US3240439A - Apparatus for splicing and winding yarn - Google Patents

Apparatus for splicing and winding yarn Download PDF

Info

Publication number
US3240439A
US3240439A US161196A US16119661A US3240439A US 3240439 A US3240439 A US 3240439A US 161196 A US161196 A US 161196A US 16119661 A US16119661 A US 16119661A US 3240439 A US3240439 A US 3240439A
Authority
US
United States
Prior art keywords
splicing
spindle
series
yarn
spindles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US161196A
Inventor
Ferguson Richard
Buonpastore Ernesto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deering Milliken Research Corp
Milliken Research Corp
Original Assignee
Milliken Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DENDAT1303090D priority Critical patent/DE1303090B/de
Application filed by Milliken Research Corp filed Critical Milliken Research Corp
Priority to US161196A priority patent/US3240439A/en
Priority to FR918945A priority patent/FR1344639A/en
Priority to GB48163/62A priority patent/GB1028303A/en
Priority to US359971A priority patent/US3227116A/en
Application granted granted Critical
Publication of US3240439A publication Critical patent/US3240439A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B65/00Devices for severing the needle or lower thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H69/00Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H69/00Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
    • B65H69/06Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device by splicing
    • B65H69/068Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device by splicing using a binding thread, e.g. sewing
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B29/00Pressers; Presser feet
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B37/00Devices incorporated in sewing machines for slitting, grooving, or cutting
    • D05B37/04Cutting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B73/00Casings
    • D05B73/04Lower casings
    • D05B73/12Slides; Needle plates
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05DINDEXING SCHEME ASSOCIATED WITH SUBCLASSES D05B AND D05C, RELATING TO SEWING, EMBROIDERING AND TUFTING
    • D05D2303/00Applied objects or articles
    • D05D2303/08Cordage

