US3246654A - Tobacco smoke, filters and cigarettes - Google Patents

Tobacco smoke, filters and cigarettes Download PDF

Info

Publication number
US3246654A
US3246654A US244573A US24457362A US3246654A US 3246654 A US3246654 A US 3246654A US 244573 A US244573 A US 244573A US 24457362 A US24457362 A US 24457362A US 3246654 A US3246654 A US 3246654A
Authority
US
United States
Prior art keywords
nickel
filters
ligand
filter
carbonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US244573A
Inventor
Eldon E Stahly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURKE OLIVER W JUN
Original Assignee
BURKE OLIVER W JUN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BURKE OLIVER W JUN filed Critical BURKE OLIVER W JUN
Priority to US244573A priority Critical patent/US3246654A/en
Priority to US543051A priority patent/US3319635A/en
Application granted granted Critical
Publication of US3246654A publication Critical patent/US3246654A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials

Definitions

  • metal carbonyl is a compound of metal and carbon monoxide, but in a broader sense the term metal carbonyl also includes the analogous metal nitrosyl carbonyls and the metal hydrocarbonyls, which are similar compounds in which one of the carbonyl groups has been replaced by a nitrosyl or a hydrocarbonyl group, and except where the context indicates to the contrary, the term is employed in said broader sense herein.
  • Objects of the invention are to provide an improved cigarette having a substantially reduced content of metal carbonyls in its smoke output as compared to conventional plain or filter-tipped cigarettes; to provide a method of treating tobacco smoke by removing metal carbonyls therefrom by converting the same to non-volatile materials; to provide an improved cigarette smoke from which metal carbonyls are substantially eliminated; to provide an improved method and cigarette, or cigarette, cigar and pipe filter, in which volatile metal carbonyls present in tobacco smoke in small amounts are converted to non-volatile materials in a manner which efiectively prevents their remaining in the tobacco smoke; and to provide an improved method and cigarette in which a ligand material is reacted with volatile metal compounds in the tobacco smoke and converts them into non-volatile compounds.
  • the nickel delivered in the smoke drawn from the butt ends of the cigarettes amounted to up to 8 micrograms nickel per pack of 20, or 23.5 micrograms nickel carbonyl per pack of 20 of unfiltered cigarettes; and up to 12 micrograms nickel or 35 micrograms of nickel carbonyl per pack of filtered cigarettes.
  • cumulative exposure to these quantities of nickel was suggested by the Drs. Sunderman to be a possible cause of the so-called smokers pulmonary cancer.
  • a person who smokes a pack of cigarettes per day over a period of a year subjects himself to about one and 3,246,654 Patented Apr. 19, 1966 one-half times the amount of nickel required to induce pulmonary cancer in rats, which are considered to be notably resistant to pulmonary cancer.
  • such content of metal carbonyls may be reduced in, or practically eliminated from, the tobacco smoke, and this invention thus can serve as a safeguard to smokers against excessive exposure to metal carbonyls.
  • My new process for the treatment of tobacco smoke is based on the removal of metal carbonyls from the tobacco smoke by the formation of non-volatile'complexes by combination of the metal carbonyls with a' ligand, which for the purposes of this invention, is an organic complexing agent which forms complexes of low volatility with transition metal carbonyl compounds in the presence of other constituents of tobacco smoke, more particularly in the presence of moist carbon dioxide.
  • a' ligand which for the purposes of this invention, is an organic complexing agent which forms complexes of low volatility with transition metal carbonyl compounds in the presence of other constituents of tobacco smoke, more particularly in the presence of moist carbon dioxide.
  • the complexes of the metal carbonyl with ligand organo-phosphorus compounds are materials of low volatility.
  • these ligand organo-phosphorus compounds form relatively stable complexes with the transition metals in the presence of moist carbon dioxide.
  • the practice of my invention does not depend on the formation of exact empirical complexes since mixtures of such complexes may
  • volatile metal compounds in the cigarette smoke st-ituent groups on the phosphorus can be nitrogen-containing radicals as hereinafter set forth.
  • the complexes are formed by passing the smoke containing the metal carbonyls into contact with one or more of said ligands or over or through a filter material acting as a carrier body for the ligand material, and preferably comprising fibrous material, for example, cellulose acetate tow, prepared with the ligand therein or wholly or partly coated with the ligand or with material carrying the same.
  • one or more of the ligands or complex-forming compounds are components with or without a solvent or plasticizer are preferably dispersed on adsorbents; for example, the liquid or solid complexforming components may be vaporized onto said adsorbent material, or a solution of such ligands may be applied to said adsorbent material such as carbon (especially activated carbon), silica, pumice, vermiculite, clay, asbestos, polyesters, polystyrene, and cellulosic materials, e.g., cotton, cellulose, cellulose acetate, cellulose acetatebutyrate, cellulose propionate, tobacco and other absorbing materials having a high surface area per unit weight or per unit volume and combinations of these adsorbents.
  • carbon especially activated carbon
  • silica pumice
  • vermiculite clay
  • asbestos polyesters
  • polystyrene polystyrene
  • cellulosic materials e.g., cotton, cellulose, cellulose a
  • the smoke-permeable bases or carriers may embody various adhesive, adsorbent and surface area augmenting materials, and may be of any known or suitable form.
  • the ligands employed in the present invention may be incorporated in filter bodies of fibrous material during the preparation of such bodies as otherwise disclosed, for example, in US. patents as follows:
  • valence of the metal atom M i.e., iron, nickel or cobalt, is considered to be zero.
  • the metal M is again in the zero valent state.
  • the ligands employed herein form non-volatile complexes with other metal carbonyls, such as:
  • carbonyls such as Fe (CO) and Fe (CO)
  • Heating above 100 C. aids in the formation of the nonvolatile complexes, particularly with iron carbonyls.
  • the heat of the tobacco smoke which contributes to the formation of the volatile iron carbonyl thus also aids in the rate of formation of the complexes in the cigarette filters of the present invention.
  • Vapor pressures observed for representative metal carbonyls and indicative of the volatility thereof are:
  • the alkyl groups preferred as R substituents in the organo-phosphorus ligand are the alkyls containing not more than 18 carbon atoms (i.e., methyl to stearyl). Both primary and secondary alkyls, straight chain and branched chain alkyl groups may serve as R in the ligand.
  • R alkyl groups preferred as R substituents in the organo-phosphorus ligand.
  • Alkenyl groups preferred as R in the ligands are vinyl, alkyl, butenyl, etc., up to alkenyl groups containing not more than 18 carbon atoms.
  • Alkynyl R groups of the alkynyl ligands are exemplified by propargyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, etc., up to those containing preferably not more than 18 carbon atoms.
  • Cycloalklyl R groups of the cycloalkyl ligands are exemplified by cyclo-C -C -C -C cyclododecyl and the like cycloalkyls, ac-tetrahydro-naphthyl, decahydronaphthyl, and mono polyalkyl cycloalkyls, and contain preferably not more than 18 carbon atoms.
  • R in the ligand is terpenyl it can be menthyl, carvornenthyl, alpha, beta, and gamma terpenyl, and the like available ten-carbon radicals, including hydrocarbonsubstituted terpenyl radicals containing preferably not more than 18 carbon atoms.
  • R in the ligand is an aryl group it preferably contains not more than 18 carbon atoms and may be phenyl, naphthyl, ar-tetra-hydronaphthyl, alkoxy or alkyl phenyl, alkoxy or alkyl naphthyl, or alkoxy or alkyl substituted ar-tetra-hydronaphthyl.
  • R in (RO )P are effective ligands in forming stable complexes with metal carbonyls.
  • mono and polysubstituted aryls are useful as R in the ligand or complexing agent.
  • Tri-(nonylphenyl) phosphites were found to be very effective as a ligand or complexing agents for the metal carbonyls.
  • R may be an arylene compound, as in the triphenylene diphosphite ligand.
  • aralkyl substituents R in the ligand which are useful in the present invention may be unsubstituted or hydrocarbon substituted and range from phenylmethyl to phenyldecyl, and from mono and dimethyl-benzyl to mono and dioctylbenzyl.
  • Aralkyl and arylene groups containing not more than 18 carbon atoms are preferred.
  • the nitrogen-containing R groups useful in the ligand include the morpholinyl, pyridyl, pyrrolidinyl, piperazinyl, isoquinolyl and quinolinyl groups, both unsubstituted and mono and dialkyl substituted to have a total carbon content preferably not more than 18 carbon atoms.
  • trimorpholyl phosphorus, tri-(phenylrnorpholinyl) phosphorus, tri-(pyridyl) phosphorus, and tri-(dimethyl-quinolyl) phosphorus are active ligands useful in the present invention.
  • organo-phosphorus compound ligands represented by RRRP; RR'R"PO; (R"()) (R) (RO)]P; ROPO and (R0) (RO) (RO)PO; RR(RO)PO; R(R'O)(RO)P and RRP-P RR' are effective in the present invention wherein R has the same significance as hereinbefore defined, and R, R and R may be the same or different groups selected from the group of radicals listed hereinbefore for R.
  • didecyl phenyl phosphite, diphenyl decyl phosphite, decyl phenyl cresyl phosphite, triphenyl phosphite and tridecyl phosphite all serve as the ligand or complexing agents.
  • the three radicals R, R, and R" may be the same or different for the ligands defined as P or PO compounds.
  • R0, RO and R"O may be the same or difierent.
  • ligand tetra-R-substituted diphosphines and also solid polyphosphite ligands as exemplified by tetra-diphenylphosphitopentaerythritol and diphenylpentaerythritol-diphosphite (commercially available as resin stabilizers under the trade marks Pentite and Dipentite, respectively). Because of polyfunctional grouping these polyphosphorus ligands do not conform to the general formula of the hereinbefore listed ligands or complexing agents for metal carbonyls. The formulae for these ligands are:
  • Analogous polyphosphites of value in the present inven tion are the phosphite ligand derivatives of ethylene glycol, diethylene glycol, triethylene glycol, higher polyethylene glycols, glycerol, erythritol, xylitol, mannitol,
  • D is a polyvalent organic polyol moiety
  • R is a hydrocarbon radical as hereinbefore defined
  • s 2 to 1000, or more
  • x 1 or 2.
  • the ligand materials preferred are low in melting point or are softenable with a solvent or plasticizer. Any radical of the R group above can serve in place of the phenyl of the above diagrammed formulae.
