US3247050A - Organo bismuth biocide - Google Patents

Organo bismuth biocide Download PDF

Info

Publication number
US3247050A
US3247050A US229994A US22999462A US3247050A US 3247050 A US3247050 A US 3247050A US 229994 A US229994 A US 229994A US 22999462 A US22999462 A US 22999462A US 3247050 A US3247050 A US 3247050A
Authority
US
United States
Prior art keywords
dichloride
bismuth
compounds
triphenylbismuth
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US229994A
Inventor
John R Leebrick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M&T Chemicals Inc
Original Assignee
M&T Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M&T Chemicals Inc filed Critical M&T Chemicals Inc
Priority to US229994A priority Critical patent/US3247050A/en
Application granted granted Critical
Publication of US3247050A publication Critical patent/US3247050A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/34Nitriles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N2300/00Combinations or mixtures of active ingredients covered by classes A01N27/00 - A01N65/48 with other active or formulation relevant ingredients, e.g. specific carrier materials or surfactants, covered by classes A01N25/00 - A01N65/48

Definitions

  • This in ention relates to meth of preventing and/or inhibitmg the growth of i roorganisms, including bacteria and fungi and to compositions of matter utilized in these methods.
  • the invention more particularly relates to materials which have been made resistant to attack by bacteria by the aforesaid methods.
  • the method of this invention for protecting a medium susceptible to attack by microorganisms comprises applying to the locus to be protected, an active amount of at least one bismuth compound having the formula R' BiX or R BiX wherein n is 1 or 2, R is an aryl group, and R is an alkyl, cycloalkyl, alkenyl, or aryl group, and X is a largely ionic bonded atom or group, and is preferably halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, or cyanide.
  • the bismuth compounds showing particularly the unusual activity against bacteria are those having 1 or 2 atoms, or groups, joined to the bismuth atom by bonds having ionic characteristics.
  • X may act as a bridging group or atom to provide his bismuth compounds which may be classified as substituted mono bismuth compounds and are within the scope of the present invention as defined herein.
  • Various R and X groups may be cyclized or otherwise joined.
  • the amount of the bismuth compound effective in a given application is dependent upon a number of factors which include the substrate -to be protected, the method of application, the degree of protection desired, the bismuth compound utilized, the environment, etc.
  • the bismuth compounds have proven to be effective against a wide spectrum of bacteria including Gram negative and Gram positive bacteria. They are particularly effective against Gram negative bacteria. Certain of these compounds may be particularly characterized by their efieetivity against fungi.
  • R is a monocyclic aryl
  • R monoand polychlorophenyls, tolyl, lower alkoXyphenyl-s and xylyl
  • R group is an alkyl
  • X is a halogen or a carboxylate
  • the preferred compounds include: t-riphenylbismuth dihydroxide, triphenylbismuth dichloride, triphenylbismuth diacetate, triphenylbismuth disalicylate, diphenylbismuth chloride, di-
  • phenylbismuth acetate diphenylbismuth salicylate, phenylbismuth dichloride, phenylibismuth diacetate, phenylbismuth disalicylate, diphenylbismuth laurylmercaptide, triphenylbismuth dibenzoate, phenylbismuth oxide, dibutylbismuth chloride, dioctylbismuth o-phenylphenate.
  • R may be an alkyl, preferably a lower alkyl containing from 3 to 8 carbon atoms
  • X may be selected from the group con sisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide.
  • Preferred X groups may be halogen, preferably chlorine.
  • the X groups may be the same.
  • Typical of the compounds which may preferably be employed in practice of this invention may be Methylbismuth dichloride Methylbismuth dibromide Methylbismuth diacetate Methylbismuth oxide Methylb-ismuth sulfide Ethylbismuth dichloride Ethylbismuth dibromide Ethylbismuth diacetate Ethylbismuth oxide Ethylbismuth sulfide Propylbismuth dichloride Propylbismuth dibromide Propylbismuth diacetate Propyl'bismuth oxide Propylbism-uth sulfide Propylbismuth diphenoxide Propylbismuth dimethoxide Butylbismuth dichloride Butylbismuth dibromide Butylbismuth diacetate Butylbismuth sulfide Butyllbismuth diphenoxide Butylbismuth dimethoxide Buty
  • R" may be a hydrocarbon radical, typically alkyl, alkenyl, aryl, alkaryl, aralkyl, cycloalkyl, etc.
  • R" may be for example, methyl, ethyl, propyl, isopropyl, n butyl, isobutyl, t-butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, oleyl i.e.
  • R may include a cyclic linkage in which more than one carbon atom may be joined to the nitrogen atom, e.g., a polymethylene linkage, in which case the grouping including the nitrogen atom may be the piperidino groups. Similarly, the pyridyl or the quinolyl group may be present, etc.
  • A may be an anion of a complex-forming compound, i.e., a compound which forms a substituted ammonium complex with an amine, as is well known, typically a halide, e. g., chloride, sulfate, sulfonate, acetate, etc.
  • a complex-forming compound i.e., a compound which forms a substituted ammonium complex with an amine
  • typically a halide e. g., chloride, sulfate, sulfonate, acetate, etc.