Definitions

  • This invention relates to winding means for refilling partially exhausted yarn packages that have been removed for one reason or another from a textile manufacturing operation prior to complete exhaustion, and that contain residual yarn of greater value than can be allowed to go to waste.
  • the apparatus incorporates a circular series of paired supply and take-up spindles that is arranged for individual rotation of each spindle in the series during a winding phase, and for indexing movement of the series as a whole so that the spindle pairs are successively handled through a splicing phase in relation to splicing means that allows a single operator to attend to the necessary splicing, as well as to load and doff the apparatus, with exceptional effectiveness.
  • FIG. 1 is a perspective view indicating generally the arrangement of apparatus for splicing and winding yarn in accordance with this invention
  • FIG. 2 is a more or less schematic plan detail illustrating the manner in which the previously mentioned circular series of paired supply and take-up spindles is disposed for splicing and winding of yarn;
  • FIG. 3 is a sectional detail taken substantially at the line 4-4 in FIG. 2 to show the manner in which the supply spindles are mounted;
  • FIG. 4 is a sectional detail taken substantially at the line 4-4 in FIG. 2 to show the manner in which the supply spindles are mounted;
  • FIG. 5 is a side elevation detail of the braking means provided for the supply spindles as seen from the outside at the spindle braking position indicated in FIG. 2;
  • FIG. 6 is a right end elevation corresponding to FIG. 5;
  • FIG. 7 is a layout detail in plan of the escapement employed for indexing the circular spindle series
  • FIG. 8 is a sectional detail taken substantially at the line 88 in FIG. 7;
  • FIG. 9 is a further sectional detail taken substantially at the line 99 in FIG. 8;
  • FIG. 10 is a fragmentary detail of the chain structure employed for handling splicing slack during take-up
  • FIG. 11 is a plan detail of a hook element such as is employed on the chain structure shown in FIG. 10;
  • FIG. 12 is a plane detail indicating the overall arrangement of the yarn handling means employed at the splicing station
  • FIG. 13 is a side elevation corresponding to FIG. 12;
  • FIG. 14 is a sectional detail taken substantially at the line 1414 in FIG. 12;
  • FIG. 15 is an isolated plan detail of the form of presser foot employed at the splicing station according to the present invention.
  • FIG. 16 is a side elevation corresponding to FIG. 15.
  • FIG. 17 is an enlarged detail of the presser foot structure at the portion circled in FIG. 16. H
  • FIG. 1 embodiment is seen to be characterized in general by, as previously noted, a circular series of paired supply and take-up spindles that is arranged, as indicated generally by the reference numeral 10, to carry partially exhausted yarn packages for winding between the spindle pairs so as to refill packages on the take-up spindles; and by a splicing means, as indicated generally by the reference numeral 100, that is located within the circular path of the spindle series 10 and adjacent the spindle tips so as to define a splicing station in relation to a pair of spindles of the series.
  • a splicing means as indicated generally by the reference numeral 100
  • FIGS. 2 through 6 The arrangement of the circular spindle series 10 appears more fully in FIGS. 2 through 6 in which the paired supply and take-up spindles 11 and 12 are shown to be carried concentrically by a turntable structure that includes an upper spindle table 13 and a lower bolster table 14 spaced therebelow, with both tables 13 and 14 mounted in any suitable manner (not shown) for rotation about a fixed center post 15 that is supported uprightly on a frame structure 16 which forms a supporting base for the splicing and winding apparatus.
  • the spindle series is preferably arranged with the supply spindles 11 spaced in a circle of somewhat greater radius than the take-up spindles 12, but every supply spindle 11 is paired with a take-up spindle 12, and the spindle pairs are spaced regularly (suitably at 45 intervals) in a circular path about the turntable structure.
  • Each of the spindles so located and spaced is carried for individual rotation about its axis, the supply spindles 11 being fitted with biasing units 17 and mounted in the upper spindle table 13 as seen in FIG. 4, while the take-up spindles 12 extend below the upper table 13 to have bolsters 18 therefor installed on the lower bolster table as seen in FIG. 3.
  • the take-up spindles 12 have whorl portions 19 that are engaged within a winding range (see FIG. 2) by an endless belt 20, which is additionally trained on idler pulleys 21, 22, 23 and 24 to run free of (or in special relation to) the spindles 12 at respective braking, splicing and slack take-up positions, and to be looped about the pulley 25 of a drive motor 26 adjacent the start of the winding range.
  • the drive belt 20 acts to cause and maintain rotation of the take-up spindles 12 throughout the Winding range indicated in FIG.
  • the take-up spindles 12 are of a particularly free-running type, it may be necessary to provide a strap drag or the like at each one to obtain an adequate indexing bias from the belt drive 20, but this is simply a matter of suitably balancing or proportioning the forces involved, and introduces no difference in principle whatever.
  • Such indexing of the spindle pairs is controlled according to the present invention by a selectively operable escapement, which is designated generally in FIGS. 2 and and 3 by the reference numeral 27, and which is arranged on the frame structure 16 in relation to a circular series of abutment members 28 carried at the bottom face of the lower bolster table 14 in correspondence with the serial spacing of the take-up spindles 12.
  • the abutment members 28 preferably take the form of rollers as indicated best in FIGS.
  • escapement 27 functions normally to hold the turntable structure stationary, against the drive belt bias thereon, by opposing disposition at one of the abutment members 28, while allowing an indexing release of an engaged abutment member 28 at any time in a manner that necessarily results in establishing a holding engagement with the following abutment member 28 to complete an indexing step.
  • the escapement 27 comprises 'a plunger 29 facing in a direction opposite to that of the drive belt bias on the turntable structure, and carried for pivoting of the sliding axis thereof about an axis perpendicular to the upper and lower turntable components 13 and 14 and spaced laterally of the circular path in which the abutment members 28 are serially arranged.
  • the plunger 29 is seen in FIG.
  • This pivoted mounting of the weldment 31 allows the plunger 29 to find a retracted holding position at which it bottoms in the path of an oncoming abutment member 28 (as appears from the full line illustration in FIG. 7), while providing at the same time for indexing release to an extended position (as indicated by dotted lines in FIG. 7).
  • a control lever 35 (see FIGS. 1, 2 and 3) extends for convenient manual manipulation to pivot the escapement 27 so that the sliding axis of the plunger 29 assumes the angular disposition represented by dotted lines in FIGS. 2 and 7, and at which disposition the opposing abutment member 28 is cleared to free the turntable structure and to permit extension of the plunger 29 to the dotted line FIG.
  • the last mentioned means takes the form of a feeler structure 39 that is carried by the weldment frame 31 so as to shift into the path of the previously released abutment member 28 upon each indexing release of the escapement 27 (see FIG. 7).
  • Such shifting of the feeler structure 39 acts to allow initial indexing movement of the released turntable structure only to the extend indicated in FIG. 7 by the dotted line abutment member positions at 28, which are determined by the point of contact with the shifted feeler structure 39 of the abutment member 28 that had been released immediatley preceding the current indexing release.
  • any jamming condition that would prevent proper recovery of the escapement 27 will likewise block further indexing movement, so as to eliminate the possibility of freeing the turntable structure for uncontrolled rotation; while the normal result of such contact is to insure that proper recovery of the escapement 27 is completed, through displacement of the feeler structure 39, when the abutment members have reached the further dotted line positions shown in FIG. 7 at 28", so that the plunger 29 is necessarily positioned for opposing engagement with the next following abutment member 28 to bottom at its retracted holding position and thereby determine the full extent of the indexing step being carried out.
  • the escapement 27 also advantageously incorporates a shock absorbing unit 40 that is assembled within the weldment frame 31 (see FIG. 8) on an axis spaced in parallel relation to that of the plunger slide rod 30, and that is tied through a cross arm 41 to follow the extending and retracting motion of slide rod 30, with the shock absorbing action set so as to allow shifting of plunger 29 readily under the force of spring 36 to the extending position it assumes upon indexing release, while cushioning return to the retracted holding position in a smooth and simple manner that involves an entirely mechanical operating system which is essentially shock-free.
  • a shock absorbing unit 40 that is assembled within the weldment frame 31 (see FIG. 8) on an axis spaced in parallel relation to that of the plunger slide rod 30, and that is tied through a cross arm 41 to follow the extending and retracting motion of slide rod 30, with the shock absorbing action set so as to allow shifting of plunger 29 readily under the force of spring 36 to the extending position it assumes upon indexing release, while cushioning return to the
  • the movement of the turntable structure, that takes place upon indexing release results from the bias imposed by the endless drive belt 20, which is trained over the take-up spindle whorls 19 throughout the winding range indicated in FIG. 2.
  • the trained arrangement of the drive belt 20 follows a pattern of adjacent chords between the whorls 19 that provides suificient wrap at each whorl for rotating the involved take-up spindles 12 effectively, while at the same time imposing the indexing bias.
  • the winding range extends through several indexing steps, suitably five such steps as illustrated in FIG.
  • a spindle braking position (see FIG. 2) is arranged at the indexing step immediately beyond the end of the winding range, and immediately in advance of the splicing means 100.
  • a first acting brake means 42 is situated at this spindle braking position to impose a drag at the bottom flange of the supply spool S during the indexing movement so that its.
  • FIGS. 5 and 6 show the arrangement of the first acting brake means 42 to comprise a supporting plate 44 mounted in any suitable manner (not shown) on the base frame 16 and extending therefrom to carry an upwardly reaching operating arm structure 45 by which the brake means 42 is applied under the force of a compression spring 46 acting from a retaining seat provided on a stud 47 that is positioned by a fixed bracket member 48 carried by the supporting plate 44, with an adjustable stud 49 additionally extending from the operating arm structure 45 to bear on the fixed bracket member 48 and thereby limit appropriately the extent in the brake means 42 may shift under the force of spring 46.
  • the first acting brake means 42 just described is located outwardly of the spindle series for application to the supply spools S, while the second acting brake means 43 is in turn arranged inwardly of the spindle series for related selective action on the take-up spools T. As seen in FIG.
  • this second acting brake means 43 is carried by a mounting bracket 50 that is secured above the turntable structure on the center post 15, and has first and second brake shoe sections 51 and 52 articulated through compression spring biasing at 53 and 54 for respective braking action on the take-up spools T not only at the spindle braking position, but at the splicing position as well.
  • the next indexing step will position the spindle 11 and 12 for this pair at the splicing station with the take-up spool T having a trailing free yarn end a available thereon that will need to be spliced with a leading free yarn end b from a new supply spool S in order to continue winding. Accordingly, it is at this position that the splicing means 100 is employed, in the manner that is explained at length further below, to form a continuous yarn end a so that winding may be resumed.
  • the result of such splicing is to introduce a considerable initial slack in the joined yarn end 0, and the apparatus of the present invention is specially arranged for handling and removing this slack before winding is again commenced.
  • the means provided for this purpose comprises a normally idle conveyer suitably formed by a sprocket chain 56 (see FIG. trained about upper and lower idle sprocket wheels 57 and 58 at a disposition that presents a conveyor reach extending beneath the splicing means 100 at a downward inclination in the direction of turntable indexing from a starting upper end located sidewise of and at the general elevation of the splicing means 100 to a terminating lower end within the circular path of the spindle series and adjacent the spindle pair indexed at the slack take-up position that is arranged immediately beyond the splicing position.
  • a normally idle conveyer suitably formed by a sprocket chain 56 (see FIG. trained about upper and lower idle sprocket wheels 57 and 58 at a disposition that presents a conveyor reach extending beneath the splicing means 100 at a downward inclination in the direction of turntable indexing from a starting upper end located sidewise of and at the general elevation of the splicing means 100
  • the entire length of the thus disposed conveyor chain 56 is fitted at spaced'intervals with laterally extending hook elements 59 (see FIGS. 10 and 11) that are arranged so that the bights thereof open upwardly along the downwardly inclined reach presented in relation to the spindle series.
  • the involved supply spool S is subjected to the drag of an additional brake means 60, that is of the same type and general arrangement as the previously described brake means 42, while the paired take-up spool T is subjected to a light winding drive, through training of the drive belt 20 between the idler pulleys 22 and 23 to run substantially tangent at the whorl 19 of the spindle 12 on which this spool T 'is carried, which results in exerting a sufficient spindle turning force to wind the free slack onto the spool T.
  • the joined yarn end 0 will meanwhile, however, be held extended in an orderly fashion by the engaged conveyer hook element 59 with the conveyer 56 shifting in response to pull on the slack loop as indexing to the slack take-up position occurs and then as the slack is removed at this position.
  • An auxiliary, spring-positioned, guide finger 61 may, if desired, be disposed as indicated in FIG. 3 to provide more certainly for holding the initially extended slack loop free of possible fouling as the indexing takes place.
  • the action of the conveyer 56- is thus to pay off the slack by allowing a pulled displacement of the engaged hook element 59 along the downwardly inclined reach to the lower end thereof, where the sprocket wheel 58 at this lower end causes a diversion that, in effect, pivots the hook element 59 so as to dispose the bight thereof for releasing the yarn slack upon substantial completion of the take-up.
  • the light winding force applied by the tangent disposition of the belt drive 20 will not be sufficient to overcome the drag of the brake means 60, so that the supply and take-up spools S and T will then be held in a braked condition at the slack take-up position until the next indexing step advances them into the winding range.
  • the splicing means 100 referred to previously as being located for use at the splicing position is illustrated in particular detail by FIGS. 12 through 17.
  • the earlier noted general showing in FIG. 1 indicates that this splicing means 100 incorporates a sewing mechanism 102 arranged to be driven from a suitable motor 104 equipped with a clutch device at 106 that may be controlled from a conveniently accessible foot treadle or the like as indicated at 108, with a supply of sewing thread disposed adjacently in spool packages 110 for delivery over guide means at 112. Sewing mechanisms have previously been employed for joining yarn ends by a splice of stitches inserted in oppositely directed portions of the yarn ends placed side-by-side.
  • a sewing mechanism of the type adapted to form a zigzag stitch is used, and the sewing mechanism 102 employed at the splicing means 100 is accordingly of this type, having a reciprocating needle at 114 that also shifts laterally to form the zigzag stitches in the conventional manner, and being otherwise arranged in a usual form with the exception of a special presser foot and related handling means provided according to the present invention for facilitating the splicing operation, as illustrated in FIGS. 12 to 17.
  • the special presser foot is designated generally by the reference numeral 116, and is seen to have a needle slot formed therein at 118 that is elongated appropriately for accommodating the zigzag stitching motion of the needle 114.
  • the sewing feed direction as determined by feed dogs (not shown) below the presser foot 116, extends transversely of the needle slot 118 and from top to bottom in the FIG. 12 illustration; that is, from the right to the left of an operator at the splicing means 100 which has its front shown to the right in FIG. 12.
  • a pad 120 is fixed at the top face of pressure foot 116 to have the presser bar (not shown) of the sewing mechanism 102 bear thereat when lowered so as to maintain a downward pressure during sewing just as if a conventional presser foot were carried in the usual manner by the presser bar.
  • the presser foot 116 of the present invention is secured beneath the extending end of a mounting plate 122 that is arranged within the throat of the sewing mechanism 102 from a splicing table 124 which is formed with a large central notch from its forward end to clear the sewing bed at which the presser foot 116 is disposed, while extending at both sides thereof and being fitted for attachment with the sewing mechanism 102 on the bracket structure provided at the splicing station for this purpose, as indicated at 126 in FIG. 3.