  • complexes which are formed from metal carbonyls by these polyfunctional ligands include mono, di, tri and tetra nickel compounds for the Pentite, mono and di-nickel compounds With the Dipentite and one nickel per phosphorus atom of the carbohydrate derivative; for example:
  • ligands may be prepared in which thio atoms are substituted for oxygen atoms of the phosphites, phosphates, phosphine oxides, phosphonates, etc. to form other ligands.
  • Halogen e.g., in tri(o-, m-, and p-halophenyl) phosphate Hydroxyl, e.g., tri(hydroxyphenyl)phosphite (o, m, and p) Carboxyl, e.g., (carboxyphenyl)-diphenyl phosphite Carbethoxyl, e.g., tri(o-carbethoxyphenyl)phosphite Amine, e.g., tri(dimethylaminophenyl)phosphite Cyano, e.g., in tri(Z-cyanoethyl) phosphine Cyanato, e.g., in tri(m-cyanato-phenyl) phosphine Thiocyano, e.g., in tri(o-thiocyanophenyl) phosphate Sulfenate, e.g., in (SOH-C H PO Alkoxy,
  • organo-nitrogenphosphorus ligands in my invention are the phosphoruscontaining lipids derived from plant or animal sources.
  • phospholipid or phosphatide designate the natural and synthetic phospholipids and phosphatides, derivatives thereof, and mixtures of the foregoing, including the hydrogenated and partially hydrogenated products thereof, which yield on bydrolysis phosphoric acid, an alcohol, fatty acid compounds, and a nitrogenous base.
  • phosphatides serve as effective ligands for removal of iron, cobalt and nickel carbonyls from tobacco smoke, e.g.
  • the lecithins are alcohol-soluble and are further defined by the Formulae 9 and 10 wherein glycerin is diesterified with saturated and unsaturated acids, R and R representing fatty acid, i.e. acyl groups, and monoesterified with phosphoric acid which in turn is esterified with choline.
  • the lecithins are choline esters of di-fatty acid esters of glycerophosphoric acid.
  • G galactose
  • R and R are as above defined
  • I hexavalent inositol radical (C H O and x is 1 or 2.
  • Each of the ligand types exemplified by (9) to (17) inclusive and the hydrogenated and partially hydrogenated products thereof may be broadly defined as an alkanolamine ester of a phosphoric acid ester of a polyhydroxy alkane or cyclo alkane derivative.
  • the polyhydroxy compound is glycerin, in (15) to (16) it is inositol and in (17) it is Z-amino-propanediol- 1,3.
  • the lecithins and cephalins have fatty acyl substituents replacing two of the hydroxyls of glycerin, the inositides have a glactosidyl substituent and 2 acyl substituents for three of the inositol hydrogens, a tartaryl substituent for a fourth hydrogen, the tartaryl group being esterified with serine or ethanolamine, and the remaining 2 hydroxyls of inositol being esterified with one or two phosphoric acid groups.
  • Synthetic compounds of the phosphatide type having ligand properties can be prepared for use in accordance with the present invention.
  • Sphingomyelln Hydrogenated and partially hydrogenated products obtained from phospholipids likewise are effective ligands for removal of metal carbonyls from tobacco smoke.
  • metal carbonyls were prepared, or obtained commercially, and put into a gas stream from which they were subsequently removed by the ligand materials employed in the present invention.
  • Nickel tetracarbonyl was generated by passing carbon monoxide of 98% purity from a cylinder over 3.75 grams Raney nickel (2.625 g. Ni on a carrier) which had been pre-dried by heating to above 200 C. in an atmosphere of carbon monoxide. (Girdler G-49A Raney nickel was used.) The gas containing the nickel tetracarbonyl was passed through a fritted glass scrubbing equipment. The outlet tube from the scrubber was run to the base of a Meeker burner wherein unabsorbed nickel carbonyl was mixed with the burner gases and was combusted along therewith.
  • Example 1 the nickel carbonyl was passed through the empty fritted-glass scrubber, i.e., containing no scrubbing solution.
  • Two simple tests were used to demonstrate the presence of the nickel tetracarbonyl in the gas: (1) the flame of the burner displayed a grey luminosity when the nickel carbonyl was present in an amount as low as 1 p.p.m. and (2) pin-point heating of the glass outlet from the generator deposited a spot nickel deposit or mirror on the wall of the glass tube. As little as 10" mole of nickel tetracarbonyl gave an observable metallic nickel deposit in this test, and thus was used as a sensitive test. Also, the weight of a mirror formed in a small glass tube served to establish the metal carbonyl content of a measured quantity of gas.
  • Example 2 When the gas at 200 cc./minute was shown to contain at least 100 p.p.m. of nickel tetracarbonyl (by mirror test) Example 2 was carried out. The flame of the burner showed a strong grey color in this range of concentration of nickel tetracarbonyl. This test demonstrated that the scrubbing apparatus itself did not decompose the nickel carbonyl, and did not remove the nickel carbonyl from the gas.
  • Example 2 (Control) 100 ml. of benzene was placed in the scrubber of Example 1 and the gas rate from the nickel tetracarbonyl generator was held at 200 cc./minute. Appreciable removal of nickel tetracarbonyl was not observed either by mirror test or change in intensity of the grey color after about 10 minutes of passing the gas through the scrubber. This example demonstrated that a solvent alone in the absence of a ligand does not remove the nickel carbonyls from the gas stream to an effective degree because of the appreciable partial pressure of the nickel carbonyl in the solution.
  • Example 3 The benzene of Example 2 was replaced with 100 ml. of a 50 vol. percent solution of triphenyl phosphite in benzene. After charging this solution to the gas scrubber the grey nickel color completely disappeared from the flame, and the mirror test was negative for nickel. Upon prolonged standing, white crystals (the stable complex) gradually deposited on the glass wall at the liquid level.
  • This example in comparison with Example 2 demonstrates the efficiency of nickel carbonyl removal from gas by contacting with an aromatic solution of the triphenylphosphite ligand.
  • An adsorbent was prepared by dissolving 1.263 g. of Pentite [(C H )O POCH C in a mixture of 50 ml. pentane and 10 ml. benzene, shaking with 21 g. decolorizing carbon (No. 1551 from General Chemical Division of Allied Chemical Corp.) and warming to 100 C. to evaporate the solvent.
  • the resultant ligand in a gas permeable carbon body '10 was placed in a 50 ml. Erlenmeyer flask which was installed in the line succeeding the nickel tetracarbonyl generator of Example 1 so that the gas passed from the bottom through the carbon-Pentite adsorbate. After an hour during which time about 6 liters of gaseous carbon monoxide containing about 1% Ni(CO) vapors (10,000 p.p.m.) had been passed through the carbon, the carbon was sampled and analyzed for nickel by are spectrophotometry. The sample showed 0.69 wt. percent nickel in comparison to nil (less than 0.001% not detected) for a carbon-Pentite sample prior to use in the test. The amount of Ni(CO) adsorbed was calculated to be approximately 2 moles per mole of Pentite on the carbon, corresponding to formation of indicating that the ligand was utilized to 50% of its theoretical capacity in this test.
  • Example 5 The fritted glass scrubber was charged with a homogeneous mixture of 100 ml. of triphenyl phosphite and g. of cyclododecatriene (prepared by cyclopolymerization of butadiene) containing about 90% of the trans, trans, trans-1,5,9-cyclododecatriene and 10% cis, trans, trans isomer. Passage of the nickel tetracarbonyl-containing gas through the resultant scrubbing solution at the rate of about ml./minute for 10 minutes resulted in complete removal of the nickel carbonyl as evidenced by the negative flame and mirror tests.
  • Example 6 A mixture of cobalt tetracarbonyl hydride and cobalt tetracarbonyl was generated according to the procedure of Gilmont and Blanchard (Inorganic Syntheses, Vol. II, pp. 238243, McGraw-Hill Book Company, Inc., 1946).
  • the hydride in the glass trap was volatilized at about 30 C. by passing a stream of carbon monoxide into the trap, the outlet of which was attached to the fritted glass scrubber of Example 1 containing a 50 volume percent solution of triphenyl phosphite in benzene.
  • the exit gas from the scrubber contained nil cobalt compounds by the mirror test and the fiame test.
  • Example 7 Example 6 was repeated substituting cyclododecatriene for the benzene solution in the scrubber. The exit gases showed substantially complete removal of volatile cobalt carbonyl compounds.
  • Example 8 Example 6 was repeated except that the scrubber was replaced with an absorber tube containing about 5% Pentite on finely divided decolorizing carbon (No. 1551 from General Chemical Division of Allied Chemical Corporation). At a gas rate of 50 mL/minute, substantially all of the cobalt compounds were removed from the gas.
  • Example 9 Iron tetracarbonyl dihydride was prepared from iron pentacarbonyl (Antara Chemical Co.) by the method of Blanchard and Coleman (Inorganic Syntheses, Vol. II, pp. 2434, McGraw-Hill Book CO., Inc, 1946).
  • the trap containing the iron tetracarbonyldihydride (1 gram) was allowed to warm (by removal of the Dry Ice trap) while passing a stream of carbon monoxide therethrough.
  • the carbon monoxide gas containing the small amounts of iron carbonyl and carbonyl hydride was passed through the tube containing 20 grams of Philback 0 (a carbon black produced by Phillips Petroleum Company) having 5% Dipentite deposited thereon.
  • Philback 0 a carbon black produced by Phillips Petroleum Company
  • Example 10 Example 5 was repeated wherein the phosphite scrubbing solution was replaced with a solution of triphenylphosphine in cyclooctene. Results were similar to those of Example 4, the nickel carbonyl removal being substantially complete.
  • Example 11 Carbon black coated with Pentite (about 5%) from benzene solution was placed in a 1" length of inch (inside diameter) glass tubing. The coated carbon black weighed 0.40 gram. This filter tube was inserted in the nickel carbonyl gas line from the generator of Example 1 and the gas was passed therethrough at .a rate of about mL/minute for 10 minutes. The analysis showed 0.12% nickel content for the carbon.
  • Modification of this example demonstrated the removal of iron, nickel and cobalt metal carbonyls from gases when said gases were contacted with ligands deposited in gas pervious carrier bodies.
  • the ligands were dissolved in aromatic solvents, e.g., toluene, xylene, mixed C aromatic hydrocarbons, mixed C aromatic hydrocarbons and the like, and said solutions were adsorbed in smoke permeable finely divided, expanded, or fibrous carriers of polystyrene, carbon, silica, cellulose, cellulose acetate-butyrate, cellulose propionate, regenerated cellulose, vermiculite, pumice, polyvinylpyridine, polyesters, polyacrylates, polyurethanes and the like.