  • the preferred compounds which may be employed include compounds of the formula R NH -A wherein c is 4 and d is O.
  • the formula of these preferred quaternary ammonium compounds may be R N-A.
  • Typical of these preferred quaternary ammonium compounds which may be employed may be those formed by reacting tertiary amines typified by dimethyl dodecylamine, diethyl dodecylamine, dimethyl decylamine, dimethyl octylamine, trimethyl amine, tributyl amine, triethyl amine, pyridine, etc.
  • halides typified by alkyl halides such as methyl bromide, ethyl chloride, propyl bromide, methyl iodide, butyl bromide, butyl chloride, amyl iodide, benzyl chloride, etc.
  • the preferred quaternary ammonium compound which may be employed is an alkyl (e.g., lauryl) dimethyl benzyl ammonium chloride, typically that available under the trademark BTC824 of Onyx Chemical Co.
  • alkyl e.g., lauryl
  • Other specific illustrative compounds which may be employed may include (dodecylbenzyl)pyridinium chloride; lauryl dimethyl benzylammonium chloride; decyl dimethyl benzyla-mmoni-um chloride; etc.
  • the methods of this inventon may be carried out by applying the bismuth compounds (alone or preferably with the quaternary ammonium compounds) to the surface of the material to be protected and/or admixing the bismuth compounds with the material to be protected during the fabrication of said material.
  • the bismuth compounds may be used per se, particularly when they are incorporated into the material during preparation or fabrication. Many materials, and particularly fibrous products such as textiles, maybe treated by applying the bismuth compound to the surface by dipping, padding, spraying, etc. They may be used in the form of a bactericidal and/or fungicidal composition in which the bismuth compound is the active component or one of the active components.
  • the bismuth compound may be present in amount of 0.l%% by weight of total mixture of carrier and bimuth compound.
  • Liquid compositions may be utilized in which the bismuth compound is dissolved and/ or suspended in a solvent.
  • Solid compositions may be utilized in which the bismuth compound is mixed with a carrier (or diluent).
  • the carrier may be inert, such as talcs, clays, diatomaceous earth, flours, etc., or it may have activity such as that shown by the quaternary ammonium compounds.
  • the liquid formulations of the emulsion type will often include a dispersion agent such as the anionic, cationic or nonionic surface active agents.
  • the bismuth compounds may be formulated with other active materials such as the trior-ganotins, pentachlorophenol, phenyl mercuric oleate, copper-8- quinolinolate, bisphenols, o-iphenylphenol, polybrominated salicylanilides, and metal (zinc) dialkyl dithiocarbamates.
  • active materials such as the trior-ganotins, pentachlorophenol, phenyl mercuric oleate, copper-8- quinolinolate, bisphenols, o-iphenylphenol, polybrominated salicylanilides, and metal (zinc) dialkyl dithiocarbamates.
  • active materials such as the trior-ganotins, pentachlorophenol, phenyl mercuric oleate, copper-8- quinolinolate, bisphenols, o-iphenylphenol, polybrominated salicylanilides, and metal (zinc) dialkyl
  • Example 1Aerosol composition 7 Parts by weight Tributyltin oxide 0.02 Triphenylbismuth dichloride 0.02 Toluene 15.00 Fluorohydrocarbon gaseous propellant 84.96
  • Example 2.Liquid composition Phenylbismuth disalicylate 1 Water 8 Acetone 2 Lauryl dimethylben'zylammonium chloride (50%-in Illustrative useful compositions containing highly preferred active bismuth compounds RBiX are Examples 5-8.
  • Example 5 Aeros0l composition Parts by weight Tributyltin oxide 0.02 Butylbismuth dichloride 0.0 2 Toluene 15.00 Fl'uorohydrocarbon gaseous propellant 84.96
  • Butylbismuth dichloride 1 Water 8 Acetone 2 Dodecyl pyridinium ammonium chloride (50%-in water) l0 Trisodium salt of N-hydroxyethylethylenediamine triacetic acid 0.4 Toluene 3
  • Example 7.Emulsion composition Tripropyltin acetate 0.02 Propylbismuth diacetate 0.02 Toluene 15.00
  • Example 8 Solid composition Diatomaceous earth Octylbismuth diphenoxide 2O Plastics, textiles, paper products and paints are illustrative of the materials which are rendered resistant to attack when treated by applying the bismuth compound to the surface and/or by incorporation therein.
  • the plastics in massive and in fiber form include urethanes, halogenated polymers and copolymers such as polyvinyl chloride and polyvinyl chloride-acetate copolymers, polyesters, polyamides, polyolefins, and natural and synthetic rubbers.
  • Natural fiber products that may be protected include paper products, hemp and felts. Paints may be rotected in the can and also after application.
  • Typial paints include interior and exterior vinyl latex and a kyd paints, the older non-synthetic flat natural paints, the acrylics, and the vinyls, and nti-fouligg paints such as the acrylic and the vinyl vali ks thereofi 'flie bismuth compounds are also useful in preserving adhesives; in secondary oil recovery processes; in paper mill slime control processes; and in methods of contrplling Staphylococcus aureus in hospitals. They may be a useful and active component of detergent sanitizers and may be used for this and other purposes in the form of an aerosol material. They may also be used to protect plants and other growth against attack by microorganisms. Illustrative of resistant paint compositions are Examples 914.