  • the presser foot 116 is specially characterized by a bottom face groove 126 that extends transversely of the needle slot 118, and that has a shape (see FIGS. 16 and 17) defined by a substantially vertical rear wall 128 located for positioning two ends of yarn to be spliced in relation to the zigzag stitching motion of a needle operating in the slot 118, and by a forwardly extending wall 130 that slants downwardly from the upper edge of the rear wall 128 to the bottom face of the presser foot.
  • the presser foot 116 has an upwardly formed front lip portion 132 under which the ends of yarn to be spliced may be inserted readily, and the side edges of this front lip portion 132 are angled inwardly toward the groove 126 at 134 and 136 for aiding in the disposition of the yarn ends properly at the groove 126 as noted further below, while a threadup slot 138 is arranged angularly through the lip portion 132 to an intersection with the needle slot 118 at one side thereof.
  • the length of the presser foot groove 126 corresponds to the width of a bottom face rib 140 in which it is formed.
  • This rib 140 extends rearwardly from the groove 126 to the back edge of the presser foot 116, while the remaining presser foot body is formed by wing portions 142 and 144 at each side of the rib 140 that have front edges reaching outwardly from each side of the front lip portion 132 in alignment with the rear wall 128 of groove 126, and that have their outer front corner portions angularly beveled, as indicated at 142' and 144.
  • the related handling means provided, as previously mentioned, for use in carrying out the splicing operation comprise a clamp arm 146 that is disposed with its forward end portion overlying the right presser foot wing portion 142 along the front edge thereof and is formed with an upturned ear at 146' above the beveled corner portion 142';
  • This clamp arm 146 is positioned by a locating pin at 148 that is fixed in the presser foot 116, and by a stud 150 that is fixed in the mounting plate 122 to have a spring 152 contained thereon above the clamp arm by a wing nut 154, so as to exert a downward bias about a rear clamp arm foot portion 156 that rests on mounting plate 122.
  • a first cutting means 158 is supported on an arm 160 so as to allow a yarn end to be passed rearwardly thereunder and then pulled upwardly and forwardly through a guide throat 162 so that it is directed for severing at a blade element 164; the supporting arm 160 being carried for lengthwise adjustment on the splicing table 124 so that this severing may be done at a predetermined yarn length from the presser foot groove 126, as noted further below.
  • a somewhat similar second cutting means 166 is mounted on an underlying spacer plate 168 to extend so that a guide throat portion 170 therein is located above the left corner bevel 142' on the presser foot 116 in a manner that provides for selective severing at a blade element 172 of a leading yarn end dangling from a splice, while allowing the other yarn end and the splice to pass freely thereunder.
  • the left side of the splicing table 124 carries a second clamping means 174 that is arranged to impose a let-off bias in the sewing feed direction on yarns being spliced.
  • this second clamping means 174 is pivoted at 176 and has a bent coil spring 178 applied thereto at a bracket fitting 180 from a similar anchor bracket at 182, so as normally to assume the full line position shown in FIG. 12, but being shiftable against the bias of spring 178 to the dotted line position indicated.
  • the clamping means 178 is completed by an upper clamping finger 184 that has an upwardly turned front end portion 184' to provide for insertion of yarn readily thereunder, and that is held in place by a locating pin 186, which also defines the depth of the clamping throat, and by a leaf spring 188 which is set to bear at the top face thereof by a screw 188' that extends through the upper clamping finger 184 to the pivoted base portion of the clamping means 174.
  • a third cutting means 190 is arranged at the left front portion of the splicing table 124 on a mounting bracket 192, so as to present a guide throat 194 leading to a blade element 196 at which the sewing threads may be severed adjacent the trailing end of a completed splice.
  • the bracket 192 also serves to provide a fixed clamping surface extending vertically beneath the guide throat 194 and to carry an opposed clamping element 198 biased yieldably thereat, as indicated at 198' in FIG. 12, so that the respective needle and bobbin threads at and y (see FIG. 12) are held for convenient handling in starting the next splice upon severing at the cutting means 190.
  • an operator In forming a splice at the above described splicing means 100, an operator first finds the free yarn end a at the involved supply spool S and strips a sufiicient splicing length therefrom, which is then held extending from the operators left hand to the right one in the direction of its free end, while the operators left hand inserts the yarn end a in the left hand clamping means 174 and at the same time shifts this clamping means 174 against the bias thereon to the dotted line position indicated in FIG. 12.
  • the operators right hand is employed concurrently to pass the extending yarn end a beneath the left hand cutting means 166 and beneath the presser foot lip portion'132 and then under the right hand clamp arm 146, while exerting sufficient tension to draw the yarn end a into the bottom face groove 126 of presser foot 116.
  • the forwardly slanting groove wall 130 allows the yarn insertion readily without any necessity for raising the presser foot 116 from its lowered operating position by the lever manipulation that is usually required for this purpose.
  • the free yarn end a will be held between the left hand clamping means 174 and the clamp arm 146 at a trained disposition through the presser foot grooving 126 in the direction opposite to the sewing feed direction, and with a let-off bias imposed thereon in the sewing feed direction.
  • the extending free end of the yarn a is then passed rearwardly under the first cutting means 158 and brought upwardly and forwardly through the guide throat 162 so as to be severed at the blade element 164, at the selected predetermined length ahead of the sewing mechanism 102 for which the cutting means 158 has been set, which will determine the length of the splice that is to be formed.
  • the resulting disposition of the yarn a is illustrated schematically by the broken line indication in FIG. 12.
  • the operator finds the free yarn end b at the paired take-up bobbin T and strips a splicing length therefrom, which is held extending oppositely from right to left hands and is inserted beneath the presser f-oot lip portion 132 for di- 9 rection to the bottom face groove 126 beside the previously inserted yarn end a.
  • the yarn end b is tensioned by the operator upwardly and rearwardly at both sides of the presser foot 116 (see the broken line schematic illustration in FIG. 12), so that the angled side edges 134 and 136 of the front lip portion 132 are utilized for disposing the yarn b properly in the groove 126 beside the yarn a.
  • the operators left hand picks up the sewing threads x and y from the auxiliary clamping means incorporated in the cutting means 190, and holds them extending together with the yarn b at the left side of the presser foot 116.
  • the nature of the presser foot grooving 126 is such that these yarns a and b will nevertheless shift immediately into proper position for splicing as soon as the sewing operation commences and the needle 114 is once raised to allow such shifting under the previously mentioned upward and rearward tension on the yarn b which the operator will maintain until splicing has started.
  • the operator may then relax the initially imposed tension for the forwardly slanting groove wall 130 acts to impose a squeezing bias on the yarns a and b toward the rear wall 128 (see FIG. 17) so as to maintain them properly positioned as the sewing operation continues.
  • the leading end of the splice formed by zigzag stitching of the yarns a and b will feed to the left from the pressure foot grooving in the sewing feed direction, and the yarn a will be held extending taut under the left hand cutting means 166 by the let-off bias imposed from the left hand clamping means 174, which will shift pivotally to the left as the sewing feed allows.
  • the operator thereupon while still holding the free end of the yarn b and sewing threads x and y upwardly to the left of the presser foot 116, watches the leading end of the splice as it approaches the left hand cutting means 166, so as to execute a quick jerk at the proper time by which the held yarn b and sewing threads at and y are pulled through the guide throat 170 for severing at the blade element 172, to leave the splice free of dangling yarn or threads at its leading end which then passes on beneath the cutting means 166.
  • the operator then watches to the right of the presser foot 116 for emergence of the trailing end of yarn a as it is pulled from beneath the right hand clamping arm 146 by the sewing feed to signal the virtual completion of the splice being formed.
  • the operator grasps the yarn a to the left and pulls forwardly to free it from the left hand clamping means 174, while likewise grasp ing and pulling forwardly at the right on the yarn b to remove the spliced ends from beneath the presser foot 116, and while concurrently releasing the foot treadle 108 as soon as the spliced ends are felt to be free of the needle 114.
  • presser foot 116 allows such removal without requiring any particular manipulation of the needle or the pressure for this purpose, as the forwardly slanting wall 130 of the presser foot grooving 126 readily releases the spliced 19 yarns for removal under the forward pull noted above as soon as the needle 114 is raised after such a pull is exerted.
  • the spliced yarns thus removed by the operator will then be at a position adjacent the third cutting means 190 disposed at the left front of the splicing table 124, and the operator thereupon causes the trailing end of the splice just formed to move over the cutting means 190 so that the sewing threads x and y are pulled through the guide throat 194 for severing at the blade element 196, while being clamped adjacently so as to be held in readiness for the next splicing operation as previously noted.
  • the resulting spliced yarn loop c is then delivered to the conveyor 56 for removal of the slack involved in the manner that has already been described, and the operator needs only to pull the control lever 35, so as to index the involved supply and take-up spools S and T to the slack take-up position where subsequent handling for winding continues automatically, in order to be free for directing attention immediately to preparations for commencing the next required splice.
  • the operator is only required additionally to load and doff the spindles 11 and 12 as needed to maintain the apparatus of the present invention serviced for winding operation. Assuming that operation of the apparatus is started with all of the spindles empty, the operator Will first load the pair of spindles 11 and 12 at the splicing position with partially exhausted spools selected from an adjacent stack that has been accumulated for rewinding, using spools that carry a greater amount of yarn as take-up spools T on the spindle 12 and those that carry a smaller amount on the spindle 11 as supply spools S, when such a choice is readily apparent.
  • the first indexing step is made and the loading and splicing is repeated at the splicing station until all of the spindle pairs are successively indexed thereto and placed in operation.
  • the indexing results first in removing the splicing slack at the slack take-up position, and then to cause winding from the supply spools S to the take-up spools T as the indexing continues through the winding range.
  • the extent of winding that occurs as the spindle pairs are indexed through the winding range will be sufficient to exhaust the supply spools S, so that they will be empty upon reaching the spindle braking position, but in any particular instance where this is not so the operator simply indexes twice to pass the splicing position and allowing the further necessary winding to be completed on a second circuit through the winding.
  • the supply spool S at the spindle braking position When, as is usual, the supply spool S at the spindle braking position is empty, the operator will reach to the left and dolf it as indexing to the splicing position is actuated through the control lever to the right.
  • the spindle 11 at the splicing position will then be ready for loading with a fresh supply spool S and, if the paired take-up spool T still has room for additional winding thereon, the splicing operation will be commenced as soon as the spindle 11 has been loaded; while the take-up spool T will also be doffed if it is full and replaced by a fresh one before starting the splicing.
  • the result is to provide for yarn splicing and winding in an exceptionally effective manner that balance nicely the manipulating steps required of an operator so as to allow a very efiicient tending of the operation and to increase quite substantially the production rate available in relation to methods heretofore employed for such splicing and winding.
  • Apparatus for splicing and winding yarn comprising means supporting a circular series of paired supply and take-up spindles with each spindle of the pairs in said series mounted for rotation about its axis, said entire series of paired spindles being shiftable as a whole in a circular path about a central axis, splicing means disposed within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, and means for locating any selected pair of spindles of said series at the station defined by said splicing means.
  • Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up splindles, means carrying said spindle series for movement as a whole in a circular path and for individual rotation of each spindle of the pairs in said series about its axis, splicing means disposed within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, and means for indexing said movement of the spindle series as a Whole so that a pair of supply and take-up spindles is always located at the station defined by said splicing means when said movement is arrested.
  • Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, means carrying said spindle series for movement as a whole in a circular path and for individual rotation of each spindle of the pairs in said series about its axis, splicing means disposed within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, drive means acting in common on all of the take-up spindles within a winding range along the circular path of said spindle series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said carrying means for causing said movement of the spindle series as a whole, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means, indexing means acting normally to restrain movement of said spindle series as a whole against the bias of said drive means and by such restraint to locate
  • Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a turntable carrying said circular spindle series concentrically thereon with each spindle of said series mounted for individual rotation about its axis, means rotating said circular series in a circular path, splicing means disposed at a fixed position within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, an endless belt drive engaging all of the take-up spindles within a winding range along he circular path of said spindle series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said turntable for shifting said spindle series as a Whole in the circular path thereof, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means so that a take-up spindle located at said splicing station is disposed free of said
  • Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a rotatably mounted turntable carrying said circular spindle series concentrically thereon with each spindle of said series mounted for individual rotation about its axis, said turntable, when rotated, shifting said circular spindle series in a circular path, slicing means disposed at a fixed position within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, an endless belt drive engaging all of the take-up spindles within a winding range along the circular path of said spindles series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said turntable for shifting said spindle series as a whole in the circular path thereof, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means so that a take-up spindle
  • Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a rotatably mounted turntable carrying said circular spindle series concentrically thereon with each spindle of said series mounted for individual rotation about its axis, said turntable, when rotated, shifting said circular spindle series in a circular path, splicing means disposed at a fixed position within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, an endless belt drive engaging all of the take-up spindles within a winding range along the circular path of said spindle series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said turntable for shifting said spindle series as a whole in the circular path thereof, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means so that a take-up spindle
  • Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a rotatably mounted turntable carrying the spindles of said circular series concentrically and uprightly thereon, said circular series of paired supply and take-up spindles defining a circular path when said turntable is rotated, splicing means disposed at a fixed position Within and adjacent the circular path of said spindle series and above the tips of said spindles, means for indexing said turntable so that the pairs of spindles of said circular series are successively located at said splicing means for joining the free yarn end of a bobbin package on a supply spindle thereat with the free yarn end of a bobbin package on the paired take-up spindle, and means for handling slack introduced between the bobbin packages on said supply and take-up spindles by the joining of said free yarn ends at said splicing station, said handling means being characterized by a normally idle conveyer having a reach,