  • SERIES B Example 12 Cellulose acetate filters were cut from cigaretes (Brand B) and soaked in 100 g. of a benzene solution containing 5 g. Pentite. Ten of these filters were dried and found to contain about 6% Pentite. They were placed end to end compactly in a glass tube into which they fit snugly (ca. inch I.D.). This filter tube was substituted for the carbon-Pentite Erlenmeyer flask of Example 4. When the generated gas contained 400 p.p.m. of nickel carbonyl, at a gas rate of 15 ml./minute the nickel tetracarbonyl could not be detected in the exit gas from the tube. The test was ended after 10 minutes. Analysis by a spectrochemical method showed that the filters had gained 0.01% nickel, i.e. 148 micrograms of nickel.
  • Example 13 Example 12 was repeated employing 3 cellulose acetate cigarette filter sections from Brand A. These filters were dipped three times into a dilute benzene solution containing about 1% Dipentite, drying after each dipping. The coated filters weighed a total of 0.444 grams (0.018 g. Dipentite). The filter tube holding said three filter sections was placed in a line through which a nickel carbonyl-containing gas from the generator described in Example 1 was passed at a rate of about ml./minute for 10 minutes. The filters, analyzed by a spectrochemical method showed a gain in nickel content of 0.007% or an absorption of about 90 micrograms nickel carbonyl. In a similar test without Dipentite the cellulose acetate absorbed only about 10 micrograms of nickel carbonyl.
  • Example 14 0.236 parts by weight of Pentite were dissolved in 11 parts by weight benzene; cellulose acetate filters (0.661 parts by weight), removed from cigarettes, were immersed in the solution for 4 hours. The filters were drained of liquid and dried at about 80 C. for 1.5 hours.
  • Example 15 The cigarette filter control with 3 cigarette filters in a tube was tested without addition of any ligand. The conditions were as in Example 14. The analysis showed less than 10 p.p.m., i.e., less than 4 micrograms of nickel was absorbed.
  • Example 16 A solution of 0.414 g. of tri-(nonylphenyl)-phosphite (commercially available as an antioxidant for rubber under the trade mark Polygard) in 12 ml. of benzene was prepared and 5 cigarette filters made of an acetonesoluble cellulose acetate were immersed therein for about a minute. After removal and drying at an average of C. for 1 hour, the filters showed 11.5% increase in weight. Three of these filters (0.43 gram in total weight) were placed in a snug-fitting glass tube situated in the carbon monoxide stream containing nickel carbonyl and following the nickel carbonyl generator of Example 1. In ten minutes about ml. of gas was passed therethrough. The filter showed by spectrochemical analysis a nickel content of 0.086% or 0.370 mg. total nickel as compared to less than 0.004 mg. in Example 15 in the absence of ligand on the filter.
  • Example 17 Trib-utyl phosphate (0.263 gram) was dissolved in benzene and 5 cigarete filters of cellulose acetate were immersed therein for 10 minutes. The filters were removed, dried at about 80 C. for 2 hours and 3 of the filters in a glass tube were placed in the stream of carbon monoxide containing nickel tetracarbonyl from the generator of Example 1 for 10 minutes. The gas rate was about 15 mL/minute. spectrochemical analysis showed a nickel content of 0.176 mg. (as compared to less than 0.004 mg. in Example 15) demonstrating the ability of the tributyl phosphate ligand to remove the nickel carbonyl from the gas stream.
  • Example 17 was repeated using 3 cigarette filters coated with 10% trimorpholyl phosphorus, the coating technique being the same as in Example 17.
  • the nickel content after 10 minutes in the gas stream showed 30 micrograms of nickel (compared to less than 4 for the uncoated filter in Example 15).
  • Example 21 was repeated using cigarette filters coated with about 25% triphenyl phosphorus. The gain in nickel content of the filters at the end of the test was found to be 57 micrograms.
  • Example 23 A specific control test (Example 23) was made with 18 cigarettes of Brand A using the filters as supplied with the cigarettes. Analysis showed that the filters had absorbed only 0.8 micrograms nickel per cigarette, 0.05 micrograms cobalt and 1.3 micrograms of iron/cigarette. The difference, in the amount of the nickel absorbed with Pentite and without Pentite was 0.47 micrograms of nickel. Based on the determinations of the Drs. Sunderman, this would represent a reduction of about 80% of the 20 percent of nickel content usually passing the filter, or a smoke containing less than reg. only about 4%, of the initial nickel content of the tobacco.
  • Example 24 was similar to Example 22. Ten cellulose acetate filters from Brand A cigarettes were impregnated with tri(p-nonylphenyl) phosphite, and each filter was employed as a filter for smoking 2 Brand A cigarettes from which the manufacturers filters had been removed. The ten filters absorbed a total of 26.8 micrograms of nickel or 1.34 micrograms per cigarette; also 1.7 micrograms of iron per cigarette smoked was found. In comparison with the untreated filters of Example 23, the ligand tri-(nonylphenyl) phosphite, removed 0.54 micrograms more nickel than the filter supplied by the manufacturer of the Brand A cigarette. Based on the determination of the Drs. Sunderrnan this would represent a reduction of about 70% of the 20% of nickel content usually passing the filter, or a smoke containing less than 5%, e.g., only about 2%, of the initial nickel content of the tobacco.
  • Example 25 Example 24 was repeated except that five cellulose acetate filters impregnated with tri(o-nonyl-phenyl) phosphite were employed as filters for smoking Brand B cigarettes, without removal of the filters from Brand B. Thus the impregnated filters served as a second or backup filter. The impregnated filters were used in smoking 2 each of Brand B cigarettes. After smoking, the filters supplied with Brand B were removed from the butts and were analyzed for comparison with the backup or impregnated filters.
  • Example 28 An alcohol-insoluble phosphatide, substantially mono and diphosphoinositide, was employed in this example.
  • Cellulose acetate tow (about acetyl content, 5 denier fibers) was immersed for one minute in a benzene solution containing 10% of the phosphatide; after draining and drying the coated tow was found to have 23% of the phosphatide.
  • Twenty portions of this coated tow, each weighing 0.20:0.005 g. were individually pressfitted into a ID. glass tube to serve as a filter for Brand C cigarettes. Each of the 20 filters was used to smoke 2 Brand C cigarettes from which the filters had been removed. The used filters were dried at room temperatures and analyzed.
  • Example 29 In Example 29 alcohol-soluble lecithin was used in place of the alcohol-insoluble phosphatide of Example 28 as coating material for the cellulose acetate tow.
  • Tow (3 grams) from the same batch of cellulose acetate was coated by immersing in a solution consisting of 3 g. lecithin, 27 grams isopropanol and 30 g. benzene. After one minute the tow was squeezed to drain off excess solution, and was dried in an C. stream of air. The coated tow contained 9.5% lecithin. Twenty portions of the tow (0.16:0.005 g. each) were snug-fitted into twenty 2-inch lengths of ID. glass tubes and each tube was employed as a filter for smoking two Brand C cigarettes from which the manufacturers filters had been removed.
  • Example 30 was repeated using cephalin as ligand material for coating cellulose acetate tow.
  • the coated tow contained about 16.5% cephalin.
  • Each of 20 portions (018010.005 g.) of this filter material was used as filter for smoking 2 Brand C cigarettes.
  • Analysis showed absorption of the following amounts of metals by the treated filters in micrograms per cigarette smoked: nickel 0.91; cobalt 0.01; iron 8.56. Again the nickel removed contrasted with the failure of the manufacturers filter to remove any significant amount of nickel from the smoke.
  • Example 31 As ligand material for coating the cellulose acetate tow, the lecithin and cephalin fractions from soya bean were employed in combination, i.e., without preliminary separation.
  • the coated tow contained 12% of combined phosphatides, and 0285:0005 g. of the coated tow were used as back-up filter material for smoking 2 Brand C cigarettes per plug.
  • the plugs were made by press fitting the weighed portions of coated tow into a V1 LD. glass tube which served as a cigarette holder and filter. Brand C cigarettes were employed without removal of manufacturers filter. Analyses after smoking showed the following absorptions of metal (in micrograms) per cigarette smoked: nickel 0.8; cobalt 1.5; iron 10.2. Thus the treated filters were eificatious for removing from the smoke the volatile metal compounds.
  • Example 32 Total lecithin and cephalin fractions similar to those used in Example 31 were hydrogenated to substantially reduce unsaturation as in Example 33 following.
  • Cellulose acetate tow (about 40% acetyl content, 5 denier fibers) were impregnated with the hydrogenated phosphatide product to give a filter containing about 10% of the hydrogenated phosphatides. This coated tow was used in Smoking Brand C cigarettes as in Example 31, with substantially similar results.
  • Example 33 Cephalin of the type employed in Example 30 was hydrogenated according to the method of US. Patent 3,026,341 issued March 20, 1962, to substantially reduce unsaturation, and the hydrogenated product was used to impregnate cellulose acetate tow to give a filter material containing about 15% of hydrocephalin. Twenty portions of this filter (0170:0005 g.) were used to repeat the smOking procedure of Example 31. Analyses of the filters before and after use, by diiference showed absorption from the cigarette smoke of approximately micrograms of iron, 0.8 microgram of nickel and 0.2 microgram of cobalt per cigarette smoked.
  • the filter supplied by the manufacturer contain-ed only 0.08 microgram of nickel after smoking of the cigarette, and it was also noted that the filter of the present invention absorbed larger amounts of nickel when used as back-up filters following the filters of the Brand C cigarettes, than when they were substituted for such filters. Analyses of Brand C filters before and after smoking were accordingly made which showed that the unused Brand C filters contained nickel in a larger amount than the used Brand C filters, and thus had actually contributed volatile nickel compounds to the smoke, in contrast to the Brand A filters, which absorbed some nickel from the smoke as shown by Example 23.
  • the method of treating tobacco smoke which comprises reducing the content of transition metal carbonyl therein by contacting the same with ligand material, said ligand material comprising essentially tri-(nonylphenyl)- phosphite.
  • a cigarette having exposed in the path of the tobacco smoke therein means for reducing the metal carbonyl content of the smoke, said means comprising activated carbon which has been impregnated with a solution of tri-(nonylphenyl)-phosphite and dried.
  • a cigarette having exposed in the path of the tobacco smoke therein means for reducing the metal carbonyl content of the smoke, said means comprising cellulose acetate filaments which have been impregnated with a solution of tri-(nonylphenyl)-phosphite and dried.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Description