  • Example 9 -Acrylic anti-fouling paint Parts by weight Titanium dioxide 160 Aluminum silicate 48 Talc 12 Methyl methacrylate-butyl methacrylate copolymer (40% in thinner) 433 Mineral spirits 148 Dibutylbismuth acetate 50
  • Example 1 1 F lat interior paint Titanium-calcium pigment 625 Calcium carbonate 100 Magnesium silicate 25 Ester gum solution (60% non-volatile in mineral spirits) 30 Bodied linseed oil 200 Mineral spirits 167 Cobalt naphthenate (6% Co) 1 Lead naphthenate (24% Ph) 2 Phenylbismuth
  • Aarobacter aerogenes p.p.m.
  • Triphenylbis- 16 muth sulfide (crude).
  • Phenylmercury acetate Phenylmercury acetate.
  • test compounds are reported showing the activity of the bismuth compounds against the noted microorganisms.
  • the compound was tested using the Agar Diffusion Test, as follows: The test compounds were diluted in acetone to obtain the following stock solutions-5, 2.5, 1.25, 0.63, 0.31%. Filter paper discs, 10 mm. in diameter, were dipped in the test solution and the solvent then allowed to evaporate. AATCC Bacteriostasis agar, held at 45 C., was inoculated to 1% with an 18-24 hour nutrient broth cultureof Staph. aareus or E. coli. The seeded agar was distributed at the rate of 15 ml./ 10 cm. Petri dish and allowed to solidify. The treated filter paper discs were placed on the seeded agar. Then the plates were incubated at 37 C. for 48 hours. Inhibition was determined by a zone or halo adjacent to the treated disc.
  • Triphenylbismuth dichloride In each of Examples 27-31, a urethane foam containing one of the bismuth compounds was tested against Staph. aureus in the Agar Diffusion Test. The foam composition and results follow:
  • Polyglycol ether 100 Polysiloxane. 1 Stannous soap 0. 45 N-ethyhnorpholine 0. 3 Triethylene diamine 0. 1 Water 2. 9 Tolylene diisoeyanate 38.6 27. Triphenylbismuth dichl de- 0.25 28 Diphenylbismuth chloride 0.1 29 do 0. 30 Phenylbisrnnth dichloride..- 0. 1 31.----- .s d0 0.05
  • Polyvinyl chloride resin 0 (Med. molecular weight).
  • Triphenylbismuth sulfide Triphenylbismuth diacetate Triphenylbismuth dimethacrylate Triphenylbismuth oxide Triphenylbismuth difluoride Triphenylbismuth dibromide Triphenylbismu-th dihydroxide Triphenylbismuth (hydroxy) chloride Triphen'ylbismuth (chloro acetate Triphenylbismuth dicyanide Trianisylbisrnuth dichloride Tribromophenylbismuth dichloride Ti chlorophenylbismuth dichloride Tri-a-naphthylbismuth dichloride Trinitrophenylbismuth dichloride Tritolylbismuth dichloride Trixylylbismuth dibromide T ribiphenylbismuth dichloride Diphenyl-p-tolylbismuth dichloride Tri-p-tolylbismuth diacetate Triphenylbismuth dibenzoate
  • a method for protecting a medium susceptible to attack by microorganisms which comprises applying to the locus to be protected an effective amount of a hismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a method for protecting a medium susceptible to attack by microorganisms which comprises applying to the locus to be protected an effective amount of (a) a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl; and (b) a compound R" NH 'A wherein R" is a hydrocarbon radical, A is an anion of a complexforming acid, c is an integer 1-4, d is an integer -3, and the sum of c and d is 4.
  • a composition comprising an inert carrier, as the active component a bactericidal amount of 0.02%% by weight of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoXide, mercaptide, and cyanide, and R is lower alkyl, and a dispersing agent.
  • composition as claimed in claim 6 wherein the bismuth compound RBiX is butylbismuth dichloride.
  • a composition comprising a carrier and, as the active component a bactericidal amount of (a) 0.1%- 10% by weight of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, car-boxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl; and (b) a compound R" ,NH -A wherein R" is a hydrocarbon radical, A is an anion of a complex-forming acid, 0 is an integer 1-4, d is an integer 0-3, and the sum of c and d is 4.
  • a composition comprising an inert carrier, as the active component 0.1%10% by weight of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phen- 10 oxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl, and a dispersing agent.
  • a microorganism resistant paint comprising a paint composition and an effective amount or" a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a microorganism resistant paint as claimed in claim 12 comprising a paint composition and an effective amount of butylbismuth dichloride.
  • a microorganism resistant plastic material comprising a plastic composition and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, 'mercaptide, and cyanide, and R is lower alkyl.
  • a microorganism resistant urethane comprising a urethane and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a microorganism resistant paper comprising paper and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a microorganism resistant cloth comprising cloth and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a bacteriostatic aerosol composition comprising a carrier, a propellant, and as the active component a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a method of treating a hospital to minimize the incidence of Staph. aureus which comprises applying to filters, room surfaces, and cloth an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
  • a composition comprising a solid inert carrier and, as the active component a germicidal amount of a hismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide and R is lower alkyl.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