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Sewing Machines And Sewing (AREA)

Description

March 15, 1966 R. FERGUSON ETAL APPARATUS FOR SPLICING AND WINDING YARN 6 Sheets-Sheet 1 Filed Dec. 21, 1961 igzi INV EN TORS RICHA RD FL'RGUGO/Y 6 BY 5!?557'0 BUOIVPAS TORE E 4 March 15, 1966 R. FERGUSON ETAL 3,
APPARATUS FOR SPLICING AND WINDING YARN Filed Dec. 21, 1961 6 Sheets-Shee 2 T WIND/N6 mznp BRAKING P0 POSITION s, 0
0 Y Y); 3.5 i 5 22 SPLlC/NG POSITION 42 1 42 .f'ig.6
47' ORNEY 27 57 gww INVENTORS 6 Sheets-Sheet 3 RICHARD FERGUSON a sewesro EUONPASTORE Arrow/vb March 15, 1966 R. FERGUSON ETAL APPARATUS FOR SPLICING AND WINDING YARN Filed Dec. 21, 1961 March 15, 1966 4 FERGUSON T L 3,240,439
APPARATUS FOR SPLICING AND WINDING YARN Filed D80. 21, 1961 6 Sheets-Sheet 4 Fig.7
mmuinlinmmazaai az I'i 8 INVENTORS RICHARD FERGUSON 6 YL'RMESTO BUONPA-STORE March 15, 1966 R. FERGUSON ETAL APPARATUS FOR SPLICING AND WINDING YARN 6 Sheets-Shee 5 Filed Dec. 21, 1961 IIIII ii/1 IN V EN TORS filCl/ARD FERGUSON 5 6 RNA 5 7'0 BUONPAS 7' 085 II'T'OP/VEY Marh15,1966 R, FERGUSON Em. 3,240,439
APPARATUS FOR SPLICING AND WINDING YARN Filed Dec. 21, 1961 6 Sheets-Shee 6 INV EN TORS RICHARD FERGUSON ERNESTO BUONPASTORE United States Patent 3,240,439 APPARATUS FOR SPLICING AND WINDING YARN Richard Ferguson and Ernesto Buonpastore, Charlotte,
N.C., assignors to Deering Milliken Research Corporation, Spartanburg, S.C., a corporation of Delaware Filed Dec. 21, 1961, Ser. No. 161,196 Claims. (Cl. 242-35.5)
This invention relates to winding means for refilling partially exhausted yarn packages that have been removed for one reason or another from a textile manufacturing operation prior to complete exhaustion, and that contain residual yarn of greater value than can be allowed to go to waste.
An example of such a situation is found in the manufacture of nylon tire cord, where the warp yarn is creeled directly into the loom from packages built on flanged bobbins or spools, and where considerable amounts of residual yarn characteristically remain on a substantial percentage of the creel bobbins at run-out as a consequence of the practical difiiculties encountered in building the bobbins with any close uniformity as to the length of yarn they contain.
Because the nylon yarn used in forming tire cord is quite expensive, it has heretofore been common practice to recover this residual yarn by splicing the free yarn ends of two exhausted creel bobbins and rewinding, or backwinding, from one to the other, so that upon sufiicient repetition of this splicing and winding manipulation all of the residual yarn is transferred to form full yarn packages on a certain number of the bobbins that may then be reused at the warp yarn creel. While this yarn recovery practice employed in tire cord manufacture has been economically justified .by the value of the yarn involved, the equipment available for this purpose has left a great deal to be desired from the standpoint of yarn handling efificiency, and the apparatus of the present invention is of unique significance in providing for splicing and winding recovery of such yarn at very materially increased advantage.
Briefly described, the apparatus provided according to the present invention incorporates a circular series of paired supply and take-up spindles that is arranged for individual rotation of each spindle in the series during a winding phase, and for indexing movement of the series as a whole so that the spindle pairs are successively handled through a splicing phase in relation to splicing means that allows a single operator to attend to the necessary splicing, as well as to load and doff the apparatus, with exceptional effectiveness.
This effectiveness is such that splicing and winding of the same sort might be employed advantageously for recovering residual yarn of considerably less value in other comparable siuations, but as the handling of nylon tire cord yarn represents a currently important instance in which residual yarn must be recovered, the present invention is described at further length below in terms of an embodiment arranged particularly for this purpose as illustrated in the accompanying drawings, in which:
FIG. 1 is a perspective view indicating generally the arrangement of apparatus for splicing and winding yarn in accordance with this invention;
FIG. 2 is a more or less schematic plan detail illustrating the manner in which the previously mentioned circular series of paired supply and take-up spindles is disposed for splicing and winding of yarn;
FIG. 3 is a sectional detail taken substantially at the line 4-4 in FIG. 2 to show the manner in which the supply spindles are mounted;
FIG. 4 is a sectional detail taken substantially at the line 4-4 in FIG. 2 to show the manner in which the supply spindles are mounted;
FIG. 5 is a side elevation detail of the braking means provided for the supply spindles as seen from the outside at the spindle braking position indicated in FIG. 2;
FIG. 6 is a right end elevation corresponding to FIG. 5;
FIG. 7 is a layout detail in plan of the escapement employed for indexing the circular spindle series;
FIG. 8 is a sectional detail taken substantially at the line 88 in FIG. 7;
FIG. 9 is a further sectional detail taken substantially at the line 99 in FIG. 8;
FIG. 10 is a fragmentary detail of the chain structure employed for handling splicing slack during take-up;
FIG. 11 is a plan detail of a hook element such as is employed on the chain structure shown in FIG. 10;
FIG. 12 is a plane detail indicating the overall arrangement of the yarn handling means employed at the splicing station;
FIG. 13 is a side elevation corresponding to FIG. 12;
FIG. 14 is a sectional detail taken substantially at the line 1414 in FIG. 12;
FIG. 15 is an isolated plan detail of the form of presser foot employed at the splicing station according to the present invention;
FIG. 16 is a side elevation corresponding to FIG. 15; and
FIG. 17 is an enlarged detail of the presser foot structure at the portion circled in FIG. 16. H
Referring now in detail to the drawings, the illustrated FIG. 1 embodiment is seen to be characterized in general by, as previously noted, a circular series of paired supply and take-up spindles that is arranged, as indicated generally by the reference numeral 10, to carry partially exhausted yarn packages for winding between the spindle pairs so as to refill packages on the take-up spindles; and by a splicing means, as indicated generally by the reference numeral 100, that is located within the circular path of the spindle series 10 and adjacent the spindle tips so as to define a splicing station in relation to a pair of spindles of the series.
The arrangement of the circular spindle series 10 appears more fully in FIGS. 2 through 6 in which the paired supply and take- up spindles 11 and 12 are shown to be carried concentrically by a turntable structure that includes an upper spindle table 13 and a lower bolster table 14 spaced therebelow, with both tables 13 and 14 mounted in any suitable manner (not shown) for rotation about a fixed center post 15 that is supported uprightly on a frame structure 16 which forms a supporting base for the splicing and winding apparatus.
To provide conveniently for selective braking of the supply and take- up spindles 11 and 12 adjacent the splicing means 100, as noted in detail further below, the spindle series is preferably arranged with the supply spindles 11 spaced in a circle of somewhat greater radius than the take-up spindles 12, but every supply spindle 11 is paired with a take-up spindle 12, and the spindle pairs are spaced regularly (suitably at 45 intervals) in a circular path about the turntable structure. Each of the spindles so located and spaced is carried for individual rotation about its axis, the supply spindles 11 being fitted with biasing units 17 and mounted in the upper spindle table 13 as seen in FIG. 4, while the take-up spindles 12 extend below the upper table 13 to have bolsters 18 therefor installed on the lower bolster table as seen in FIG. 3.
Between the upper and lower turntables 13 and 14, the take-up spindles 12 have whorl portions 19 that are engaged within a winding range (see FIG. 2) by an endless belt 20, which is additionally trained on idler pulleys 21, 22, 23 and 24 to run free of (or in special relation to) the spindles 12 at respective braking, splicing and slack take-up positions, and to be looped about the pulley 25 of a drive motor 26 adjacent the start of the winding range. By this arrangement the drive belt 20 acts to cause and maintain rotation of the take-up spindles 12 throughout the Winding range indicated in FIG. 2, and additionally serves to impose a bias on the turntable structure in the running direction of belt 20 that tends to shift the spindle series as a whole in its circular path so as to allow an indexing of the spindle pairs successively in relation to the splicing means 100. If the take-up spindles 12 are of a particularly free-running type, it may be necessary to provide a strap drag or the like at each one to obtain an adequate indexing bias from the belt drive 20, but this is simply a matter of suitably balancing or proportioning the forces involved, and introduces no difference in principle whatever.
Such indexing of the spindle pairs is controlled according to the present invention by a selectively operable escapement, which is designated generally in FIGS. 2 and and 3 by the reference numeral 27, and which is arranged on the frame structure 16 in relation to a circular series of abutment members 28 carried at the bottom face of the lower bolster table 14 in correspondence with the serial spacing of the take-up spindles 12. The abutment members 28 preferably take the form of rollers as indicated best in FIGS. 3 and 8, and the escapement 27 functions normally to hold the turntable structure stationary, against the drive belt bias thereon, by opposing disposition at one of the abutment members 28, while allowing an indexing release of an engaged abutment member 28 at any time in a manner that necessarily results in establishing a holding engagement with the following abutment member 28 to complete an indexing step.
The arrangement of the escapement 27 to control the indexing in this manner is indicated generally in FIGS. 2 and 3, and more particularly in FIGS. 7, 8 and 9. Basically, the escapement 27 comprises 'a plunger 29 facing in a direction opposite to that of the drive belt bias on the turntable structure, and carried for pivoting of the sliding axis thereof about an axis perpendicular to the upper and lower turntable components 13 and 14 and spaced laterally of the circular path in which the abutment members 28 are serially arranged. Thus, the plunger 29 is seen in FIG. 7 with the slide rod portion 30 thereof slidably carried in an assembly frame weldment 31 that incorporates a mounting sleeve at 32 for disposition on a pivot stud 33 fixed at a vertical position within the circular path of the abutment members 28 by a support bracket 34 extending from the base frame 16.
This pivoted mounting of the weldment 31 allows the plunger 29 to find a retracted holding position at which it bottoms in the path of an oncoming abutment member 28 (as appears from the full line illustration in FIG. 7), while providing at the same time for indexing release to an extended position (as indicated by dotted lines in FIG. 7). To actuate an indexing release, a control lever 35 (see FIGS. 1, 2 and 3) extends for convenient manual manipulation to pivot the escapement 27 so that the sliding axis of the plunger 29 assumes the angular disposition represented by dotted lines in FIGS. 2 and 7, and at which disposition the opposing abutment member 28 is cleared to free the turntable structure and to permit extension of the plunger 29 to the dotted line FIG. 7 position under the force of a biasing spring 36 arranged on the plunger slide rod portion 30 within the weldment frame 31. Such pivoting of the escapement 27 is limited between suitably positioned stops as indicated at 37 and 38 in FIG. 7, and a return spring (not shown) is preferably provided to maintain the control lever 35 and es capement 27 normally positioned in correspondence with the retracted holding position of the plunger 29, although the holding forces involved are such as to urge the plunger 29 toward this position, and means is additionally pr vi ed for ca sing the p nger .29 nece arily to ass me its released extending position in the circular path of the abutment member series for opposing engagement with the abutment member 28 immediately following one that has been released.