United States Patent 3,246,654 TOBACCO SMOKE, FILTERSAND CIGARETTES Eldon E. Stahly, Pompano Beach, Fla., assignor to Oliver W. Burke, Jr., Fort Lauderdale, Fla. No Drawing. Filed Dec. 14, 1962, Ser. No. 244,573 5 Claims. '(Cl. 131-10) This invention relates to the improvement of tobacco smoke, filters, and cigarettes for the reduction of metal carbonyls in the smoke. Strictly speaking, a metal carbonyl is a compound of metal and carbon monoxide, but in a broader sense the term metal carbonyl also includes the analogous metal nitrosyl carbonyls and the metal hydrocarbonyls, which are similar compounds in which one of the carbonyl groups has been replaced by a nitrosyl or a hydrocarbonyl group, and except where the context indicates to the contrary, the term is employed in said broader sense herein.
Objects of the invention, severally and interdependently, are to provide an improved cigarette having a substantially reduced content of metal carbonyls in its smoke output as compared to conventional plain or filter-tipped cigarettes; to provide a method of treating tobacco smoke by removing metal carbonyls therefrom by converting the same to non-volatile materials; to provide an improved cigarette smoke from which metal carbonyls are substantially eliminated; to provide an improved method and cigarette, or cigarette, cigar and pipe filter, in which volatile metal carbonyls present in tobacco smoke in small amounts are converted to non-volatile materials in a manner which efiectively prevents their remaining in the tobacco smoke; and to provide an improved method and cigarette in which a ligand material is reacted with volatile metal compounds in the tobacco smoke and converts them into non-volatile compounds.
Other objects and advantages of the invention, and of preferred embodiments thereof, will be apparent from the following description and from the illustrative examples appended thereto.
The invention resides in the new and useful methods and products herein disclosed, and is more particularly defined in the appended claims.
GENERAL DESCRIPTION Conventional tobacco smoke, more particularly conventional cigarette, cigar and pipe tobacco smoke, contains substantial traces of metal carbonyls, and especially of nickel, cobalt and iron carbonyls, and such materials are reported to be toxic and carcinogenic to animals.
Thus, it has been reported in a paper by the Drs. F. W. Sunderman (Sr. and Jr.), based on tests of six different brands of cigarettes, that nickel carbonyl containing from 0.4 to 0.6 microgram nickel per cigarette (corresponding to about 20% of the total nickel of the tobacco) passes through the butt and filter of conventional plain or filter cigarettes, reaching the smoker (Medical Science, page 617, May 25, 1961; American Journal of Clinical Pathology, 35, 203 (1961)). In studies with rats, small amounts of nickel carbonyl were found by the Drs. Sunderman to be carcinogenic. The nickel delivered in the smoke drawn from the butt ends of the cigarettes amounted to up to 8 micrograms nickel per pack of 20, or 23.5 micrograms nickel carbonyl per pack of 20 of unfiltered cigarettes; and up to 12 micrograms nickel or 35 micrograms of nickel carbonyl per pack of filtered cigarettes. On the basis of their studies, cumulative exposure to these quantities of nickel was suggested by the Drs. Sunderman to be a possible cause of the so-called smokers pulmonary cancer. Based on the reported figures, a person who smokes a pack of cigarettes per day over a period of a year subjects himself to about one and 3,246,654 Patented Apr. 19, 1966 one-half times the amount of nickel required to induce pulmonary cancer in rats, which are considered to be notably resistant to pulmonary cancer.
Aside from the nickel carbonyl reported, I have found that traces of volatile cobalt and iron compounds are also present, apparently as carbonyls, in cigarette smoke. The cobalt is present in somewhat smaller amounts than the nickel, about 1.3 micrograms of cobalt passing the filters per pack of filter cigarettes; and the. iron is present in about twice the amount of nickel in the smoke of some brands of cigarettes.
Aside from the carcinogenic aspects of metal carbonyls reported by the Drs. Sunderman, it has long been known that such compounds are highly toxic and dangerous materials even in trace amounts. Thus Sax, Handbook of Dangerous Materials, published in 1951 by Reinhold Publishing Company, New York, prescribed a maximum allowable concentration of cobalt in the air as 0.4 part per million, and the Twenty-Second American Conference of Government Hygienists in April 1960 placed the maximal atmospheric concentration of nickel carbonyl for a working day at 1 part per billion (A.M.A. Arch. Environmental Health 1, 140444, year' 1960). Iron carbonyl is also considered to be toxic, although less toxic than nickel and cobalt carbonyls. Accordingly, the cumulative toxicity effects of these three metal carbonyls in tobacco smoke can be expected to be greater than that reported for nickel carbonyl alone. Hence it is evident that the quantities of metal carbonyls present in the smoke from conventional plain and filter cigarettes exceed the quantities deemed objectionable by the above authorities.
By the present invention such content of metal carbonyls may be reduced in, or practically eliminated from, the tobacco smoke, and this invention thus can serve as a safeguard to smokers against excessive exposure to metal carbonyls.
My new process for the treatment of tobacco smoke is based on the removal of metal carbonyls from the tobacco smoke by the formation of non-volatile'complexes by combination of the metal carbonyls with a' ligand, which for the purposes of this invention, is an organic complexing agent which forms complexes of low volatility with transition metal carbonyl compounds in the presence of other constituents of tobacco smoke, more particularly in the presence of moist carbon dioxide. Generally the complexes of the metal carbonyl with ligand organo-phosphorus compounds are materials of low volatility. Furthermore, these ligand organo-phosphorus compounds form relatively stable complexes with the transition metals in the presence of moist carbon dioxide. The practice of my invention does not depend on the formation of exact empirical complexes since mixtures of such complexes may be formed with equal benefit for my process. 1
Thus volatile metal compounds in the cigarette smoke st-ituent groups on the phosphorus can be nitrogen-containing radicals as hereinafter set forth. The complexes are formed by passing the smoke containing the metal carbonyls into contact with one or more of said ligands or over or through a filter material acting as a carrier body for the ligand material, and preferably comprising fibrous material, for example, cellulose acetate tow, prepared with the ligand therein or wholly or partly coated with the ligand or with material carrying the same.
In the practice of my invention for example in making tobacco smoke filters one or more of the ligands or complex-forming compounds are components with or without a solvent or plasticizer are preferably dispersed on adsorbents; for example, the liquid or solid complexforming components may be vaporized onto said adsorbent material, or a solution of such ligands may be applied to said adsorbent material such as carbon (especially activated carbon), silica, pumice, vermiculite, clay, asbestos, polyesters, polystyrene, and cellulosic materials, e.g., cotton, cellulose, cellulose acetate, cellulose acetatebutyrate, cellulose propionate, tobacco and other absorbing materials having a high surface area per unit weight or per unit volume and combinations of these adsorbents.
The smoke-permeable bases or carriers may embody various adhesive, adsorbent and surface area augmenting materials, and may be of any known or suitable form. The ligands employed in the present invention may be incorporated in filter bodies of fibrous material during the preparation of such bodies as otherwise disclosed, for example, in US. patents as follows:
2,228,3 831-14-41 2,770,241-11-13-56 2,780,228-2-5-5 7 2,792,8415-2l-57 2,794,239-6-4-57 2,801,63 8-8-6-57 2, 805,671-9-10-57 2,806,4749-17-57 2,815,760-12-10-57 2,815,761-12-10-57 2,818,073-12-31-57 2,828,752-4-1-58 2,839,065-6-17-58 2,872,9282-10-59 2,881,7694-14-59 2,881,770-4-14-59 2,881,77l4-14-59 2,881,7724-14-59 2,900,9888-25-59 2,902,9999-8-59 2,904,0509-15-59 2,908,280-10-13-59 2,916,77712-15-59 2,9l7,05412-15-59 2,928,3993-15-60 Ligand Typical Complex RaP (ROhP (ROMPO CO(CO)4-X[(RO)3PO]X The complex formation probably occurs by a reaction of the ligand with metal carbonyl similar to the following:
wherein the valence of the metal atom M, i.e., iron, nickel or cobalt, is considered to be zero.
With a transition metal hydrocarbonyl the reaction with the ligand is similar, viz:
wherein the metal M is again in the zero valent state. Likewise, the ligands employed herein form non-volatile complexes with other metal carbonyls, such as:
While carbonyls such as Fe (CO) and Fe (CO) are not volatile at room temperature they decompose giving volatile Fe(CO) at temperatures of C. and higher. Heating above 100 C. aids in the formation of the nonvolatile complexes, particularly with iron carbonyls. The heat of the tobacco smoke which contributes to the formation of the volatile iron carbonyl thus also aids in the rate of formation of the complexes in the cigarette filters of the present invention.
Vapor pressures observed for representative metal carbonyls and indicative of the volatility thereof, are:
Ni(CO) 134 mm. Hg at 0 C.; 238 mm. Hg at 15 C. C0(CO) COH 760 mm. ca. 10 C. Co(NO)(CO) 91 mm. at 20 c. Co (CO) 0.72 mm. at 16 C. Fe(COH) (CO) 11mm.at-10 c. Fe(CO) 26 mm. at 16 C. Fe(CO)- (NO) 760 mm. at c.
The alkyl groups preferred as R substituents in the organo-phosphorus ligand are the alkyls containing not more than 18 carbon atoms (i.e., methyl to stearyl). Both primary and secondary alkyls, straight chain and branched chain alkyl groups may serve as R in the ligand. Thus tri -n-nonyl phosphite, tri-(2,4,5-trimethylhexyl) phosphite, and tri (2 nonyl) phosphite were found effective as ligands or complexing agents for the metal carbonyls concerned.
Alkenyl groups preferred as R in the ligands are vinyl, alkyl, butenyl, etc., up to alkenyl groups containing not more than 18 carbon atoms.
Alkynyl R groups of the alkynyl ligands are exemplified by propargyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, etc., up to those containing preferably not more than 18 carbon atoms.
Cycloalklyl R groups of the cycloalkyl ligands are exemplified by cyclo-C -C -C -C cyclododecyl and the like cycloalkyls, ac-tetrahydro-naphthyl, decahydronaphthyl, and mono polyalkyl cycloalkyls, and contain preferably not more than 18 carbon atoms.
When R in the ligand is terpenyl it can be menthyl, carvornenthyl, alpha, beta, and gamma terpenyl, and the like available ten-carbon radicals, including hydrocarbonsubstituted terpenyl radicals containing preferably not more than 18 carbon atoms.
When R in the ligand is an aryl group it preferably contains not more than 18 carbon atoms and may be phenyl, naphthyl, ar-tetra-hydronaphthyl, alkoxy or alkyl phenyl, alkoxy or alkyl naphthyl, or alkoxy or alkyl substituted ar-tetra-hydronaphthyl. Thus ortho and paramethoxy phenyl and ortho and para-methyl phenyl as R in (RO )P are effective ligands in forming stable complexes with metal carbonyls. Again, mono and polysubstituted aryls are useful as R in the ligand or complexing agent. Tri-(nonylphenyl) phosphites were found to be very effective as a ligand or complexing agents for the metal carbonyls. The tri-(p-nonylphenyl) phosphite, the mixture of this with tri-(o-nonylphenyl) phosphite and a minor amount of tri-(m-nonylphenyl) phosphite, and a mixed compound such as di-(p-nonylphenyl)-(o-nonylphenyl) phosphite all served as ligand or complexing agents. Finally, R may be an arylene compound, as in the triphenylene diphosphite ligand.