matrices an a 3.
SEAHUH HQUM 3,247,050 ORGANO BISMUTH BIOCIDE John R. Leebrick, Roselle Park, N.J., assignor, by mesne assignments, to M & T Chemicals Inc., New York, N.Y., a corporation of Delaware No Drawing. Filed Oct. 11, 1962, Ser. No. 229,994 2%) Claims. (Cl. 16722) This application is a continuati-on-in-part of application Serial No. 202,377 filed June 14, 196 2.
This in ention relates to meth of preventing and/or inhibitmg the growth of i roorganisms, including bacteria and fungi and to compositions of matter utilized in these methods. The invention more particularly relates to materials which have been made resistant to attack by bacteria by the aforesaid methods.
It is an object of this invention to provide methods for inhibiting and/or preventing the growth of bacteria. It is also an object of this invention to provide methods for inhibiting and/or preventing the growth of fungi. It is another object of this invention to provide compositions which are useful in the aforesaid methods as the source of the active bactericidal and/or fungicidal compound (s). It is another object of this invention to provide bacteria and/or fungi iggistant paint- It is another object of this invention to provid e ba'cteria and/ or fungi resistant plastics and fibrous products such as textiles and paper products. It is also an object of this invention to provide sanitizer compositions having particular utility in hospital treatment.
The method of this invention for protecting a medium susceptible to attack by microorganisms comprises applying to the locus to be protected, an active amount of at least one bismuth compound having the formula R' BiX or R BiX wherein n is 1 or 2, R is an aryl group, and R is an alkyl, cycloalkyl, alkenyl, or aryl group, and X is a largely ionic bonded atom or group, and is preferably halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, or cyanide. The bismuth compounds showing particularly the unusual activity against bacteria are those having 1 or 2 atoms, or groups, joined to the bismuth atom by bonds having ionic characteristics. X may act as a bridging group or atom to provide his bismuth compounds which may be classified as substituted mono bismuth compounds and are within the scope of the present invention as defined herein. Various R and X groups may be cyclized or otherwise joined. The amount of the bismuth compound effective in a given application is dependent upon a number of factors which include the substrate -to be protected, the method of application, the degree of protection desired, the bismuth compound utilized, the environment, etc. The bismuth compounds have proven to be effective against a wide spectrum of bacteria including Gram negative and Gram positive bacteria. They are particularly effective against Gram negative bacteria. Certain of these compounds may be particularly characterized by their efieetivity against fungi.
Of the pentavalent organo bismuth compounds useful in this invention, those in which R is a monocyclic aryl, as exemplified by phenyl, monoand polychlorophenyls, tolyl, lower alkoXyphenyl-s and xylyl, are preferred. Of the monoand diorganic trivalent bismuth compounds those in which R is a monocyclic aryl are also preferred. Of these compounds in which the R group is an alkyl, those having less than 19 carbon atoms in the chain, and particularly those having from 3 to 8 carbon atoms are of most interest. These bismuth compounds in which X is a halogen or a carboxylate are preferred. The preferred compounds include: t-riphenylbismuth dihydroxide, triphenylbismuth dichloride, triphenylbismuth diacetate, triphenylbismuth disalicylate, diphenylbismuth chloride, di-
phenylbismuth acetate, diphenylbismuth salicylate, phenylbismuth dichloride, phenylibismuth diacetate, phenylbismuth disalicylate, diphenylbismuth laurylmercaptide, triphenylbismuth dibenzoate, phenylbismuth oxide, dibutylbismuth chloride, dioctylbismuth o-phenylphenate.
It is a particular feature of the invention that unexpectedly superior inhibiting properties may be obtained by the use of compounds RBiX wherein R may be an alkyl, preferably a lower alkyl containing from 3 to 8 carbon atoms, and X may be selected from the group con sisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide. Preferred X groups may be halogen, preferably chlorine. Preferably the X groups may be the same.
Typical of the compounds which may preferably be employed in practice of this invention may be Methylbismuth dichloride Methylbismuth dibromide Methylbismuth diacetate Methylbismuth oxide Methylb-ismuth sulfide Ethylbismuth dichloride Ethylbismuth dibromide Ethylbismuth diacetate Ethylbismuth oxide Ethylbismuth sulfide Propylbismuth dichloride Propylbismuth dibromide Propylbismuth diacetate Propyl'bismuth oxide Propylbism-uth sulfide Propylbismuth diphenoxide Propylbismuth dimethoxide Butylbismuth dichloride Butylbismuth dibromide Butylbismuth diacetate Butylbismuth sulfide Butyllbismuth diphenoxide Butylbismuth dimethoxide Butylbismuth dicyanide Butylbismuth dilaurylmercaptide Isobutylbismuth dichloride Isobutylbismuth dibromide Isobutylbismuth diacetate Isobutylbismuth oxide Isobutylbismuth sulfide Isobutylbismuth diphenoxide Isobutylbismuth dimethoxide Isobutylbismuth dicyanide Isobutylbismuth diphenylmercaptide n-Amylbismuth dichloride n-Amylb-ismuth dibromide n-Amylbi-smuth diacetate n-Amylbismuth oxide n-Amylbismuth sulfide n-Octylbismuth dichloride n-Octylbismuth dibromide n-Octylbism-uth diacetate n-Octylbismuth oxide n-Octylbismuth sulfide Z-ethylhexy-lbismuth dichloride Z-ethylhexylbismuth diacetate.
It is a particular feature of this invention that those compounds RBiX wherein R may be butyl are particularly effective. The preferred compound may be'butylbismuth dichloride.
