US3238109A - Fuel elements for nuclear reactors - Google Patents

Fuel elements for nuclear reactors Download PDF

Info

Publication number
US3238109A
US3238109A US6427A US642760A US3238109A US 3238109 A US3238109 A US 3238109A US 6427 A US6427 A US 6427A US 642760 A US642760 A US 642760A US 3238109 A US3238109 A US 3238109A
Authority
US
United States
Prior art keywords
sleeve
fuel
rod
lifting member
fuel element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US6427A
Inventor
Kent Ivor
Packman Gordon
Waine Peter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Atomic Energy Authority
Original Assignee
UK Atomic Energy Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Atomic Energy Authority filed Critical UK Atomic Energy Authority
Application granted granted Critical
Publication of US3238109A publication Critical patent/US3238109A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/14Means forming part of the element for inserting it into, or removing it from, the core; Means for coupling adjacent elements, e.g. to form a stringer
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/102Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain the sensitive element being part of a fuel element or a fuel assembly
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/02Details
    • G21C5/06Means for locating or supporting fuel elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This invention relates to fuel elements for nuclear reactors.
  • An object of the invention is to provide an improved fuel element suitable for use in a gas-cooled nuclear reactor designed to operate at temperatures of the order of 500-600 C.
  • a fuel element according to the invention comprises stacks of clusters of sheathed nuclear fuel members, said sheathed members being located at both ends in support plates so that their weight is carried from one end and the other end is free to expand; annular spacers for the support plates such that the assemblage of sheathed members, plates and spacers forms a self-supporting body; a graphite sleeve supporting said body from one end; and a central aperture in said support plates so that the fuel element can be threaded together with other elements on to a rod for lifting and lowering of an assembly of fuel elements.
  • Means are preferably provided for releasable attachment to the lower end of a fuel element, said means serving for support of the element by the said rod when the element forms the lowermost of an assembly of elements threaded on to the rod.
  • the invention furthermore includes an assembly comprising a plurality of fuel elements threaded in stacked manner on to a central rod, the lowermost fuel element being supported from the lower end of the said rod, whereby the assembly can be removed from or inserted in a fuel element channel by lifting or lowering the said rod.
  • the upper end of the said rod of an assembly of fuel elements may be secured to a tubular member forming a distance piece secured to a further member, for example a shield plug, and disposed between the assembly of fuel elements and the further member.
  • FIGURE 1 is a side view mainly in medial section with the part below AA sectioned on a line corresponding to line XX of FIG. 2;
  • FIGURE 2 is a section on the line IIII of FIG. 1;
  • FIGURE 3 is a plan view from beneath
  • FIGURE 4 is a section on the line 1VIV of FIG. 1;
  • FIGURE 5 is a side elevation partly in medial section
  • FIGURE 6 is an exploded view illustrating a modification
  • FIGURE 7 is a medial section illustrating a further modification.
  • FIG. 1 a fuel element 10 comprising sheathed nuclear fuel members 11, conveniently of uranium dioxide sheathed in beryllium, arranged in three clusters 12 which are stacked one upon another.
  • the sheathed nuclear fuel members 11 carry beryllium end plugs 37 by which they are located at both ends in beryllium support plates 13.
  • the plates 13 are spaced apart by annular graphite spacers 14 so that the weight of the fuel members 11 is carried by the support plates at their lower ends and their upper ends are free to expand, yet the assembly of sheathed members 11, support plates 13 and annular spacers 14 forms a self-supporting body.
  • a graphite sleeve 15 surrounds this self-supporting body and has at its lower end an annular shoulder 16, formed 3,238,109 Patented Mar. 1, 1956 either as an integral part of the sleeve 15 or by a ring secured thereto, on which the body is supported.
  • the graphite spacers 14 are spaced from the interior of the graphite sleeve 15 over the greater part of their length, forming an annular space 51 which serves for thermal insulation of the graphite sleeve 15 whereby a coolant fraction can be arranged to flow in .an annular space between the exterior of the graphite sleeve 15 and the wall of a fuel element channel in the moderator for cooling the moderator, for example as described in copending applications Nos. 821,493 or 835,523.
  • a retaining ring 17 of graphite is screwed into or otherwise secured in the upper end of the sleeve 15.
  • a clearance is left between the uppermost support plate 13 and the retaining ring 17 so as to allow for differential expansion of the beryllium support plates 13, the graphite sleeve 15 and graphite spacers 14.
  • the support plates 13 (shown more clearly in FIG. 2) each have a central aperture 18 and a number of other apertures 19 which allow coolant flow along the fuel element in contact with the fuel members 11.
  • a generally cylindrical stainless steel lifting member or rod 20 shown enlarged for the sake of clarity is threaded through the central apertures 18.