The last mentioned means takes the form of a feeler structure 39 that is carried by the weldment frame 31 so as to shift into the path of the previously released abutment member 28 upon each indexing release of the escapement 27 (see FIG. 7). Such shifting of the feeler structure 39 acts to allow initial indexing movement of the released turntable structure only to the extend indicated in FIG. 7 by the dotted line abutment member positions at 28, which are determined by the point of contact with the shifted feeler structure 39 of the abutment member 28 that had been released immediatley preceding the current indexing release. When such contact is established, any jamming condition that would prevent proper recovery of the escapement 27 will likewise block further indexing movement, so as to eliminate the possibility of freeing the turntable structure for uncontrolled rotation; while the normal result of such contact is to insure that proper recovery of the escapement 27 is completed, through displacement of the feeler structure 39, when the abutment members have reached the further dotted line positions shown in FIG. 7 at 28", so that the plunger 29 is necessarily positioned for opposing engagement with the next following abutment member 28 to bottom at its retracted holding position and thereby determine the full extent of the indexing step being carried out.
Because there are considerable forces to be dealt with in effecting such control of the turntable indexing, the escapement 27 also advantageously incorporates a shock absorbing unit 40 that is assembled within the weldment frame 31 (see FIG. 8) on an axis spaced in parallel relation to that of the plunger slide rod 30, and that is tied through a cross arm 41 to follow the extending and retracting motion of slide rod 30, with the shock absorbing action set so as to allow shifting of plunger 29 readily under the force of spring 36 to the extending position it assumes upon indexing release, while cushioning return to the retracted holding position in a smooth and simple manner that involves an entirely mechanical operating system which is essentially shock-free.
As previously noted, the movement of the turntable structure, that takes place upon indexing release, results from the bias imposed by the endless drive belt 20, which is trained over the take-up spindle whorls 19 throughout the winding range indicated in FIG. 2. In this winding range, the trained arrangement of the drive belt 20 follows a pattern of adjacent chords between the whorls 19 that provides suificient wrap at each whorl for rotating the involved take-up spindles 12 effectively, while at the same time imposing the indexing bias. The winding range extends through several indexing steps, suitably five such steps as illustrated in FIG. 2, so that spindle rotation for winding between the pairs of supply and take- up spindles 11 and 12 is continuously maintained, except as interruption of this rotation is necessary incident to the successive indexing of the spindle pairs past the splicing means 100. To effect this interruption for splicing, a spindle braking position (see FIG. 2) is arranged at the indexing step immediately beyond the end of the winding range, and immediately in advance of the splicing means 100. At this spindle braking position, a first acting brake means 42 is situated to impose a drag at the bottom flange of the supply spool S during the indexing movement so that its. rotation is stopped first to avoid any overrunning that could introduce objectionable slack if yarn still remained for winding therefrom to the paired take-up spool T. Concurrently, the trained disposition of the belt drive 20 to the first idler pulley 21 results in freeing the involved take-up spindle whorl 19 therefrom, and a second acting brake means 43 is disposed for related action to stop rota; tion of the take-up spool T thereon. I
FIGS. 5 and 6 show the arrangement of the first acting brake means 42 to comprise a supporting plate 44 mounted in any suitable manner (not shown) on the base frame 16 and extending therefrom to carry an upwardly reaching operating arm structure 45 by which the brake means 42 is applied under the force of a compression spring 46 acting from a retaining seat provided on a stud 47 that is positioned by a fixed bracket member 48 carried by the supporting plate 44, with an adjustable stud 49 additionally extending from the operating arm structure 45 to bear on the fixed bracket member 48 and thereby limit appropriately the extent in the brake means 42 may shift under the force of spring 46.
Because, as previously noted, the supply spindles 11 are spaced for selective braking in a circle of somewhat greater radius than the take-up spindles 12, the first acting brake means 42 just described is located outwardly of the spindle series for application to the supply spools S, while the second acting brake means 43 is in turn arranged inwardly of the spindle series for related selective action on the take-up spools T. As seen in FIG. 2, this second acting brake means 43 is carried by a mounting bracket 50 that is secured above the turntable structure on the center post 15, and has first and second brake shoe sections 51 and 52 articulated through compression spring biasing at 53 and 54 for respective braking action on the take-up spools T not only at the spindle braking position, but at the splicing position as well.
In this latter connection, it should also be noted that, as the spindle pairs are indexed from the braking position to the splicing position, the drag imposed by brake means 43 at the bottom flange of the involved take-up spool S will cause turning in the winding direction so as to maintain a proper yarn tension from any paired supply spool S that is not yet exhausted. Additionally, a soft-bristled brush 55 (compare FIGS. 2 and 3) is fixed just above the brake means 43 to ride the take-up spools T at the top side of the lower flange so as to prevent a free yarn end or splicing slack thereat to become fouled by looping beneath the spool flange.
Assuming that winding has been completed between a pair of supply and take-up spools S and T indexed at the braking position, the next indexing step will position the spindle 11 and 12 for this pair at the splicing station with the take-up spool T having a trailing free yarn end a available thereon that will need to be spliced with a leading free yarn end b from a new supply spool S in order to continue winding. Accordingly, it is at this position that the splicing means 100 is employed, in the manner that is explained at length further below, to form a continuous yarn end a so that winding may be resumed. However, the result of such splicing is to introduce a considerable initial slack in the joined yarn end 0, and the apparatus of the present invention is specially arranged for handling and removing this slack before winding is again commenced.
The means provided for this purpose, as indicated in FIGS. 2 and 3, comprises a normally idle conveyer suitably formed by a sprocket chain 56 (see FIG. trained about upper and lower idle sprocket wheels 57 and 58 at a disposition that presents a conveyor reach extending beneath the splicing means 100 at a downward inclination in the direction of turntable indexing from a starting upper end located sidewise of and at the general elevation of the splicing means 100 to a terminating lower end within the circular path of the spindle series and adjacent the spindle pair indexed at the slack take-up position that is arranged immediately beyond the splicing position. The entire length of the thus disposed conveyor chain 56 is fitted at spaced'intervals with laterally extending hook elements 59 (see FIGS. 10 and 11) that are arranged so that the bights thereof open upwardly along the downwardly inclined reach presented in relation to the spindle series.
Arrangement of the conveyer 56 in this manner always provides a selection of hook elements 59 readily accessible adjacent the splicing means so that the slack yarn loop remaining to be dealt with after a splice has been completed needs only to be extended over the hook ele ment 59 that is naturally found by the particular slack length involved (as indicated in FIG. 2), and may then be left for handling without further attention as the involved spindle pair is indexed to the slack take-up position, Upon such further indexing, the involved supply spool S is subjected to the drag of an additional brake means 60, that is of the same type and general arrangement as the previously described brake means 42, while the paired take-up spool T is subjected to a light winding drive, through training of the drive belt 20 between the idler pulleys 22 and 23 to run substantially tangent at the whorl 19 of the spindle 12 on which this spool T 'is carried, which results in exerting a sufficient spindle turning force to wind the free slack onto the spool T. The joined yarn end 0 will meanwhile, however, be held extended in an orderly fashion by the engaged conveyer hook element 59 with the conveyer 56 shifting in response to pull on the slack loop as indexing to the slack take-up position occurs and then as the slack is removed at this position. An auxiliary, spring-positioned, guide finger 61 may, if desired, be disposed as indicated in FIG. 3 to provide more certainly for holding the initially extended slack loop free of possible fouling as the indexing takes place.
The action of the conveyer 56- is thus to pay off the slack by allowing a pulled displacement of the engaged hook element 59 along the downwardly inclined reach to the lower end thereof, where the sprocket wheel 58 at this lower end causes a diversion that, in effect, pivots the hook element 59 so as to dispose the bight thereof for releasing the yarn slack upon substantial completion of the take-up. After such take-up has been completed the light winding force applied by the tangent disposition of the belt drive 20 will not be sufficient to overcome the drag of the brake means 60, so that the supply and take-up spools S and T will then be held in a braked condition at the slack take-up position until the next indexing step advances them into the winding range.
The splicing means 100 referred to previously as being located for use at the splicing position is illustrated in particular detail by FIGS. 12 through 17. The earlier noted general showing in FIG. 1 indicates that this splicing means 100 incorporates a sewing mechanism 102 arranged to be driven from a suitable motor 104 equipped with a clutch device at 106 that may be controlled from a conveniently accessible foot treadle or the like as indicated at 108, with a supply of sewing thread disposed adjacently in spool packages 110 for delivery over guide means at 112. Sewing mechanisms have previously been employed for joining yarn ends by a splice of stitches inserted in oppositely directed portions of the yarn ends placed side-by-side. For this purpose, a sewing mechanism of the type adapted to form a zigzag stitch is used, and the sewing mechanism 102 employed at the splicing means 100 is accordingly of this type, having a reciprocating needle at 114 that also shifts laterally to form the zigzag stitches in the conventional manner, and being otherwise arranged in a usual form with the exception of a special presser foot and related handling means provided according to the present invention for facilitating the splicing operation, as illustrated in FIGS. 12 to 17.
The special presser foot is designated generally by the reference numeral 116, and is seen to have a needle slot formed therein at 118 that is elongated appropriately for accommodating the zigzag stitching motion of the needle 114. The sewing feed direction, as determined by feed dogs (not shown) below the presser foot 116, extends transversely of the needle slot 118 and from top to bottom in the FIG. 12 illustration; that is, from the right to the left of an operator at the splicing means 100 which has its front shown to the right in FIG. 12. Ad
7 jacent the needle slot 118, a pad 120 is fixed at the top face of pressure foot 116 to have the presser bar (not shown) of the sewing mechanism 102 bear thereat when lowered so as to maintain a downward pressure during sewing just as if a conventional presser foot were carried in the usual manner by the presser bar.
Instead of being attached at the lower end of the presser bar as is usual, however, the presser foot 116 of the present invention is secured beneath the extending end of a mounting plate 122 that is arranged within the throat of the sewing mechanism 102 from a splicing table 124 which is formed with a large central notch from its forward end to clear the sewing bed at which the presser foot 116 is disposed, while extending at both sides thereof and being fitted for attachment with the sewing mechanism 102 on the bracket structure provided at the splicing station for this purpose, as indicated at 126 in FIG. 3.