It is a feature of this invention that germicidal activity of the hereinbefore noted compositions may be enhanced even further when the bismuth compound is used in combination with substituted ammonium compounds wherein R" may be a hydrocarbon radical, typically alkyl, alkenyl, aryl, alkaryl, aralkyl, cycloalkyl, etc. R" may be for example, methyl, ethyl, propyl, isopropyl, n butyl, isobutyl, t-butyl, amyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, oleyl i.e. 7-heptadecenyl, etc. phenyl, m-, or p-tolyl, naphthyl, cyclohexyl, benzyl, etc.; 0 may be an integer, 14; d may be an integer, 0-3; and the sum of c and d is 4. All of the R groups need not be the same. It will be apparent that R may include a cyclic linkage in which more than one carbon atom may be joined to the nitrogen atom, e.g., a polymethylene linkage, in which case the grouping including the nitrogen atom may be the piperidino groups. Similarly, the pyridyl or the quinolyl group may be present, etc. A may be an anion of a complex-forming compound, i.e., a compound which forms a substituted ammonium complex with an amine, as is well known, typically a halide, e. g., chloride, sulfate, sulfonate, acetate, etc.
The preferred compounds which may be employed include compounds of the formula R NH -A wherein c is 4 and d is O. The formula of these preferred quaternary ammonium compounds may be R N-A. Typical of these preferred quaternary ammonium compounds which may be employed may be those formed by reacting tertiary amines typified by dimethyl dodecylamine, diethyl dodecylamine, dimethyl decylamine, dimethyl octylamine, trimethyl amine, tributyl amine, triethyl amine, pyridine, etc. with halides, typified by alkyl halides such as methyl bromide, ethyl chloride, propyl bromide, methyl iodide, butyl bromide, butyl chloride, amyl iodide, benzyl chloride, etc.
The preferred quaternary ammonium compound which may be employed is an alkyl (e.g., lauryl) dimethyl benzyl ammonium chloride, typically that available under the trademark BTC824 of Onyx Chemical Co. Other specific illustrative compounds which may be employed may include (dodecylbenzyl)pyridinium chloride; lauryl dimethyl benzylammonium chloride; decyl dimethyl benzyla-mmoni-um chloride; etc.
The methods of this inventon may be carried out by applying the bismuth compounds (alone or preferably with the quaternary ammonium compounds) to the surface of the material to be protected and/or admixing the bismuth compounds with the material to be protected during the fabrication of said material. The bismuth compounds may be used per se, particularly when they are incorporated into the material during preparation or fabrication. Many materials, and particularly fibrous products such as textiles, maybe treated by applying the bismuth compound to the surface by dipping, padding, spraying, etc. They may be used in the form of a bactericidal and/or fungicidal composition in which the bismuth compound is the active component or one of the active components. Typically the bismuth compound may be present in amount of 0.l%% by weight of total mixture of carrier and bimuth compound. Liquid compositions may be utilized in which the bismuth compound is dissolved and/ or suspended in a solvent. Solid compositions may be utilized in which the bismuth compound is mixed with a carrier (or diluent). The carrier may be inert, such as talcs, clays, diatomaceous earth, flours, etc., or it may have activity such as that shown by the quaternary ammonium compounds. The liquid formulations of the emulsion type will often include a dispersion agent such as the anionic, cationic or nonionic surface active agents. To obtain fungicidal and/or bactericidal compositions having an extremely broad spectrum of activity, the bismuth compounds may be formulated with other active materials such as the trior-ganotins, pentachlorophenol, phenyl mercuric oleate, copper-8- quinolinolate, bisphenols, o-iphenylphenol, polybrominated salicylanilides, and metal (zinc) dialkyl dithiocarbamates. Illustrative of the compositions useful for carrying the active bismuth compound are Examples 14.
Example 1.Aerosol composition 7 Parts by weight Tributyltin oxide 0.02 Triphenylbismuth dichloride 0.02 Toluene 15.00 Fluorohydrocarbon gaseous propellant 84.96 Example 2.Liquid composition Phenylbismuth disalicylate 1 Water 8 Acetone 2 Lauryl dimethylben'zylammonium chloride (50%-in Illustrative useful compositions containing highly preferred active bismuth compounds RBiX are Examples 5-8.
Example 5 .Aeros0l composition Parts by weight Tributyltin oxide 0.02 Butylbismuth dichloride 0.0 2 Toluene 15.00 Fl'uorohydrocarbon gaseous propellant 84.96
7 Example 6A.Liquid composition Butylbismuth dichloride 1 Water 8 Acetone- 2.
Lauryl dimethylbenzylammonium chloride (50%-in water) 10 Trisodium salt of N-hydroxyethylethylenediamine triacetic acid 0.4 Toluene 3 Example 6B Another particularly desirable composition which may be employed using a quaternary ammonium compound may be:
Butylbismuth dichloride 1 Water 8 Acetone 2 Dodecyl pyridinium ammonium chloride (50%-in water) l0 Trisodium salt of N-hydroxyethylethylenediamine triacetic acid 0.4 Toluene 3 Example 7.Emulsion composition Tripropyltin acetate 0.02 Propylbismuth diacetate 0.02 Toluene 15.00 Non-ionic surfactants 20 Water 64.96
Example 8.Solid composition Diatomaceous earth Octylbismuth diphenoxide 2O Plastics, textiles, paper products and paints are illustrative of the materials which are rendered resistant to attack when treated by applying the bismuth compound to the surface and/or by incorporation therein. The plastics in massive and in fiber form include urethanes, halogenated polymers and copolymers such as polyvinyl chloride and polyvinyl chloride-acetate copolymers, polyesters, polyamides, polyolefins, and natural and synthetic rubbers. Natural fiber products that may be protected include paper products, hemp and felts. Paints may be rotected in the can and also after application. Typial paints include interior and exterior vinyl latex and a kyd paints, the older non-synthetic flat natural paints, the acrylics, and the vinyls, and nti-fouligg paints such as the acrylic and the vinyl vali ks thereofi 'flie bismuth compounds are also useful in preserving adhesives; in secondary oil recovery processes; in paper mill slime control processes; and in methods of contrplling Staphylococcus aureus in hospitals. They may be a useful and active component of detergent sanitizers and may be used for this and other purposes in the form of an aerosol material. They may also be used to protect plants and other growth against attack by microorganisms. Illustrative of resistant paint compositions are Examples 914.