The aralkyl substituents R in the ligand which are useful in the present invention may be unsubstituted or hydrocarbon substituted and range from phenylmethyl to phenyldecyl, and from mono and dimethyl-benzyl to mono and dioctylbenzyl. Aralkyl and arylene groups containing not more than 18 carbon atoms are preferred.
The nitrogen-containing R groups useful in the ligand include the morpholinyl, pyridyl, pyrrolidinyl, piperazinyl, isoquinolyl and quinolinyl groups, both unsubstituted and mono and dialkyl substituted to have a total carbon content preferably not more than 18 carbon atoms. For example, trimorpholyl phosphorus, tri-(phenylrnorpholinyl) phosphorus, tri-(pyridyl) phosphorus, and tri-(dimethyl-quinolyl) phosphorus are active ligands useful in the present invention.
Further it has been found that organo-phosphorus compound ligands represented by RRRP; RR'R"PO; (R"()) (R) (RO)]P; ROPO and (R0) (RO) (RO)PO; RR(RO)PO; R(R'O)(RO)P and RRP-P RR' are effective in the present invention wherein R has the same significance as hereinbefore defined, and R, R and R may be the same or different groups selected from the group of radicals listed hereinbefore for R. Thus didecyl phenyl phosphite, diphenyl decyl phosphite, decyl phenyl cresyl phosphite, triphenyl phosphite and tridecyl phosphite all serve as the ligand or complexing agents. Thus the three radicals R, R, and R" may be the same or different for the ligands defined as P or PO compounds. Likewise R0, RO and R"O may be the same or difierent. Of particular advantage in the present invention are the ligand tetra-R-substituted diphosphines, and also solid polyphosphite ligands as exemplified by tetra-diphenylphosphitopentaerythritol and diphenylpentaerythritol-diphosphite (commercially available as resin stabilizers under the trade marks Pentite and Dipentite, respectively). Because of polyfunctional grouping these polyphosphorus ligands do not conform to the general formula of the hereinbefore listed ligands or complexing agents for metal carbonyls. The formulae for these ligands are:
( 1 Tetra-diphenylphosphitopentaerythritol (Pentite) e z zl 4 (2) Diphenylpentaerythritoldiphosphite (Dipentite) a 5 (OCHZ) 2] 2 Analogous polyphosphites of value in the present inven tion are the phosphite ligand derivatives of ethylene glycol, diethylene glycol, triethylene glycol, higher polyethylene glycols, glycerol, erythritol, xylitol, mannitol,
and the like; for example:
(3) Bis(diphenylphosphito) polyethylene glycols (CSHSO)2PO(CH2CH2O)11P(OC6H5)2 where n is preferably 1 to 6.
(4) Poly(ditolylphosphito)polyols s s 4 )z ln+2( z) 2( )n where n is preferably 1 to 6;
6 (5) Bis (diphenylphosphito polyl (phenylphosphito) polyols e 5 2 2] 2 s s 2 2 2] n where n is preferably 1 to 3. (6) Bis (pheny-lphosphito erythritol (C6H50PO2C2H3)2 (7) Poly(diphenylphosphito) cellulose, sugars or starches HO[ (C H O P0] [CH C H OCHO] H where n is from 1 to 1000.
(8) Poly(phenylphosphito) cellulose, sugars, or starches HO(C H OPO CH OHC H OCHO) H or HO (C l-I 0 P0 [CH 0HC H OCHO] H where n is from 1 to 1000.
These ligands (1)(8) conform to the polyfunctional formulae D[O F(OR) where D is a polyvalent organic polyol moiety, R is a hydrocarbon radical as hereinbefore defined, s=2 to 1000, or more, x=1 or 2. In general, the ligand materials preferred are low in melting point or are softenable with a solvent or plasticizer. Any radical of the R group above can serve in place of the phenyl of the above diagrammed formulae. Examples of complexes which are formed from metal carbonyls by these polyfunctional ligands include mono, di, tri and tetra nickel compounds for the Pentite, mono and di-nickel compounds With the Dipentite and one nickel per phosphorus atom of the carbohydrate derivative; for example:
(Pentite) [Ni(CO (Dipentite) [Ni(CO) 2 and Further I have discovered that ligands may be prepared in which thio atoms are substituted for oxygen atoms of the phosphites, phosphates, phosphine oxides, phosphonates, etc. to form other ligands.
It has also been found that polar-substituted derivatives of the foregoing radicals are useful as R, R, R and R of the above formulae for the ligand or complexing agents for the practice of my invention. Such polar groups are exemplified as follows: 1
Halogen, e.g., in tri(o-, m-, and p-halophenyl) phosphate Hydroxyl, e.g., tri(hydroxyphenyl)phosphite (o, m, and p) Carboxyl, e.g., (carboxyphenyl)-diphenyl phosphite Carbethoxyl, e.g., tri(o-carbethoxyphenyl)phosphite Amine, e.g., tri(dimethylaminophenyl)phosphite Cyano, e.g., in tri(Z-cyanoethyl) phosphine Cyanato, e.g., in tri(m-cyanato-phenyl) phosphine Thiocyano, e.g., in tri(o-thiocyanophenyl) phosphate Sulfenate, e.g., in (SOH-C H PO Alkoxy, e.g., in tri(o, m, and p-methoxyphenyl) phosphite Acyl, e.g., in (acetophenyl)diphenyl phosphite Mercapto, e.g., in (mercaptophenyl) diphenylphosphite In addition to the foregoing, other types of organonitrogen-phosphorus materials have been found to be active ligands of my invention, such as amino-alcohol esters of acids of phosphorous, e.g., tri-cholinyl phosphite,
and tris(aminoethyl) phosphate, [NH (CH -O] PO. Of especial interest and advantage as organo-nitrogenphosphorus ligands in my invention are the phosphoruscontaining lipids derived from plant or animal sources. The terms phospholipid or phosphatide" as used herein designate the natural and synthetic phospholipids and phosphatides, derivatives thereof, and mixtures of the foregoing, including the hydrogenated and partially hydrogenated products thereof, which yield on bydrolysis phosphoric acid, an alcohol, fatty acid compounds, and a nitrogenous base. Thus I have found that phosphatides serve as effective ligands for removal of iron, cobalt and nickel carbonyls from tobacco smoke, e.g. the lecithins, cephalins and sphingomyelins, as well as hydrogenation products thereof. Hydrogenation products of these phosphatides are more stable and have a reduced tendency to darken as a result of saturation of olenfinic bonds present in the phosphatides. Crude soybean oil contains from 1.8 to 3.2% of these natural phosphatides, and commercial phosphatides are presently obtained by recovery therefrom and from other animal and vegetable materials.
The lecithins are alcohol-soluble and are further defined by the Formulae 9 and 10 wherein glycerin is diesterified with saturated and unsaturated acids, R and R representing fatty acid, i.e. acyl groups, and monoesterified with phosphoric acid which in turn is esterified with choline. In other words the lecithins are choline esters of di-fatty acid esters of glycerophosphoric acid.
(9) ROCHr-(CHORO-CHfi-POzH-O(CH )2ITI(CH;)
OI'I Alpha-phosphatidylcholine (ROCIIz)(ROCIIz)tJHO-POflI-O(CH2)2III(CHa)a OH Beta-phosphatidylcholine RoCH (CHoR')CH20POZ(CHQ)ZN(CH5) Alpha-endo-leclthln (ROOHz)(R'OCHz)CHOPO2(CH2)2N(CH Beta-endo-lecithin The alcohol-insoluble phosphatidies, e.g., from soya beans, are termed cephalins, which prove to be a more complex fraction from which several components have been separated and characterized as defined by Formulae 11 to 17 wherein R and R are fatty acid groups ranging from C to C acids, including mono, di, tri and tetra olefinic acids, and G is the galactosidyl group: (11) ROCH (CHOR')CH OPO HO (CH NH Alpha-cephalin (a-phosphatidylethanolamine) (12) (ROCH (R'OCH CHOPO HO (CH NH Beta-cephalin(B-ph0sphatldy1ethanolamine) (l3) ROCH (CHOR)CH OPO H OCH CH(NH )COOH Alpha-p110sphatidylserine (14) (ROCH (ROCH )CHOPO H OCH CH(NH )CO0H Beta-phosphatidylserine e w e)( a z) Monopliosphoinositide(soybean llpositol) 6 s s)( 3 2)2 CH(COOH)CH(OH)COO(CH NH Diphosphoionsitide 8 The ligand types exemplified by (9) to (14) may be from group of G to C saturated and mono, di, tri and tetra unsaturated acyl radicals, and Y is an aminoderivative radical containing from 2 to 5 carbon atoms,
preferably selected from the group consisting of trimethyl-hydroxy ammonium-ethyl, aminoethyl, and amino-carboxy-ethyl groups.
The ligand types represented by (15) and (16) conform to the simplified formula:
where G=galactose, R and R are as above defined, I=hexavalent inositol radical (C H O and x is 1 or 2.
The sphingomyelin Formula 17 is a Z-amino-propanediol-1,3 derivative wherein carbon (1) is substituted with C I-I radical (i.e., C H CH=CH), the amino group has C H CO acyl substituent and the hydroxyl on carbon (3) is esterified with cholinylphosphoric acid.
Each of the ligand types exemplified by (9) to (17) inclusive and the hydrogenated and partially hydrogenated products thereof may be broadly defined as an alkanolamine ester of a phosphoric acid ester of a polyhydroxy alkane or cyclo alkane derivative. In (9) to (14) the polyhydroxy compound is glycerin, in (15) to (16) it is inositol and in (17) it is Z-amino-propanediol- 1,3. The lecithins and cephalins have fatty acyl substituents replacing two of the hydroxyls of glycerin, the inositides have a glactosidyl substituent and 2 acyl substituents for three of the inositol hydrogens, a tartaryl substituent for a fourth hydrogen, the tartaryl group being esterified with serine or ethanolamine, and the remaining 2 hydroxyls of inositol being esterified with one or two phosphoric acid groups.
Synthetic compounds of the phosphatide type having ligand properties, can be prepared for use in accordance with the present invention.
Examples The invention as above disclosed will be more fully understood by reference to the following examples which are to be taken as illustrative and not restrictive of the invention, and which are conducted in three series, namely:
Series A, in which a synthetic gas mixture of volatile metal carbonyl and carbon monoxide was prepared containing small quantities upward of 100 parts per million of the metal carbonyl (at least equal to the maximum proportion thereof in tobacco smoke), and in which the ability of typical organophosphorus ligand materials to extract such traces from the diluent gas was established.
Series B, in which the same synthetic metal carbonyl gas mixtures were employed to test the eflicacy of typical organo phosphorus ligands of this invention in single pass cigarette filters.
Series C, in which the synthetic metal carbonyl gas mixtures were replaced by tobacco smoke and the advantage of the invention in reducing the metal carbonyl content of such smoke was demonstrated.
. Sphingomyelln Hydrogenated and partially hydrogenated products obtained from phospholipids likewise are effective ligands for removal of metal carbonyls from tobacco smoke.
For the series A and series B examples, metal carbonyls were prepared, or obtained commercially, and put into a gas stream from which they were subsequently removed by the ligand materials employed in the present invention.
These tests were followed by the series C actual cigarette smoking tests wherein ligands were employed as filter components.
SERIES A Example 1 (Control) Nickel tetracarbonyl was generated by passing carbon monoxide of 98% purity from a cylinder over 3.75 grams Raney nickel (2.625 g. Ni on a carrier) which had been pre-dried by heating to above 200 C. in an atmosphere of carbon monoxide. (Girdler G-49A Raney nickel was used.) The gas containing the nickel tetracarbonyl was passed through a fritted glass scrubbing equipment. The outlet tube from the scrubber was run to the base of a Meeker burner wherein unabsorbed nickel carbonyl was mixed with the burner gases and was combusted along therewith.
