contacts 118 provides a current path from the conductor 35 through the conductor 79, the repeater smoke gong 115, and the conductor 102' to the conductor 34.
If, after a smoke alarm is given, it is desired to silence the gongs 45 and this can be accomplished by operating the ganged switches 46 and 63 in the main sta tion or the ganged switches 116 and 117 in the repeater. Operation of either switch 46 or 116 interrupts the current flow through the coils 52 of the relay 43 causing the contacts 54, 55, and 118 to open and de-energize the gongs 45 and 115 and the lamps 44 and 114. The concurrent operation of the switch 63 or 117 re-connects the lamps 44 and 114 across the conductors 34 and 35 to maintain a fire indication. Y
When the control circuit unit 19 energizes the fault relay 41 in response to' a malfunction in the smoke detecting system, the movable contact 59 is moved from the contact 91 to the contact 57. The fault lamp 42 is thus connected across the conductors 34 and 35, and the current flow between the conductors 34 and 35 through the coil 97 of the relay 84, and the coil 110 of the fault relay 109, is interrupted. The fault relay 109 is thus de-energized thereby closing the contacts 111 to connect the fault lamp 112 between the conductors 34 and 35. Although the synchronism fault relay 84 is also de-energized at this time, the lamp 85 is not illuminated since the operation of the fault relay 41 disconnects the contact 91 from the conductor 35.
The power failure indicating circuitry includes a relay 120 having a coil 121 and a pair of contacts 122, a battery 124, and a lamp 125. The coil 121 is connected between conductors 101 and 102 and the contacts 122 are connected in series with the battery 124, and a lamp 125. The coil 121 is normally energized and maintains the contacts 122 open. In the event of a power failure, the power supplied to the conductors 101 and 102 from the con- "2 ductors 34 and 35 disappears and the coil 121 is de-energized. The contacts 122 then close to connect the lamp 125 across the battery 124 to give a power failure indication.
The indication repeating apparatus described herein requires only ten conductors 76, 77, 99, 101, 102, 104 to 106, and 119 extending between the main station and the repeater station. While the apparatus has been described in connection with a smoke detecting system having an eight position valve for monitoring seven smoke lines 13, it will be understood that such apparatus can be utilized in connection with a valve having a greater number of positions divisible by four, for example, up to forty-eight, without requiring any additional conductors between the main and repeater stations or additional components other than the required number of brake members 22 and '70 for stepping the number wheels 18 and 66 correspondingly to the number of positions.
From the foregoing, it will be seen that the present invention provides simple, inexpensive and reliable indication repeating apparatus which is connected to main station detecting apparatus in a simple and inexpensive manner and which accurately reproduces the indications provided by the detecting apparatus.
As various changes may be made in the form, construction and arrangement of the parts herein, without departing from the spirit and scope of the invention and without sacrificing any of its advantages, it is to be understood that all matter herein is to be interpreted as illustrative and not in any limiting sense.
I claim:
In apparatus for repeating at a remote station indications provided at a main station the combination of an audible alarm device in one of said stations, a first visual alarm device in said main station, a second visual alarm device in said remote station, a first switch in said main station, a second switch in said remote station, said first and second switches normally being closed, a third switch ganged to said first switch, a fourth switch ganged to said second switch, said third and fourth switches normally being open, a relay for actuating said alarm devices including a coil and first and second contact pairs, and a fifth switch for controlling the energization of said relay, said coil being connected in series with said first and second switches and with said fifth switch across a source of electrical power, said first visual alarm device being connected in series with said first relay contact pair across a source of electrical energy, said second visual alarm device being connected in parallel with said first lamp, said third and fourth switches each being connected in parallel with said first relay contact pair, and said audible alarm device being connected in series with said second relay contact pair across a source of electrical power, whereby upon the actuation of said fifth switch all of said alarm devices are energized and subsequent operation of either said first or second switches de-energizes said audible alarm and maintains said visual devices energized.
No references cited.
NEIL C. READ, Primary Examiner.
R. M. ANGUS, Assistant Examiner.
US462779A 1963-03-18 1965-05-03 Indication repeating apparatus Expired - Lifetime US3254332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US462779A US3254332A (en) 1963-03-18 1965-05-03 Indication repeating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US265740A US3237180A (en) 1963-03-18 1963-03-18 Indication repeating apparatus
US462779A US3254332A (en) 1963-03-18 1965-05-03 Indication repeating apparatus

Publications (1)

Publication Number Publication Date
US3254332A true US3254332A (en) 1966-05-31

Family

ID=26951401

Family Applications (1)

Application Number Title Priority Date Filing Date
US462779A Expired - Lifetime US3254332A (en) 1963-03-18 1965-05-03 Indication repeating apparatus

Country Status (1)

Country Link
US (1) US3254332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2124548A1 (en) * 1971-02-08 1972-09-22 Environment One Corp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2124548A1 (en) * 1971-02-08 1972-09-22 Environment One Corp

Similar Documents

Publication Publication Date Title
US2605342A (en) Fire alarm system
US3254332A (en) Indication repeating apparatus
US3237180A (en) Indication repeating apparatus
US2709250A (en) Alarm and annunciator system
US2997691A (en) Traffic mover apparatus
US3668474A (en) Apparatus for automatic relay system testing
US3662219A (en) Apparatus for automatic relay system testing
US2644934A (en) Fluid sampling apparatus
US2565271A (en) Automatic temperature indicating system
US3237183A (en) Watchman tour monitoring system
US3484770A (en) Malfunction alarm annunciator
US3128457A (en) Series operated relay alarm system
US2752588A (en) Motor control annunciator
US2895125A (en) Electrical alarm system
US2824295A (en) Annunciator system
US1853225A (en) Controlling means for signaling apparatus
US2294830A (en) Lubricating oil pressure alarm system
US3234536A (en) Electrical control system
US3579219A (en) Leakage-current detector
JPH02281718A (en) Automated monitoring device in tap switching device upon in loading
US1108998A (en) Signaling system.
US3245069A (en) Coded indicating system
US3230520A (en) Signalling controlled system
US2725514A (en) Electrical control apparatus for stopping electric motor
US3231879A (en) Condition responsive system with test means