Example 9.-Acrylic anti-fouling paint Parts by weight Titanium dioxide 160 Aluminum silicate 48 Talc 12 Methyl methacrylate-butyl methacrylate copolymer (40% in thinner) 433 Mineral spirits 148 Dibutylbismuth acetate 50 Example 10.Vinyl anti-fouling paint Titanium dioxide 150 Bentonite 14 Tricresyl phosphite 1O Vmfidewinyl acetate copolymer resin 102 Toluene 223 Methyl isobutyl ketone 295 Triphenylbismuth dichloride 35 Phenylbismuth dichloride 35 Example 1 1 .F lat interior paint Titanium-calcium pigment 625 Calcium carbonate 100 Magnesium silicate 25 Ester gum solution (60% non-volatile in mineral spirits) 30 Bodied linseed oil 200 Mineral spirits 167 Cobalt naphthenate (6% Co) 1 Lead naphthenate (24% Ph) 2 Phenylbismuth dila-urylmercaptide 6 Example 12.Acrylic anti-fouling paint Titanium dioxide 160 Aluminum silicate 48 Talc 12 Methyl methacrylate-butyl methacrylate copolymer (40% in thinner) 433 Mineral spirits 148 Butylbismuth dichloride 50 Example 13.-Vz'nyl anti-fouling paint Titanium dioxide 150 Bentonite 14 Tricresyl phosphite Vinyl chloride vinyl acetate copolymer resin 102 Toluene 223 Methyl isobutyl ketone 295 Triphenylbismuth dichloride 35 35 Butylbismuth diacet-ate Example 14.-Flat interior paint Titanium-calcium pigment 625 Calcium carbonate Magnesium silicate 25 Ester gum solution (60% non-volatile in mineral spirits) 3 0 Bodied linseed oil 200 Mineral spirits 167 Cobalt naphthenate (6% Co) 1 Lead naphthenate (24% Pb) 2 Octylbismuth d-ilaurylmercaptide 6 In each of Examples 15-21, tests are reported showing the activity of the bismuth compounds against noted microorganisms, using the potent and toxic phenylmercury acetate as a standard (Example 22). In each example, a series of tests were carried out when the compound was placed within a nutrient broth in amount of 500, 250, 125, 63, 31, 16, 8, 4 and 2 parts per million (p.p.m.). Each broth was inoculated with the test organism and the broth incubated at 37 C. for two days. The organism growth was visually observed. The broth containing the minimum concentration which caused complete inhibition of the growth of the organism is tabulated.
Pseudomonas aeruginosa, p.p.m.
Aarobacter aerogenes, p.p.m.
Staph. aareas, ppm.
Example Compound Triphenylbis- 8 31 31 muth dichloride.
Triphenylbis- 16 muth sulfide (crude).
Triphenylbis- 1 8 16 muth diacetate.
Triphenylbis- 1 31 63 muth dimethacrylate.
Diphenylbismuth chloride.
Phenylbismuth dichloride.
Butylbismuth dichloride.
Phenylmercury acetate.
In each of Examples 23-26, tests are reported showing the activity of the bismuth compounds against the noted microorganisms. In each example the compound was tested using the Agar Diffusion Test, as follows: The test compounds were diluted in acetone to obtain the following stock solutions-5, 2.5, 1.25, 0.63, 0.31%. Filter paper discs, 10 mm. in diameter, were dipped in the test solution and the solvent then allowed to evaporate. AATCC Bacteriostasis agar, held at 45 C., was inoculated to 1% with an 18-24 hour nutrient broth cultureof Staph. aareus or E. coli. The seeded agar was distributed at the rate of 15 ml./ 10 cm. Petri dish and allowed to solidify. The treated filter paper discs were placed on the seeded agar. Then the plates were incubated at 37 C. for 48 hours. Inhibition was determined by a zone or halo adjacent to the treated disc.
EXAMPLE 23 [Zones of inhibition in mm Percent solution S. aureus, mm.
E. coli, mm.
Triphenylbismuth dichloride In each of Examples 27-31, a urethane foam containing one of the bismuth compounds was tested against Staph. aureus in the Agar Diffusion Test. The foam composition and results follow:
Parts by Zone of Example weight inhibition,
Polyglycol ether 100 Polysiloxane. 1 Stannous soap 0. 45 N-ethyhnorpholine 0. 3 Triethylene diamine 0. 1 Water 2. 9 Tolylene diisoeyanate 38.6 27. Triphenylbismuth dichl de- 0.25 28 Diphenylbismuth chloride 0.1 29 do 0. 30 Phenylbisrnnth dichloride..- 0. 1 31.----- .s d0 0.05
In each of Examples 32-33, a flexible polyvinyl chlo ride plastic containing the specified amount of triphenylbismuth dichloride was tested against Staph. aureus in the Agar Diffusion Test.
Parts by Example weight Stearic acid 0 Dioctylphthalate. 0
Polyvinyl chloride resin 0 (Med. molecular weight).
Barium-cadmium salt 2 stabilizer. 32 Triphenylbismuth dichloride- 83 do In each of Examples 34 and 35, polyvinyl chloride samples with the same formulation as in Examples 32 and 33, were prepared containing 1 part and 0.5 part of triphenylbismuth dichloride respectively. They were tested for activity against fungi as follows: 1% squares of the plastic, including a plastic control containing none of the bismuth compounds, were placed in Petri dishes containing 30 ml. of a mineral salt Agar. The plastic squares were inoculated with 0.5 ml. of a mixed spore suspension of Aspergillus niger, Aspergillus flavus, Trichoderma sp., and Penicillium piscarium. The inoculated samples were incubated at 30 C. for 14 days and then visually (and microscopically) examined for fungal growth. There was no growth on the samples prepared with the noted amounts of the bismuth compound. The plastic control exhibited moderate growth.
The following compounds are given as further examples of bismuth compounds employed in the compositions and methods of the invention and it will be understood that such compounds (as well as the other compounds herein set forthlmay be used in place of the various compounds specifically shown in the foregoing examples.