In Example 1 the nickel carbonyl was passed through the empty fritted-glass scrubber, i.e., containing no scrubbing solution. Two simple tests were used to demonstrate the presence of the nickel tetracarbonyl in the gas: (1) the flame of the burner displayed a grey luminosity when the nickel carbonyl was present in an amount as low as 1 p.p.m. and (2) pin-point heating of the glass outlet from the generator deposited a spot nickel deposit or mirror on the wall of the glass tube. As little as 10" mole of nickel tetracarbonyl gave an observable metallic nickel deposit in this test, and thus was used as a sensitive test. Also, the weight of a mirror formed in a small glass tube served to establish the metal carbonyl content of a measured quantity of gas.
When the gas at 200 cc./minute was shown to contain at least 100 p.p.m. of nickel tetracarbonyl (by mirror test) Example 2 was carried out. The flame of the burner showed a strong grey color in this range of concentration of nickel tetracarbonyl. This test demonstrated that the scrubbing apparatus itself did not decompose the nickel carbonyl, and did not remove the nickel carbonyl from the gas.
Example 2 (Control) 100 ml. of benzene was placed in the scrubber of Example 1 and the gas rate from the nickel tetracarbonyl generator was held at 200 cc./minute. Appreciable removal of nickel tetracarbonyl was not observed either by mirror test or change in intensity of the grey color after about 10 minutes of passing the gas through the scrubber. This example demonstrated that a solvent alone in the absence of a ligand does not remove the nickel carbonyls from the gas stream to an effective degree because of the appreciable partial pressure of the nickel carbonyl in the solution.
Example 3 The benzene of Example 2 was replaced with 100 ml. of a 50 vol. percent solution of triphenyl phosphite in benzene. After charging this solution to the gas scrubber the grey nickel color completely disappeared from the flame, and the mirror test was negative for nickel. Upon prolonged standing, white crystals (the stable complex) gradually deposited on the glass wall at the liquid level. This example in comparison with Example 2 demonstrates the efficiency of nickel carbonyl removal from gas by contacting with an aromatic solution of the triphenylphosphite ligand.
- Example 4 An adsorbent was prepared by dissolving 1.263 g. of Pentite [(C H )O POCH C in a mixture of 50 ml. pentane and 10 ml. benzene, shaking with 21 g. decolorizing carbon (No. 1551 from General Chemical Division of Allied Chemical Corp.) and warming to 100 C. to evaporate the solvent.
The resultant ligand in a gas permeable carbon body '10 was placed in a 50 ml. Erlenmeyer flask which was installed in the line succeeding the nickel tetracarbonyl generator of Example 1 so that the gas passed from the bottom through the carbon-Pentite adsorbate. After an hour during which time about 6 liters of gaseous carbon monoxide containing about 1% Ni(CO) vapors (10,000 p.p.m.) had been passed through the carbon, the carbon was sampled and analyzed for nickel by are spectrophotometry. The sample showed 0.69 wt. percent nickel in comparison to nil (less than 0.001% not detected) for a carbon-Pentite sample prior to use in the test. The amount of Ni(CO) adsorbed was calculated to be approximately 2 moles per mole of Pentite on the carbon, corresponding to formation of indicating that the ligand was utilized to 50% of its theoretical capacity in this test.
Example 5 The fritted glass scrubber was charged with a homogeneous mixture of 100 ml. of triphenyl phosphite and g. of cyclododecatriene (prepared by cyclopolymerization of butadiene) containing about 90% of the trans, trans, trans-1,5,9-cyclododecatriene and 10% cis, trans, trans isomer. Passage of the nickel tetracarbonyl-containing gas through the resultant scrubbing solution at the rate of about ml./minute for 10 minutes resulted in complete removal of the nickel carbonyl as evidenced by the negative flame and mirror tests.
Example 6 A mixture of cobalt tetracarbonyl hydride and cobalt tetracarbonyl was generated according to the procedure of Gilmont and Blanchard (Inorganic Syntheses, Vol. II, pp. 238243, McGraw-Hill Book Company, Inc., 1946). The hydride in the glass trap was volatilized at about 30 C. by passing a stream of carbon monoxide into the trap, the outlet of which was attached to the fritted glass scrubber of Example 1 containing a 50 volume percent solution of triphenyl phosphite in benzene. The exit gas from the scrubber contained nil cobalt compounds by the mirror test and the fiame test.
Example 7 Example 6 was repeated substituting cyclododecatriene for the benzene solution in the scrubber. The exit gases showed substantially complete removal of volatile cobalt carbonyl compounds.
Example 8 Example 6 was repeated except that the scrubber was replaced with an absorber tube containing about 5% Pentite on finely divided decolorizing carbon (No. 1551 from General Chemical Division of Allied Chemical Corporation). At a gas rate of 50 mL/minute, substantially all of the cobalt compounds were removed from the gas.
Example 9 Iron tetracarbonyl dihydride was prepared from iron pentacarbonyl (Antara Chemical Co.) by the method of Blanchard and Coleman (Inorganic Syntheses, Vol. II, pp. 2434, McGraw-Hill Book CO., Inc, 1946). The trap containing the iron tetracarbonyldihydride (1 gram) was allowed to warm (by removal of the Dry Ice trap) while passing a stream of carbon monoxide therethrough. The carbon monoxide gas containing the small amounts of iron carbonyl and carbonyl hydride was passed through the tube containing 20 grams of Philback 0 (a carbon black produced by Phillips Petroleum Company) having 5% Dipentite deposited thereon. At a rate of 250 ml. gas/minute, the iron compounds were substantially completely removed from the gas, the carbon black absorbate after 40 minutes showing an iron content of about 0.70% (0.146 g. iron) or about one iron atom per mole of Dipentite.
1 1 Example 10 Example 5 was repeated wherein the phosphite scrubbing solution was replaced with a solution of triphenylphosphine in cyclooctene. Results were similar to those of Example 4, the nickel carbonyl removal being substantially complete.
Example 11 Carbon black coated with Pentite (about 5%) from benzene solution was placed in a 1" length of inch (inside diameter) glass tubing. The coated carbon black weighed 0.40 gram. This filter tube was inserted in the nickel carbonyl gas line from the generator of Example 1 and the gas was passed therethrough at .a rate of about mL/minute for 10 minutes. The analysis showed 0.12% nickel content for the carbon.
This example was repeated but using the decolorizing carbon without the liquid, i.e., without Pentite. The carbon showed only 0.002% nickel content thus demonstrating the effectiveness of the ligand on the gas permeable carbon body.
Modification of this example demonstrated the removal of iron, nickel and cobalt metal carbonyls from gases when said gases were contacted with ligands deposited in gas pervious carrier bodies. In these modified examples the ligands were dissolved in aromatic solvents, e.g., toluene, xylene, mixed C aromatic hydrocarbons, mixed C aromatic hydrocarbons and the like, and said solutions were adsorbed in smoke permeable finely divided, expanded, or fibrous carriers of polystyrene, carbon, silica, cellulose, cellulose acetate-butyrate, cellulose propionate, regenerated cellulose, vermiculite, pumice, polyvinylpyridine, polyesters, polyacrylates, polyurethanes and the like. These examples confirmed the removal of the metal carbonyls by the ligand materials in smoke permeable carrier bodies.
SERIES B Example 12 Cellulose acetate filters were cut from cigaretes (Brand B) and soaked in 100 g. of a benzene solution containing 5 g. Pentite. Ten of these filters were dried and found to contain about 6% Pentite. They were placed end to end compactly in a glass tube into which they fit snugly (ca. inch I.D.). This filter tube was substituted for the carbon-Pentite Erlenmeyer flask of Example 4. When the generated gas contained 400 p.p.m. of nickel carbonyl, at a gas rate of 15 ml./minute the nickel tetracarbonyl could not be detected in the exit gas from the tube. The test was ended after 10 minutes. Analysis by a spectrochemical method showed that the filters had gained 0.01% nickel, i.e. 148 micrograms of nickel.
Example 13 Example 12 was repeated employing 3 cellulose acetate cigarette filter sections from Brand A. These filters were dipped three times into a dilute benzene solution containing about 1% Dipentite, drying after each dipping. The coated filters weighed a total of 0.444 grams (0.018 g. Dipentite). The filter tube holding said three filter sections was placed in a line through which a nickel carbonyl-containing gas from the generator described in Example 1 was passed at a rate of about ml./minute for 10 minutes. The filters, analyzed by a spectrochemical method showed a gain in nickel content of 0.007% or an absorption of about 90 micrograms nickel carbonyl. In a similar test without Dipentite the cellulose acetate absorbed only about 10 micrograms of nickel carbonyl.
Example 14 0.236 parts by weight of Pentite were dissolved in 11 parts by weight benzene; cellulose acetate filters (0.661 parts by weight), removed from cigarettes, were immersed in the solution for 4 hours. The filters were drained of liquid and dried at about 80 C. for 1.5 hours.
Their weight was then 0.701 parts by weight (0.04 part gain due to Pentite absorption). A sixty percent portion of these coated filters was placed in a glass tube into which they fitted snugly. Carbon monoxide containing traces of nickel carbonyl was generated as in Example 1 using 5 g. fresh Girdler G-49A Raney nickel catalyst. The gas was passed through the glass tube containing the Pentite coated cigarette filters. The gas rate was measured at 15 ml./minute and the time of passage was ten minutes. Analysis by a spectrochemical method showed the filters to have gained 0.03% nickel. This example again demonstrates the removal of nickel carbonyl from the gas by the Pentite.
Example 15 (Control) The cigarette filter control with 3 cigarette filters in a tube was tested without addition of any ligand. The conditions were as in Example 14. The analysis showed less than 10 p.p.m., i.e., less than 4 micrograms of nickel was absorbed.
Example 16 A solution of 0.414 g. of tri-(nonylphenyl)-phosphite (commercially available as an antioxidant for rubber under the trade mark Polygard) in 12 ml. of benzene was prepared and 5 cigarette filters made of an acetonesoluble cellulose acetate were immersed therein for about a minute. After removal and drying at an average of C. for 1 hour, the filters showed 11.5% increase in weight. Three of these filters (0.43 gram in total weight) were placed in a snug-fitting glass tube situated in the carbon monoxide stream containing nickel carbonyl and following the nickel carbonyl generator of Example 1. In ten minutes about ml. of gas was passed therethrough. The filter showed by spectrochemical analysis a nickel content of 0.086% or 0.370 mg. total nickel as compared to less than 0.004 mg. in Example 15 in the absence of ligand on the filter.
Example 17 Trib-utyl phosphate (0.263 gram) was dissolved in benzene and 5 cigarete filters of cellulose acetate were immersed therein for 10 minutes. The filters were removed, dried at about 80 C. for 2 hours and 3 of the filters in a glass tube were placed in the stream of carbon monoxide containing nickel tetracarbonyl from the generator of Example 1 for 10 minutes. The gas rate was about 15 mL/minute. spectrochemical analysis showed a nickel content of 0.176 mg. (as compared to less than 0.004 mg. in Example 15) demonstrating the ability of the tributyl phosphate ligand to remove the nickel carbonyl from the gas stream.
Examples 18-20 Example 17 was repeated using 3 cigarette filters coated with 10% trimorpholyl phosphorus, the coating technique being the same as in Example 17. The nickel content after 10 minutes in the gas stream showed 30 micrograms of nickel (compared to less than 4 for the uncoated filter in Example 15).
Similar tests showed effectiveness of tripyridyl and triquinolyl phosphorus ligands in removal of nickel, cobalt and iron carbonyl from gases.