Additionally, the presser foot 116 is specially characterized by a bottom face groove 126 that extends transversely of the needle slot 118, and that has a shape (see FIGS. 16 and 17) defined by a substantially vertical rear wall 128 located for positioning two ends of yarn to be spliced in relation to the zigzag stitching motion of a needle operating in the slot 118, and by a forwardly extending wall 130 that slants downwardly from the upper edge of the rear wall 128 to the bottom face of the presser foot. Beyond this groove 126 the presser foot 116 has an upwardly formed front lip portion 132 under which the ends of yarn to be spliced may be inserted readily, and the side edges of this front lip portion 132 are angled inwardly toward the groove 126 at 134 and 136 for aiding in the disposition of the yarn ends properly at the groove 126 as noted further below, while a threadup slot 138 is arranged angularly through the lip portion 132 to an intersection with the needle slot 118 at one side thereof.
The length of the presser foot groove 126 corresponds to the width of a bottom face rib 140 in which it is formed. This rib 140 extends rearwardly from the groove 126 to the back edge of the presser foot 116, while the remaining presser foot body is formed by wing portions 142 and 144 at each side of the rib 140 that have front edges reaching outwardly from each side of the front lip portion 132 in alignment with the rear wall 128 of groove 126, and that have their outer front corner portions angularly beveled, as indicated at 142' and 144.
The related handling means provided, as previously mentioned, for use in carrying out the splicing operation comprise a clamp arm 146 that is disposed with its forward end portion overlying the right presser foot wing portion 142 along the front edge thereof and is formed with an upturned ear at 146' above the beveled corner portion 142'; This clamp arm 146 is positioned by a locating pin at 148 that is fixed in the presser foot 116, and by a stud 150 that is fixed in the mounting plate 122 to have a spring 152 contained thereon above the clamp arm by a wing nut 154, so as to exert a downward bias about a rear clamp arm foot portion 156 that rests on mounting plate 122.
Adjacently, at the right side of the splicing table 124, a first cutting means 158 is supported on an arm 160 so as to allow a yarn end to be passed rearwardly thereunder and then pulled upwardly and forwardly through a guide throat 162 so that it is directed for severing at a blade element 164; the supporting arm 160 being carried for lengthwise adjustment on the splicing table 124 so that this severing may be done at a predetermined yarn length from the presser foot groove 126, as noted further below.
At the length side of the splicing table 124, a somewhat similar second cutting means 166 is mounted on an underlying spacer plate 168 to extend so that a guide throat portion 170 therein is located above the left corner bevel 142' on the presser foot 116 in a manner that provides for selective severing at a blade element 172 of a leading yarn end dangling from a splice, while allowing the other yarn end and the splice to pass freely thereunder.
Additionally, the left side of the splicing table 124 carries a second clamping means 174 that is arranged to impose a let-off bias in the sewing feed direction on yarns being spliced. For this purpose, this second clamping means 174 is pivoted at 176 and has a bent coil spring 178 applied thereto at a bracket fitting 180 from a similar anchor bracket at 182, so as normally to assume the full line position shown in FIG. 12, but being shiftable against the bias of spring 178 to the dotted line position indicated. The clamping means 178 is completed by an upper clamping finger 184 that has an upwardly turned front end portion 184' to provide for insertion of yarn readily thereunder, and that is held in place by a locating pin 186, which also defines the depth of the clamping throat, and by a leaf spring 188 which is set to bear at the top face thereof by a screw 188' that extends through the upper clamping finger 184 to the pivoted base portion of the clamping means 174.
Finally, a third cutting means 190 is arranged at the left front portion of the splicing table 124 on a mounting bracket 192, so as to present a guide throat 194 leading to a blade element 196 at which the sewing threads may be severed adjacent the trailing end of a completed splice. The bracket 192 also serves to provide a fixed clamping surface extending vertically beneath the guide throat 194 and to carry an opposed clamping element 198 biased yieldably thereat, as indicated at 198' in FIG. 12, so that the respective needle and bobbin threads at and y (see FIG. 12) are held for convenient handling in starting the next splice upon severing at the cutting means 190.
In forming a splice at the above described splicing means 100, an operator first finds the free yarn end a at the involved supply spool S and strips a sufiicient splicing length therefrom, which is then held extending from the operators left hand to the right one in the direction of its free end, while the operators left hand inserts the yarn end a in the left hand clamping means 174 and at the same time shifts this clamping means 174 against the bias thereon to the dotted line position indicated in FIG. 12. The operators right hand is employed concurrently to pass the extending yarn end a beneath the left hand cutting means 166 and beneath the presser foot lip portion'132 and then under the right hand clamp arm 146, while exerting sufficient tension to draw the yarn end a into the bottom face groove 126 of presser foot 116. As this is done, the forwardly slanting groove wall 130 allows the yarn insertion readily without any necessity for raising the presser foot 116 from its lowered operating position by the lever manipulation that is usually required for this purpose.
At this point the free yarn end a will be held between the left hand clamping means 174 and the clamp arm 146 at a trained disposition through the presser foot grooving 126 in the direction opposite to the sewing feed direction, and with a let-off bias imposed thereon in the sewing feed direction. The extending free end of the yarn a is then passed rearwardly under the first cutting means 158 and brought upwardly and forwardly through the guide throat 162 so as to be severed at the blade element 164, at the selected predetermined length ahead of the sewing mechanism 102 for which the cutting means 158 has been set, which will determine the length of the splice that is to be formed. The resulting disposition of the yarn a is illustrated schematically by the broken line indication in FIG. 12.
Having completed this initial step, the operator then finds the free yarn end b at the paired take-up bobbin T and strips a splicing length therefrom, which is held extending oppositely from right to left hands and is inserted beneath the presser f-oot lip portion 132 for di- 9 rection to the bottom face groove 126 beside the previously inserted yarn end a. In making this insertion, the yarn end b is tensioned by the operator upwardly and rearwardly at both sides of the presser foot 116 (see the broken line schematic illustration in FIG. 12), so that the angled side edges 134 and 136 of the front lip portion 132 are utilized for disposing the yarn b properly in the groove 126 beside the yarn a. Also, as the yarn b is inserted in the foregoing manner, the operators left hand picks up the sewing threads x and y from the auxiliary clamping means incorporated in the cutting means 190, and holds them extending together with the yarn b at the left side of the presser foot 116.
Actual sewing of the splice is then ready to commence, and this is done by placing the sewing mechanism 102 in operation through the foot treadle 108 or whatever other operating control is provided for this purpose. It should be noted at this point that such commencement of the serving operation does not depend on having the sewing mechanism needle 114 at any particular position. If the needle 114 happens to have stopped previously at the lower portion of its reciprocating stroke so that the inserted yarns a and b will be initially held sidewise thereof, the nature of the presser foot grooving 126 is such that these yarns a and b will nevertheless shift immediately into proper position for splicing as soon as the sewing operation commences and the needle 114 is once raised to allow such shifting under the previously mentioned upward and rearward tension on the yarn b which the operator will maintain until splicing has started. As the rear groove wall 128 is located for positioning the yarns a and b properly for splicing, and as the result of the tensioned shifting will be to place the yarn a against this rear wall 128 with the yarn b contiguous, the operator may then relax the initially imposed tension for the forwardly slanting groove wall 130 acts to impose a squeezing bias on the yarns a and b toward the rear wall 128 (see FIG. 17) so as to maintain them properly positioned as the sewing operation continues.
Upon continued sewing operation, the leading end of the splice formed by zigzag stitching of the yarns a and b will feed to the left from the pressure foot grooving in the sewing feed direction, and the yarn a will be held extending taut under the left hand cutting means 166 by the let-off bias imposed from the left hand clamping means 174, which will shift pivotally to the left as the sewing feed allows. The operator thereupon, while still holding the free end of the yarn b and sewing threads x and y upwardly to the left of the presser foot 116, watches the leading end of the splice as it approaches the left hand cutting means 166, so as to execute a quick jerk at the proper time by which the held yarn b and sewing threads at and y are pulled through the guide throat 170 for severing at the blade element 172, to leave the splice free of dangling yarn or threads at its leading end which then passes on beneath the cutting means 166.
With the sewing operation still being carried on continuously during these manipulations, the operator then watches to the right of the presser foot 116 for emergence of the trailing end of yarn a as it is pulled from beneath the right hand clamping arm 146 by the sewing feed to signal the virtual completion of the splice being formed. Upon such emergence, the operator grasps the yarn a to the left and pulls forwardly to free it from the left hand clamping means 174, while likewise grasp ing and pulling forwardly at the right on the yarn b to remove the spliced ends from beneath the presser foot 116, and while concurrently releasing the foot treadle 108 as soon as the spliced ends are felt to be free of the needle 114. Here again the special form of the presser foot 116 allows such removal without requiring any particular manipulation of the needle or the pressure for this purpose, as the forwardly slanting wall 130 of the presser foot grooving 126 readily releases the spliced 19 yarns for removal under the forward pull noted above as soon as the needle 114 is raised after such a pull is exerted.
The spliced yarns thus removed by the operator will then be at a position adjacent the third cutting means 190 disposed at the left front of the splicing table 124, and the operator thereupon causes the trailing end of the splice just formed to move over the cutting means 190 so that the sewing threads x and y are pulled through the guide throat 194 for severing at the blade element 196, while being clamped adjacently so as to be held in readiness for the next splicing operation as previously noted. The resulting spliced yarn loop c is then delivered to the conveyor 56 for removal of the slack involved in the manner that has already been described, and the operator needs only to pull the control lever 35, so as to index the involved supply and take-up spools S and T to the slack take-up position where subsequent handling for winding continues automatically, in order to be free for directing attention immediately to preparations for commencing the next required splice.
Accordingly, beyond attending to formation of the necessary splices at the splicing means in the foregoing fashion, the operator is only required additionally to load and doff the spindles 11 and 12 as needed to maintain the apparatus of the present invention serviced for winding operation. Assuming that operation of the apparatus is started with all of the spindles empty, the operator Will first load the pair of spindles 11 and 12 at the splicing position with partially exhausted spools selected from an adjacent stack that has been accumulated for rewinding, using spools that carry a greater amount of yarn as take-up spools T on the spindle 12 and those that carry a smaller amount on the spindle 11 as supply spools S, when such a choice is readily apparent. After loading the initial spindle pair and completing a splice therebetween as described above, the first indexing step is made and the loading and splicing is repeated at the splicing station until all of the spindle pairs are successively indexed thereto and placed in operation.