Triphenylbismuth sulfide Triphenylbismuth diacetate Triphenylbismuth dimethacrylate Triphenylbismuth oxide Triphenylbismuth difluoride Triphenylbismuth dibromide Triphenylbismu-th dihydroxide Triphenylbismuth (hydroxy) chloride Triphen'ylbismuth (chloro acetate Triphenylbismuth dicyanide Trianisylbisrnuth dichloride Tribromophenylbismuth dichloride Ti chlorophenylbismuth dichloride Tri-a-naphthylbismuth dichloride Trinitrophenylbismuth dichloride Tritolylbismuth dichloride Trixylylbismuth dibromide T ribiphenylbismuth dichloride Diphenyl-p-tolylbismuth dichloride Tri-p-tolylbismuth diacetate Triphenylbismuth dibenzoate Triphenylbismuth mercaptopropionate Tri-p-tolylbismuth dibenzoate Tri-o-tolylbismuth disalicylate C H Triphenylbismuth disaiicyla-te Triphenylbismuth di-p-hydroxybenzoate Triphenylbismuth di-p-aminobenzoate Triphenylbismuth di-p-aminobenzoate -2CH COCH Triphenylbismuth dichloroacetate Trip'henylbismuth ditartrate Triphcnylbismuth diphenoxide Triphenylbismuth dilaurylmercaptide Triphenylbismuth dibutoxide Tritolylbismuth di-o-phenylphenate Tritolylbismuth S,S-bis isooctylmercaptoacetate Tritolylbismuth diethoxide Octylbismuth sulfide Butylbismuth sulfide Dibutylbismuth acetate Butylbismuth dibenzoate Dibutylbismuth methacrylate Butyl-bismuth diacrylate Dibutylbismuth phenate Butylbismuth mercaptopropionate Dibutylbismuth laurylmercaptide Dibutylbismuth isooctylmercaptoacetate Butylbismuth bis-o-phenylphenate Diphenylbismuth chloride Di-p-chlorophenylbismuth chloride Di-p-chlorophenylbismuth bromide Di-p-chlorophenylbismuth iodide Diphenylbismuth chloride Diphenylbismuth iodide Diphenylbismuth cyanide Diphenylbismuth hydroxide Diphenylbismuth thiocyanate Di-p-tolylbismuth chloride Dicyclohexylbismuth chloride Cyclopentylbismuth diacetate Vinylphenylbismuth dichloride Phenylbismuth dibromide p-Chlorophenylbismuth dibromide p-Tolylbismuth dichloride Diethylbismuth bromide Dibutenylbismuth chloride Diallylbismuth acetate Dimethylbismuth chloride Vinylbismuth dichloride Dimethylbismuth hydroxide Methylbismuth dichloride Methylbismuth oxide Butylbismuth sulfide Butyl-bismuth oxide Butylbismuth dichloride Ethylbismuth dichloride Butylbismuth dibromide Dibutylbismuth cyanide Those skilled in the art will appreciate that other organobismuth compounds as defined herein can be employed in the compositions and methods of the invention to protect a wide variety of materials and living organisms that are susceptible to attack by microorganisms.
As is well known to those skilled in the art, the compounds which may be used in practice of this invention may be synthesized by well known techniques and are readily obtainable. As many embodiments of this invention may be made without departing from the spirit and scope thereof, it is to be understood that the invention includes all such modifications as come within the scope of the appended claims.
I claim:
1. A method for protecting a medium susceptible to attack by microorganisms which comprises applying to the locus to be protected an effective amount of a hismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
2. A method for protecting a medium susceptible to attack by microorganisms as claimed in claim 1 wherein R is butyl.
3. A method for protecting a medium susceptible to attack by microorganisms as claimed in claim 1 wherein X is chloride.
4. A method for protecting a medium susceptible to attack by microorganisms as claimed in claim 1 wherein the bismuth compound RBiX is butylbismuth dichloride.
5. A method for protecting a medium susceptible to attack by microorganisms which comprises applying to the locus to be protected an effective amount of (a) a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl; and (b) a compound R" NH 'A wherein R" is a hydrocarbon radical, A is an anion of a complexforming acid, c is an integer 1-4, d is an integer -3, and the sum of c and d is 4.
6. A composition comprising an inert carrier, as the active component a bactericidal amount of 0.02%% by weight of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoXide, mercaptide, and cyanide, and R is lower alkyl, and a dispersing agent.
7. A composition as claimed in claim 6 wherein R is butyl.
8. A composition as claimed in claim 6 wherein X is chloride.
9. A composition as claimed in claim 6 wherein the bismuth compound RBiX is butylbismuth dichloride.
10. A composition comprising a carrier and, as the active component a bactericidal amount of (a) 0.1%- 10% by weight of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, car-boxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl; and (b) a compound R" ,NH -A wherein R" is a hydrocarbon radical, A is an anion of a complex-forming acid, 0 is an integer 1-4, d is an integer 0-3, and the sum of c and d is 4.
11. A composition comprising an inert carrier, as the active component 0.1%10% by weight of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phen- 10 oxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl, and a dispersing agent.
12. A microorganism resistant paint comprising a paint composition and an effective amount or" a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
13. A microorganism resistant paint as claimed in claim 12 comprising a paint composition and an effective amount of butylbismuth dichloride. (1
14. A microorganism resistant plastic material comprising a plastic composition and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, 'mercaptide, and cyanide, and R is lower alkyl.
15. A microorganism resistant urethane comprising a urethane and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
16. A microorganism resistant paper comprising paper and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
17. A microorganism resistant cloth comprising cloth and an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
18. A bacteriostatic aerosol composition comprising a carrier, a propellant, and as the active component a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
19. A method of treating a hospital to minimize the incidence of Staph. aureus which comprises applying to filters, room surfaces, and cloth an effective amount of a bismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide, and R is lower alkyl.
20. A composition comprising a solid inert carrier and, as the active component a germicidal amount of a hismuth compound RBiX wherein X is selected from the group consisting of halogen, oxygen, sulfur, carboxylate, phenoxide, alkoxide, mercaptide, and cyanide and R is lower alkyl.
References Cited by the Examiner UNITED STATES PATENTS 2,113,567 4/1938 Andersen 167-30 2,114,012 4/1938 Andersen 167-30 2,191,922 2/1940 Bruson 16730 2,284,126 5/1942 Bruson 16768 2,423,262 7/1947 Sowa 16730 2,555,114 5/1951 Bywater et al 260-433 3,058,877 10/1962 Musser 16738.5 X
OTHER REFERENCES Coates, Organo-Metallic Compounds, John Wiley & Sons, Inc., New York, 1956, pages 227-232.
Gilman et al., Chem. Rev., vol. 30, 1942, pages 301- 303.
JULIAN S. LEVITT, Primary Examiner.
GEORGE A. MENTIS, Assistant Examiner.