Example 21 Example 17 Was repeated using cigarette filters coated with about 25% triphenyl phosphorus. The gain in nickel content of the filters at the end of the test was found to be 57 micrograms.
SERIES C Examples 22-23 A 3% solution of Pentite in benzene was prepared. Nine unused filter sections of cellulose acetate were removed from Brand A cigarettes and were immersed in the Pentite solution for 2 to 4 minutes. After drying to constant weight it was determined that the cellulose acetate had adsorbed an average of about Pentite. Each of these filter sections was placed in a glass tube 7 inside diameter) in which they fit snugly, and 2 Brand A cigarettes from which the manufacturers filters had been removed, were smoked with each of these Pentite-cellulose acetate sections, the glass tube serving as a cigarette holder. Analysis showed that the nine filters had absorbed a total of 23.9 micrograms of nickel or 1.27 micrograms per cigarette smoked. Likewise 1.6 micrograms of iron was absorbed and 0.1 microgram cobalt per cigarette.
A specific control test (Example 23) was made with 18 cigarettes of Brand A using the filters as supplied with the cigarettes. Analysis showed that the filters had absorbed only 0.8 micrograms nickel per cigarette, 0.05 micrograms cobalt and 1.3 micrograms of iron/cigarette. The difference, in the amount of the nickel absorbed with Pentite and without Pentite was 0.47 micrograms of nickel. Based on the determinations of the Drs. Sunderman, this would represent a reduction of about 80% of the 20 percent of nickel content usually passing the filter, or a smoke containing less than reg. only about 4%, of the initial nickel content of the tobacco.
Example 24 Example 24 was similar to Example 22. Ten cellulose acetate filters from Brand A cigarettes were impregnated with tri(p-nonylphenyl) phosphite, and each filter was employed as a filter for smoking 2 Brand A cigarettes from which the manufacturers filters had been removed. The ten filters absorbed a total of 26.8 micrograms of nickel or 1.34 micrograms per cigarette; also 1.7 micrograms of iron per cigarette smoked was found. In comparison with the untreated filters of Example 23, the ligand tri-(nonylphenyl) phosphite, removed 0.54 micrograms more nickel than the filter supplied by the manufacturer of the Brand A cigarette. Based on the determination of the Drs. Sunderrnan this would represent a reduction of about 70% of the 20% of nickel content usually passing the filter, or a smoke containing less than 5%, e.g., only about 2%, of the initial nickel content of the tobacco.
' Example 25 Example 24 was repeated except that five cellulose acetate filters impregnated with tri(o-nonyl-phenyl) phosphite were employed as filters for smoking Brand B cigarettes, without removal of the filters from Brand B. Thus the impregnated filters served as a second or backup filter. The impregnated filters were used in smoking 2 each of Brand B cigarettes. After smoking, the filters supplied with Brand B were removed from the butts and were analyzed for comparison with the backup or impregnated filters.
The cellulose acetate filters supplied by the manufacturer on the Brand B cigarettes picked up approximately the following amounts of the metals: 0.8 micrograms nickel per cigarette, 1.3 micrograms iron and 0.06 micrograms of cobalt. The back-up filters containing the impregnating phosphite showed absorption of 1 microgram of nickel, 1.6 micrograms iron and 0.07 micrograms of cobalt which had passed through the Brand B filters, per cigarette smoked.
Examples 26 and 27 Examples analogous to Example 25 demonstrated that trimenthylphosphite and trilauryl trithiophosphite were effective for removal of nickel, iron and cobalt carbonyls from tobacco smoke.
Example 28 An alcohol-insoluble phosphatide, substantially mono and diphosphoinositide, was employed in this example. Cellulose acetate tow (about acetyl content, 5 denier fibers) was immersed for one minute in a benzene solution containing 10% of the phosphatide; after draining and drying the coated tow was found to have 23% of the phosphatide. Twenty portions of this coated tow, each weighing 0.20:0.005 g. were individually pressfitted into a ID. glass tube to serve as a filter for Brand C cigarettes. Each of the 20 filters was used to smoke 2 Brand C cigarettes from which the filters had been removed. The used filters were dried at room temperatures and analyzed. The relative efiiciency of the treated filter for removal of nickel carbonyl from the smoke, in comparison with the manufacturers filter of Brand C cigarettes, is apparent since 0.5 micrograms of nickel was absorbed per cigarette smoked with the treated filter, while the manufacturers filter, after smoking of the cigarette, contained only 0.08 microgram of nickel.
Example 29 In Example 29 alcohol-soluble lecithin was used in place of the alcohol-insoluble phosphatide of Example 28 as coating material for the cellulose acetate tow. Tow (3 grams) from the same batch of cellulose acetate was coated by immersing in a solution consisting of 3 g. lecithin, 27 grams isopropanol and 30 g. benzene. After one minute the tow was squeezed to drain off excess solution, and was dried in an C. stream of air. The coated tow contained 9.5% lecithin. Twenty portions of the tow (0.16:0.005 g. each) were snug-fitted into twenty 2-inch lengths of ID. glass tubes and each tube was employed as a filter for smoking two Brand C cigarettes from which the manufacturers filters had been removed. Analyses of the used filters showed that the filters had absorbed the following amounts of metal as carbonyls (values are in micrograms of metals per cigarette smoked); iron 6.5; nickel 0.67; cobalt 0.11. As in the case of Example 29, the removal of the 0.67 micrograms of nickel per cigarette, contrasts markedly with the failure of the manufacturers Brand C filter to remove any significant amount of nickel (see Example 28).
Example 30 Example 29 was repeated using cephalin as ligand material for coating cellulose acetate tow. The coated tow contained about 16.5% cephalin. Each of 20 portions (018010.005 g.) of this filter material was used as filter for smoking 2 Brand C cigarettes. Analysis showed absorption of the following amounts of metals by the treated filters in micrograms per cigarette smoked: nickel 0.91; cobalt 0.01; iron 8.56. Again the nickel removed contrasted with the failure of the manufacturers filter to remove any significant amount of nickel from the smoke.
Example 31 As ligand material for coating the cellulose acetate tow, the lecithin and cephalin fractions from soya bean were employed in combination, i.e., without preliminary separation. The coated tow contained 12% of combined phosphatides, and 0285:0005 g. of the coated tow were used as back-up filter material for smoking 2 Brand C cigarettes per plug. The plugs were made by press fitting the weighed portions of coated tow into a V1 LD. glass tube which served as a cigarette holder and filter. Brand C cigarettes were employed without removal of manufacturers filter. Analyses after smoking showed the following absorptions of metal (in micrograms) per cigarette smoked: nickel 0.8; cobalt 1.5; iron 10.2. Thus the treated filters were eificatious for removing from the smoke the volatile metal compounds.
Example 32 Total lecithin and cephalin fractions similar to those used in Example 31 were hydrogenated to substantially reduce unsaturation as in Example 33 following. Cellulose acetate tow (about 40% acetyl content, 5 denier fibers) were impregnated with the hydrogenated phosphatide product to give a filter containing about 10% of the hydrogenated phosphatides. This coated tow was used in Smoking Brand C cigarettes as in Example 31, with substantially similar results.
Example 33 Cephalin of the type employed in Example 30 was hydrogenated according to the method of US. Patent 3,026,341 issued March 20, 1962, to substantially reduce unsaturation, and the hydrogenated product was used to impregnate cellulose acetate tow to give a filter material containing about 15% of hydrocephalin. Twenty portions of this filter (0170:0005 g.) were used to repeat the smOking procedure of Example 31. Analyses of the filters before and after use, by diiference showed absorption from the cigarette smoke of approximately micrograms of iron, 0.8 microgram of nickel and 0.2 microgram of cobalt per cigarette smoked.
With respect to Examples 28-33 it was noted that the filter supplied by the manufacturer contain-ed only 0.08 microgram of nickel after smoking of the cigarette, and it was also noted that the filter of the present invention absorbed larger amounts of nickel when used as back-up filters following the filters of the Brand C cigarettes, than when they were substituted for such filters. Analyses of Brand C filters before and after smoking were accordingly made which showed that the unused Brand C filters contained nickel in a larger amount than the used Brand C filters, and thus had actually contributed volatile nickel compounds to the smoke, in contrast to the Brand A filters, which absorbed some nickel from the smoke as shown by Example 23.
While there have been described herein what are at present considered preferred embodiments of the invention, it will be obvious to those skilled in the art that modifications and changes may be made without departing from the essence of the invention. It is therefore to be understood that the exemplary embodiments are illustrative and not restrictive to the invention, the scope of which is defined in the appended claims, and that all modifications that come within the meaning and range of equivalency of the claims are intended to be included therein.
I claim:
1. The method of treating tobacco smoke which comprises reducing the content of transition metal carbonyl therein by contacting the same with ligand material, said ligand material comprising essentially tri-(nonylphenyl)- phosphite.
2. A filter element for reducing the transition metal 16 eluding a substance comprising a ligand material therein carbonyl content of tobacco smoke, said filter element inexposed to the smoke, said ligand material comprising essentially tri-(nonylphenyl)-phosphite.
3. As a new article of manufacture, a cigarette having exposed in the path of the tobacco smoke therein means for reducing the content of metal carbonyls thereof, said means comprising ligand material, said ligand material comprising essentially tri-(nonylphenyl)-phosphite.
4. As a new article of manufacture, a cigarette having exposed in the path of the tobacco smoke therein means for reducing the metal carbonyl content of the smoke, said means comprising activated carbon which has been impregnated with a solution of tri-(nonylphenyl)-phosphite and dried.
5. As a new article of manufacture, a cigarette having exposed in the path of the tobacco smoke therein means for reducing the metal carbonyl content of the smoke, said means comprising cellulose acetate filaments which have been impregnated with a solution of tri-(nonylphenyl)-phosphite and dried.
References Cited by the Examiner published by John Wiley & Sons, Inc., 1959, pp. 134, 135, 361, 479 cited.
Outlines of Biochemistry, by Ross Aiken Gortner published by John Wiley & Sons, Inc., New York, Third Edition, February 1950, 1078 pp., page 350 cited.
SAMUEL KOREN, Primary Examiner. MELVIN D. REIN, ABRAHAM G. STONE, Examiners.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,246,654 April 19, 1966 Eldon E. Stahly It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.
Column 16, line 2, strike out "carbonyl content of tocacco smoke, said filter element inand insert the same before "cluding" in line 1, same column 16.
Signed and sealed this 26th day of November 1968.
(SEAL) Attest:
EDWARD J. BRENNER Edward M. Fletcher, Jr.
Commissioner of Patents Attesting Officer