Following loading and splicing between each spindle pair, the indexing results first in removing the splicing slack at the slack take-up position, and then to cause winding from the supply spools S to the take-up spools T as the indexing continues through the winding range. Usually, the extent of winding that occurs as the spindle pairs are indexed through the winding range will be sufficient to exhaust the supply spools S, so that they will be empty upon reaching the spindle braking position, but in any particular instance where this is not so the operator simply indexes twice to pass the splicing position and allowing the further necessary winding to be completed on a second circuit through the winding. When, as is usual, the supply spool S at the spindle braking position is empty, the operator will reach to the left and dolf it as indexing to the splicing position is actuated through the control lever to the right. The spindle 11 at the splicing position will then be ready for loading with a fresh supply spool S and, if the paired take-up spool T still has room for additional winding thereon, the splicing operation will be commenced as soon as the spindle 11 has been loaded; while the take-up spool T will also be doffed if it is full and replaced by a fresh one before starting the splicing.
The result is to provide for yarn splicing and winding in an exceptionally effective manner that balance nicely the manipulating steps required of an operator so as to allow a very efiicient tending of the operation and to increase quite substantially the production rate available in relation to methods heretofore employed for such splicing and winding.
The present invention has been described in detail above for purposes of illustration only and is not intended to be limited by this description or otherwise except as defined in the appended claims.
We claim:
1. Apparatus for splicing and winding yarn comprising means supporting a circular series of paired supply and take-up spindles with each spindle of the pairs in said series mounted for rotation about its axis, said entire series of paired spindles being shiftable as a whole in a circular path about a central axis, splicing means disposed within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, and means for locating any selected pair of spindles of said series at the station defined by said splicing means.
2. Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up splindles, means carrying said spindle series for movement as a whole in a circular path and for individual rotation of each spindle of the pairs in said series about its axis, splicing means disposed within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, and means for indexing said movement of the spindle series as a Whole so that a pair of supply and take-up spindles is always located at the station defined by said splicing means when said movement is arrested.
3. Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, means carrying said spindle series for movement as a whole in a circular path and for individual rotation of each spindle of the pairs in said series about its axis, splicing means disposed within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, drive means acting in common on all of the take-up spindles within a winding range along the circular path of said spindle series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said carrying means for causing said movement of the spindle series as a whole, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means, indexing means acting normally to restrain movement of said spindle series as a whole against the bias of said drive means and by such restraint to locate a pair of supply and take-up spindles at said splicing station free of said drive means, and said indexing means being selectively operable for releasing said restraint to allow said movement of the spindle series under the bias of said drive means so that all of the spindle pairs of said series may be successively located at said splicing station.
4. Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a turntable carrying said circular spindle series concentrically thereon with each spindle of said series mounted for individual rotation about its axis, means rotating said circular series in a circular path, splicing means disposed at a fixed position within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, an endless belt drive engaging all of the take-up spindles within a winding range along he circular path of said spindle series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said turntable for shifting said spindle series as a Whole in the circular path thereof, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means so that a take-up spindle located at said splicing station is disposed free of said belt drive, and a selectively operable escapement normally holding said turntable against said belt drive bias to locate a particular take-up spindle together with the paired supply spindle at said splicing station while allowing an indexing release of said turntable for shifting under said drive belt bias to present each of the spindle pairs of said series successively for similar location at said splicing station.
5. Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a rotatably mounted turntable carrying said circular spindle series concentrically thereon with each spindle of said series mounted for individual rotation about its axis, said turntable, when rotated, shifting said circular spindle series in a circular path, slicing means disposed at a fixed position within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, an endless belt drive engaging all of the take-up spindles within a winding range along the circular path of said spindles series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said turntable for shifting said spindle series as a whole in the circular path thereof, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means so that a take-up spindle located at said splicing station is disposed free of said belt drive, a selectively operable escapement normally holding said turntable against said belt drive bias to locate a particular take-up spindle together with the paired supply spindle at said splicing station while allowing an indexing release of said turntable for shifting under said drive belt bias to present each of the spindle pairs of said series successively for similar location at said splicing station, each take-up spindle of said circular series having a whorl portion; said endless belt drive being trained to engage the take-up spindles within said Winding range in a pattern of adjacent chords extending successively between the whorl portions of said spindles, while being further trained to run free of the take-up spindle indexed immediately in advance of said splicing station, as well as the take-up spindle indexed thereat, and to run substantially tangent at the whorl portion of the take-up spindle indexed immediately beyond said splicing station, a first acting brake means being provided to stop rotation of the supply spindle paired with a take-up spindle upon indexing thereof immediately in advance of said splicing station, a second acting brake means being further provided for similarly stopping the take-up spindle so indexed; and an additional drag brake means being provided to place a restraining drag on rotation of the supply spindle paired with a take-up spindle that is indexed immediately beyond said splicing station.
6. Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a rotatably mounted turntable carrying said circular spindle series concentrically thereon with each spindle of said series mounted for individual rotation about its axis, said turntable, when rotated, shifting said circular spindle series in a circular path, splicing means disposed at a fixed position within the circular path of said spindle series and adjacent the tips of said spindles so as to define a splicing station in relation to a pair of spindles of said series, an endless belt drive engaging all of the take-up spindles within a winding range along the circular path of said spindle series to rotate the same individually and additionally acting through the rotated take-up spindles to bias said turntable for shifting said spindle series as a whole in the circular path thereof, the extent of said winding range along said circular path starting beyond and ending ahead of the station defined by said splicing means so that a take-up spindle located at said splicing station is disposed free of said belt drive, a selectively operable escapement normally holding said turntable against said belt drive bias to locate a particular take-up spindle together with the paired supply spindle at said splicing station while allowing an indexing release of said turntable for shifting under said drive belt bias to present each of the spindle pairs of said series successively for similar location at said splicing station, said escapement being selectively operable in relation to a circular series of abutment members carried by said turntable in correspondence with the take-up spindles of said spindle pair series, said escapement comprising a plunger facing in the direction opposite to that of said turntable belt drive bias and pivotally secured for sliding movement about an axis perpendicular to said turntable and spaced laterally of the circular path of said series of abutment members, means biasing said plunger for movement to an extended position from a retracted holding position at which the plunger engages one of the abutment members of said series in opposition to said tumtable bias, means for pivoting said plunger on said perpendicular axis to release said abutment member engagement and allow biased movement of said plunger to said extended position, and means causing said plunger necessarily to assume said extended position in the circular path of said abutment member series for opposing engagement with the following member of said series.
7. Apparatus for splicing and winding yarn as defined in claim 6 and further characterized in that said last mentioned means includes -a feeler structure carried for pivoting with said plunger about said perpendicular axis and disposed to assume a position in the circular path of said abutment member series upon pivoting of said plunger to release an engaged abutment member, said feeler structure being spaced in said circular path for displacement therefrom by a previously released abutment member of said series prior to opposing engagement of said plunger with said following abutment member.
8. Apparatus for splicing and Winding yarn as defined in claim 6 and further characterized in that said escapement additionally comprises shock absorbing means acting on said plunger in opposition to plunger movement from said extended position to the retracted holding position.
9. Apparatus for splicing and winding yarn comprising a circular series of paired supply and take-up spindles, a rotatably mounted turntable carrying the spindles of said circular series concentrically and uprightly thereon, said circular series of paired supply and take-up spindles defining a circular path when said turntable is rotated, splicing means disposed at a fixed position Within and adjacent the circular path of said spindle series and above the tips of said spindles, means for indexing said turntable so that the pairs of spindles of said circular series are successively located at said splicing means for joining the free yarn end of a bobbin package on a supply spindle thereat with the free yarn end of a bobbin package on the paired take-up spindle, and means for handling slack introduced between the bobbin packages on said supply and take-up spindles by the joining of said free yarn ends at said splicing station, said handling means being characterized by a normally idle conveyer having a reach extending beneath said splicing means at a downward inclination in the direction of turntable indexing from a starting upper end located sidewise of and at the general elevation of said splicing means to a terminating lower end adjacent the spindle pair indexed immediately beyond said splicing means, means to releasably secure said slack yarn loop in an orderly extended condition on said conveyor adjacent the upper end of said reach and to allow said slack yarn loop to be payed oif toward the lower end of such reach under winding pull from the related take-up spindle upon indexing of said spindle immediately beyond said splicing means.
10. Apparatus for splicing and winding yarn as defined in claim 9 and further characterized in that said last mentioned means includes an endless sprocket chain trained about respective sprocket wheels at the upper and lower ends of said reach and fitted at spaced intervals with laterally extending hook elements having bights opening along said reach toward the upper end thereof.
References Cited by the Examiner UNITED STATES PATENTS 2,163,578 6/1939 Baker et al. 24235.5 2,374,529 4/ 1945 Everitt l122 2,494,790 1/ 1950 Zahler 112-235 2,670,149 2/ 1954 Perry 24235.5 2,955,552 10/ 1960 McGahee 1l22 3,002,477 10/ 1961 Silberman 1'12235 3,055,603 9/1962 De Fore et a1. 242-355 MERVIN STEIN, Primary Examiner.
JOSEPH P. STRIZAK, RUSSELL C. MADER,
Examiners.