Claims (1)

1. A METHOD FOR PROTECTING A MEDIUM SUSCEPTIBLE TO ATTACK BY MICROORGANISMS WHICH COMPRISES APPLYING TO THE LOCUS TO BE PROTECTED AN EFFECTIVE AMOUNT OF A BISMUTH COMPOUND RBIX2 WHEREIN X IS SELECTED FROM THE GROUP CONSISTING OF HALOGEN, OXYGEN, SULFUR, CARBOXYLATE, PHENOXIDE, ALKOXIDE, MERCAPTIDE, AND CYANIDE, AND R IS LOWER ALKYL.
US229994A 1962-10-11 1962-10-11 Organo bismuth biocide Expired - Lifetime US3247050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US229994A US3247050A (en) 1962-10-11 1962-10-11 Organo bismuth biocide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US229994A US3247050A (en) 1962-10-11 1962-10-11 Organo bismuth biocide

Publications (1)

Publication Number Publication Date
US3247050A true US3247050A (en) 1966-04-19

Family

ID=22863540

Family Applications (1)

Application Number Title Priority Date Filing Date
US229994A Expired - Lifetime US3247050A (en) 1962-10-11 1962-10-11 Organo bismuth biocide

Country Status (1)

Country Link
US (1) US3247050A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504005A (en) * 1966-01-03 1970-03-31 Monsanto Co Organoantimony and -bismuth compounds
US3530158A (en) * 1966-11-25 1970-09-22 M & T Chemicals Inc Organo antimony mercaptides and the preparation thereof
US3895013A (en) * 1971-10-20 1975-07-15 Pechiney Ugine Kuhlmann Hydroxyquinoline derivative
US4033915A (en) * 1974-08-02 1977-07-05 Montedison Fibre S.P.A. Flame-extinguishing polyolefin compositions
US4560702A (en) * 1982-06-23 1985-12-24 Norddeutsche Affinerie Ag Pesticidal C6 -C25 -mercapto-organotin compounds
US5021598A (en) * 1989-07-24 1991-06-04 Mooney Chemicals, Inc. Process for making bismuth carboxylates
US5817289A (en) * 1995-01-26 1998-10-06 Nycomed Imaging As Non-cluster type bismuth compounds
US6117412A (en) * 1995-01-26 2000-09-12 Nycomed Imaging As Non-cluster type bismuth compounds

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113567A (en) * 1936-09-28 1938-04-12 Lever Brothers Ltd Aryl mercury oxygenated compounds of arsenic, antimony, or bismuth
US2114012A (en) * 1935-06-12 1938-04-12 Lever Brothers Ltd Aromatic mercury alcoholates of salts of hydroxy carboxylic acids
US2191922A (en) * 1936-11-10 1940-02-27 Rohm & Haas Quaternary methallyl ammonium halides
US2284126A (en) * 1936-02-26 1942-05-26 Resinous Prod & Chemical Co Bismuth salts of oxy acids
US2423262A (en) * 1943-08-28 1947-07-01 Frank J Sowa Compounds having the formula
US2555114A (en) * 1944-11-17 1951-05-29 Ward Blenkinsop & Co Ltd Manufacture of derivatives of disubstituted methane compounds
US3058877A (en) * 1960-09-09 1962-10-16 Chicopee Mfg Corp Germicidal, bactericidal and fungicidal compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2114012A (en) * 1935-06-12 1938-04-12 Lever Brothers Ltd Aromatic mercury alcoholates of salts of hydroxy carboxylic acids
US2284126A (en) * 1936-02-26 1942-05-26 Resinous Prod & Chemical Co Bismuth salts of oxy acids
US2113567A (en) * 1936-09-28 1938-04-12 Lever Brothers Ltd Aryl mercury oxygenated compounds of arsenic, antimony, or bismuth
US2191922A (en) * 1936-11-10 1940-02-27 Rohm & Haas Quaternary methallyl ammonium halides
US2423262A (en) * 1943-08-28 1947-07-01 Frank J Sowa Compounds having the formula
US2555114A (en) * 1944-11-17 1951-05-29 Ward Blenkinsop & Co Ltd Manufacture of derivatives of disubstituted methane compounds
US3058877A (en) * 1960-09-09 1962-10-16 Chicopee Mfg Corp Germicidal, bactericidal and fungicidal compositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504005A (en) * 1966-01-03 1970-03-31 Monsanto Co Organoantimony and -bismuth compounds
US3530158A (en) * 1966-11-25 1970-09-22 M & T Chemicals Inc Organo antimony mercaptides and the preparation thereof
US3895013A (en) * 1971-10-20 1975-07-15 Pechiney Ugine Kuhlmann Hydroxyquinoline derivative
US4033915A (en) * 1974-08-02 1977-07-05 Montedison Fibre S.P.A. Flame-extinguishing polyolefin compositions
US4560702A (en) * 1982-06-23 1985-12-24 Norddeutsche Affinerie Ag Pesticidal C6 -C25 -mercapto-organotin compounds
US5021598A (en) * 1989-07-24 1991-06-04 Mooney Chemicals, Inc. Process for making bismuth carboxylates
US5817289A (en) * 1995-01-26 1998-10-06 Nycomed Imaging As Non-cluster type bismuth compounds
US6117412A (en) * 1995-01-26 2000-09-12 Nycomed Imaging As Non-cluster type bismuth compounds
US6303101B1 (en) 1995-01-26 2001-10-16 Nycomed Imaging As Bismuth compounds

Similar Documents

Publication Publication Date Title
US3239411A (en) Organo bismuth biocide
US4394378A (en) 3-(Trimethoxysilyl) propyldidecylmethyl ammonium salts and method of inhibiting growth of microorganisms therewith
EP0382562B1 (en) Polymeric quaternary ammonium trihalides useful as microbicides, sanitizers and disinfectants
DE2226823A1 (en) BACTERICIDE AND FUNGICIDE AGENTS
US3247050A (en) Organo bismuth biocide
US3247051A (en) Method of protection against growth of microorganisms with organo-bismuth compound
GB2138292A (en) Haloalkynes and their use as fungicides
US3530158A (en) Organo antimony mercaptides and the preparation thereof
US3917476A (en) Diethyl alpha phosphonate as an (antimicrobial agent) algaecide
EP0108853B1 (en) 3-(trimethoxysilyl)propyldidecylmethyl ammonium salts and method of inhibiting growth of microorganisms therewith
CA1056726A (en) Method for the control of micro-organisms
US3287210A (en) Antimony compounds and compositions and method for protecting against microorganisms
JPH06256689A (en) Fungiproof and waterproof coating composition
US2812332A (en) Quaternary ammonium xanthates
US3885036A (en) Antimicrobial thienyliodonium salt methods and compositions
EP0549006A2 (en) Ammonium and phosphonium salts and their use as biocides
US3037039A (en) Organo-tin compounds of organic amines
FI92641B (en) Control of microorganisms in aqueous systems by 1-hydroxymethylpyrazoles
US3558783A (en) Method of inhibiting the growth of bacteria and fungi with organoantimony compounds
US3256143A (en) Controlling gram negative bacteria with n-propyl ten halides and oxides
US3852436A (en) Biocidal compositions and their method of preparation employing a grapefruit derivative
US4578489A (en) Ammonium stannates-(IV)
IL23400A (en) Organoantimony compounds,method and compositions for protection against microorganisms and articles thus protected
US3268395A (en) Method of combatting acarids
US3579553A (en) Phenylmercury compounds