Claims (1)

  1. 4. AS A NEW ARTICLE OF MANUFACTURE, A CIGARETTE HAVING EXPOSED IN THE PATH OF THE TOBACCO SMOKE THEREIN MEANS FOR REDUCING THE METAL CARBONYL CONTENT OF THE SMOKE, SAID MEANS COMPRISING ACTIVATED CARBON WHICH HAS BEEN IMPREGNATED WITH A SOLUTION OF TRI-(NONYLPHENYL)-PHOSPHITE AND DRIED.
US244573A 1962-12-14 1962-12-14 Tobacco smoke, filters and cigarettes Expired - Lifetime US3246654A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US244573A US3246654A (en) 1962-12-14 1962-12-14 Tobacco smoke, filters and cigarettes
US543051A US3319635A (en) 1962-12-14 1966-04-18 Process for the purification of tobacco smoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US244573A US3246654A (en) 1962-12-14 1962-12-14 Tobacco smoke, filters and cigarettes

Publications (1)

Publication Number Publication Date
US3246654A true US3246654A (en) 1966-04-19

Family

ID=22923310

Family Applications (1)

Application Number Title Priority Date Filing Date
US244573A Expired - Lifetime US3246654A (en) 1962-12-14 1962-12-14 Tobacco smoke, filters and cigarettes

Country Status (1)

Country Link
US (1) US3246654A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515151A (en) * 1968-05-14 1970-06-02 George Brent Cigarette with filter
US3923954A (en) * 1970-12-04 1975-12-02 Jr Ernest Quentin Petrey Method for, and composition used in, fluid treatment
US4194517A (en) * 1976-10-06 1980-03-25 B.A.T. Cigaretten-Fabriken Gmbh Filter for cigarettes, cigarillos or pipes
DE3041383A1 (en) * 1979-11-13 1981-06-11 British-American Tobacco Co. Ltd., London NITROGEN OXIDE FILTER MATERIAL OR FILTER, ESPECIALLY FOR TOBACCO SMOKE
US4316730A (en) * 1978-04-27 1982-02-23 Max Planck-Gesellschaft Filter for the removal of apolar organic substances from gases
US20050155615A1 (en) * 2000-10-16 2005-07-21 Peter Rohdewald Air filter with scavenging effect on free radicals in gaseous phase and its method of preparation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1060982A (en) * 1952-07-16 1954-04-07 Filter material for tobacco smoke
US2815760A (en) * 1951-12-24 1957-12-10 Schreus Hans Theo Tobacco smoke filter
US2886591A (en) * 1956-04-18 1959-05-12 Basf Ag Production of acrylic acid esters
US2904050A (en) * 1955-01-05 1959-09-15 Eastman Kodak Co Tobacco smoke filtering elements
US2933460A (en) * 1956-05-29 1960-04-19 Rohm & Haas Ion-exchange fibers, films and the like from sulfur containing alkoxymethyl monomers
US2968306A (en) * 1956-02-29 1961-01-17 Eastman Kodak Co Tobacco smoke filter capable of selective removal of aldehydes
US3030964A (en) * 1958-01-08 1962-04-24 United Shoe Machinery Corp Smoke filters
US3079926A (en) * 1958-10-24 1963-03-05 Harry R Litchfield Filters
US3118452A (en) * 1961-04-17 1964-01-21 American Mach & Foundry Tobacco sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815760A (en) * 1951-12-24 1957-12-10 Schreus Hans Theo Tobacco smoke filter
FR1060982A (en) * 1952-07-16 1954-04-07 Filter material for tobacco smoke
US2904050A (en) * 1955-01-05 1959-09-15 Eastman Kodak Co Tobacco smoke filtering elements
US2968306A (en) * 1956-02-29 1961-01-17 Eastman Kodak Co Tobacco smoke filter capable of selective removal of aldehydes
US2886591A (en) * 1956-04-18 1959-05-12 Basf Ag Production of acrylic acid esters
US2933460A (en) * 1956-05-29 1960-04-19 Rohm & Haas Ion-exchange fibers, films and the like from sulfur containing alkoxymethyl monomers
US3030964A (en) * 1958-01-08 1962-04-24 United Shoe Machinery Corp Smoke filters
US3079926A (en) * 1958-10-24 1963-03-05 Harry R Litchfield Filters
US3118452A (en) * 1961-04-17 1964-01-21 American Mach & Foundry Tobacco sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515151A (en) * 1968-05-14 1970-06-02 George Brent Cigarette with filter
US3923954A (en) * 1970-12-04 1975-12-02 Jr Ernest Quentin Petrey Method for, and composition used in, fluid treatment
US4194517A (en) * 1976-10-06 1980-03-25 B.A.T. Cigaretten-Fabriken Gmbh Filter for cigarettes, cigarillos or pipes
US4316730A (en) * 1978-04-27 1982-02-23 Max Planck-Gesellschaft Filter for the removal of apolar organic substances from gases
DE3041383A1 (en) * 1979-11-13 1981-06-11 British-American Tobacco Co. Ltd., London NITROGEN OXIDE FILTER MATERIAL OR FILTER, ESPECIALLY FOR TOBACCO SMOKE
US20050155615A1 (en) * 2000-10-16 2005-07-21 Peter Rohdewald Air filter with scavenging effect on free radicals in gaseous phase and its method of preparation

Similar Documents

Publication Publication Date Title
US5746231A (en) Tobacco smoke filter for removing toxic compounds
EP1557098B1 (en) Tobacco smoke filter
CA1212009A (en) Filter for reducing the toxic effects of cigarette tobacco smoke
US3246654A (en) Tobacco smoke, filters and cigarettes
US3319635A (en) Process for the purification of tobacco smoke
ZA200506190B (en) Filter containing a metal phthalocyanine and polycationic polymer
US3528432A (en) Cigarette or the like having combustion stop
JP3204511B2 (en) Cigarette filter containing microcapsules
US4517995A (en) Filters for polynuclear aromatic hydrocarbon-containing smoke
US3349779A (en) Cigarette filter element containing certain hexahydrotriazines for the selective removal of acrolein
EP0493026A2 (en) Cigarette filter
EP0532159A1 (en) Removal of nicotine from tobacco smoke
US3429318A (en) Selective filter medium
US3424173A (en) Filter element for selectively removing nicotine from tobacco smoke
US2920630A (en) Tobacco smoke filter
US3890983A (en) Method for preparing cigarette filter
US3298380A (en) Process for purification of tobacco smoke
US3417759A (en) Filter element for selectively removing nicotine from tobacco smoke
US3359990A (en) Cigarette filter element containing water-soluble monomeric hydrazides for the selective removal of aldehyde vapors
US3288150A (en) Process for the purification of tobacco smoke
US3291139A (en) Method of purifying tobacco smoke
CN111096476B (en) Composite material, preparation method and application thereof
US3288151A (en) Process for the purification of tobacco smoke
AU2004202709B9 (en) Tobacco smoke filter
Bock et al. Carcinogenic activity of smoke condensate from cigarettes with ammonium sulfamate‐treated paper