Claims (1)

1. APPARATUS FOR SPLICING AND WINDING YARN COMPRISING MEANS SUPPORTING A CIRCULAR SERIES OF PAIRED SUPPLY AND TAKE-UP SPINDLES WITH EACH SPINDLE OF THE PAIRS IN SAID SERIES MOUNTED FOR ROTATION ABOUT ITS AXIS, SAID ENTIRE SERIES OF PAIRED SPINDLES BEING SHIFTABLE AS A WHOLE IN A CIRCULAR PATH ABOUT A CENTRAL AXIS, SPLICING MEANS DISPOSED WITHIN THE CIRCULAR PATH OF SAID SPINDLE SERIES AND ADJACENT THE TIPS OF SAID SPINDLES SO AS TO DEFINE A SPLICING STATION IN RELATION TO A PAIR OF SPINDLES OF SAID SERIES, AND MEANS FOR LOCATING ANY SELECTED PAIR OF SPINDLES OF SAID SERIES AT THE STATION DEFINED BY SAID SPLICING MEANS.
US161196A 1961-12-21 1961-12-21 Apparatus for splicing and winding yarn Expired - Lifetime US3240439A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DENDAT1303090D DE1303090B (en) 1961-12-21
US161196A US3240439A (en) 1961-12-21 1961-12-21 Apparatus for splicing and winding yarn
FR918945A FR1344639A (en) 1961-12-21 1962-12-18 Apparatus and method for splicing and winding wires
GB48163/62A GB1028303A (en) 1961-12-21 1962-12-20 Splicing of yarns
US359971A US3227116A (en) 1961-12-21 1964-04-15 Apparatus for splicing and winding yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US161196A US3240439A (en) 1961-12-21 1961-12-21 Apparatus for splicing and winding yarn

Publications (1)

Publication Number Publication Date
US3240439A true US3240439A (en) 1966-03-15

Family

ID=22580246

Family Applications (1)

Application Number Title Priority Date Filing Date
US161196A Expired - Lifetime US3240439A (en) 1961-12-21 1961-12-21 Apparatus for splicing and winding yarn

Country Status (3)

Country Link
US (1) US3240439A (en)
DE (1) DE1303090B (en)
GB (1) GB1028303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496003A1 (en) * 2003-07-11 2005-01-12 Schärer Schweiter Mettler AG Automatic bobbin changer for an automatic winding machine
CN103738782A (en) * 2014-01-03 2014-04-23 合肥荣事达三洋电器股份有限公司 Winding device of automatic winding machine
CN106498634A (en) * 2016-10-14 2017-03-15 成都卡美奇鞋业有限公司 The slide construction that vamp is quickly sewed
CN110258015A (en) * 2019-05-07 2019-09-20 安吉万洲电气有限公司 Weaving spool for textile manufacturing more exchange device automatically

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163578A (en) * 1935-06-06 1939-06-27 American Thread Co Winding machine
US2374529A (en) * 1943-03-11 1945-04-24 David C Everitt Art of multistrand band manufacture
US2494790A (en) * 1947-01-14 1950-01-17 Columbia Blind Stitch Machine Sewing machine
US2670149A (en) * 1952-10-03 1954-02-23 Abbott Machine Co Winding machine
US2955552A (en) * 1958-05-08 1960-10-11 Goodrich Co B F Sewing machine
US3002477A (en) * 1960-03-28 1961-10-03 Placket Closing Corp Of Americ Sewing machine presser foot
US3055603A (en) * 1959-12-16 1962-09-25 Deering Milliken Res Corp Bobbin and yarn handling apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2163578A (en) * 1935-06-06 1939-06-27 American Thread Co Winding machine
US2374529A (en) * 1943-03-11 1945-04-24 David C Everitt Art of multistrand band manufacture
US2494790A (en) * 1947-01-14 1950-01-17 Columbia Blind Stitch Machine Sewing machine
US2670149A (en) * 1952-10-03 1954-02-23 Abbott Machine Co Winding machine
US2955552A (en) * 1958-05-08 1960-10-11 Goodrich Co B F Sewing machine
US3055603A (en) * 1959-12-16 1962-09-25 Deering Milliken Res Corp Bobbin and yarn handling apparatus and method
US3002477A (en) * 1960-03-28 1961-10-03 Placket Closing Corp Of Americ Sewing machine presser foot

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496003A1 (en) * 2003-07-11 2005-01-12 Schärer Schweiter Mettler AG Automatic bobbin changer for an automatic winding machine
CN100506676C (en) * 2003-07-11 2009-07-01 Ssm萨罗瑞士麦特雷有限公司 Automatic bobbin changer for an automatic winding machine
CN103738782A (en) * 2014-01-03 2014-04-23 合肥荣事达三洋电器股份有限公司 Winding device of automatic winding machine
CN103738782B (en) * 2014-01-03 2016-03-23 惠而浦(中国)股份有限公司 Winding device of automatic winding machine
CN106498634A (en) * 2016-10-14 2017-03-15 成都卡美奇鞋业有限公司 The slide construction that vamp is quickly sewed
CN110258015A (en) * 2019-05-07 2019-09-20 安吉万洲电气有限公司 Weaving spool for textile manufacturing more exchange device automatically

Also Published As

Publication number Publication date
DE1303090B (en)
GB1028303A (en) 1966-05-04

Similar Documents

Publication Publication Date Title
US2998202A (en) Initial thread end snagger
US4079898A (en) Doffing and donning machine
US3858385A (en) Automatic yarn piecing and knotting method and apparatus for the open-end spinning machine
US3240439A (en) Apparatus for splicing and winding yarn
US2638936A (en) Method and means for automatically winding filling bobbins in a loom and supplying them to the shuttle thereof
US3227116A (en) Apparatus for splicing and winding yarn
US3433006A (en) Apparatus for exchanging bobbins in textile machine
US2670150A (en) Bobbin handling mechanism
JPH05201615A (en) Thread take-up device to spool
US3335476A (en) Method and apparatus for controlling defects
US3782648A (en) Method for winding a plural number of yarns and an apparatus therefor
US3055603A (en) Bobbin and yarn handling apparatus and method
US4063697A (en) Device for unthreading yarn from a bobbin
US1523878A (en) Mechanism and method of operating on cords or threads
US4166586A (en) Yarn winding method and apparatus
US3178123A (en) Method and apparatus for pulling yarn from a yarn pack
US3261560A (en) Yarn guide for winding machine
US2921752A (en) Bobbin tip bunch builder
US4091512A (en) Deweaving apparatus for textile tapes
US2257654A (en) Stop motion
US2332889A (en) Thread-guiding arrangement
US3309856A (en) Device for the spinning or twining and winding of yarns
US2791384A (en) Winding terminating apparatus for winding machines
US2673039A (en) Pirn winding machine
US3055602A (en) Yarn guide with delayed yarn release for winding machines