  • Ceramic sleeves 39 fitted on to the rod 20 at intervals have ribs 50 engaging the walls of apertures 18 and serve to prevent contact between the rod 20 and the beryllium support plates 13.
  • the rod 20 extends beyond the fuel element so that other fuel elements may also be threaded on it to form a string of fuel elements rigidly connected together by the rod.
  • Part of a second fuel element 21 is shown in FIG. l.
  • the rod 20 has at its lower end a boss 22 which fits in a stepped recess 23 in a bush 24, carried by webs 25 on a ring 26 and located in a nuclear reactor fuel element channel 40 about a spigot 41 projecting from a stool 49.
  • the ring 26 is fastened by screws 27 and dowels 28 (FIGS. 3 and 4) to another ring 29 with ribs 30 carrying a central boss 31.
  • a wire gauze 32 is clamped between the two rings to retain any debris from the fuel members and to filter solids from the coolant.
  • the ring 29 is screwed into the sleeve 15, and the ring 29 together with the ring 26 and its bush 24 forms a sleeve support means which supports the fuel element or stack of fuel elements above it by way of the sleeve 15 so that the fuel element or stack of fuel elements can be lifted or lowered by lifting or lowering the rod 20.
  • fuel elements can be simply inserted in and withdrawn from a fuel element channel in a nuclear reactor.
  • the rod 20 is provided with longitudinal flats or relievings 33 for accommodation of thermocouple cables 34 extending to any desired fuel member 11. Only one cable 34 is shown in FIG. 1 for the sake of clarity. This cable terminates in a hot junction 35 embedded in a raised portion 36 on the sheath 38 of a nuclear fuel member 11. The sleeve 39 assists in maintaining the cable or cables 34 in position.
  • the upper end of the rod 20 (shown in FIG. 5) terminates in a boss 42 having a shaped bore 43. The boss 42 can pass through the apertures 18 in the support plates 13.
  • the rod is secured to a tubular member 44 by a bolt 45 which passes through the shaped bore 43, with clearance to allow for upward expansion of the rod 20, and apertures 46 in the tubular member 44.
  • a sleeve 47 is Welded to the inside of the tubular member 44 about the aperture 46 for location of the boss 42 in an axial position.
  • a flanged sleeve 48 is also welded inside the tubular member 44 to assist in location of the tubular member 44 with respect to the adjacent element 10.
  • the tubular member 44 can be secured to a shield plug to provide a complete assembly for loading into a fuel element channel in a nuclear reactor as a single unit.
  • the single rod 20 linking a stack of fuel elements together takes up very little space in the fuel elements. Only the centre fuel member in a concentric pitching of fuel members has to be sacrificed to accommodate the rod. It is also an advantage that, during lifting and lowering, the rod 20 is in tension whilst the remainder of the assembly, particularly the graphite sleeves 15, is in compression. Furthermore, due to the fuel elements being stacked upon one another when constituted into an assembly, their ends, which are relieved as can clearly be seen in FIGURE 1, rest upon one another in a sealing manner and largely prevent coolant flowing within the elements from passing outwardly to the annulus between the graphite sleeves of an assembly and the wall of a fuel element channel containing it. Alternatively, adjacent graphite sleeves may be interconnected by spigots, for example, the better to prevent outward coolant flow be tween sleeve ends whilst allowing slight flexibility at the joints.
  • each means comprises a Nirnonic alloy bush S1 welded to the rod and carrying a support leg 58 and two leaf springs 52 (of which only one is shown) the support leg and springs being symmetrically disposed around the bush 51.
  • Central apertures 18 in the support plates 13 are provided with stainless steel liners 57 chromised where they are in contact with the beryllium of the support plates 13 and the fuel element is assembled by drawing the rod 20 and the bush 51 up through the liner 57 so that the springs 52 contact the liners 57 and locate the rod 20 relative to the support plates 13. Thereby contact between the stainless steel rod and the beryllium support plates is avoided and vibration of the rod under reactor coolant flow is reduced.
  • thermocouple cables may be led down the inside of the graphite sleeve 15.
  • FIG. 7 A further modification is shown in FIG. 7.
  • the rod 20 has at its lower end a boss 22a which is small enough to pass through the apertures 18 and allow the rod to be threaded down through a stack of fuel elements.
  • a split collet 53 Around the boss 22a is provided a split collet 53, held in position in a bush 24a having webs 25a by a retaining disc 54 and a circlip 55 which is fitted in a groove 56 in the boss 24w after the rod 20 has been threaded through the fuel element stack and the collet 53 has been placed around the boss 22a.
  • the lifting rod 20 may be of beryllium instead of stainless steel.
  • a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removably supported in a reactor fuel rods element channel, and nuclear fuel rods disposed within and carried by the sleeve, the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, the single lifting member including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve supporting means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces; and fuel rod support member separate from the sleeve support member and carrying nuclear fuel rods by their lower ends, said fuel rod support member being supported directly by the lower end of the sleeve, and said single lifting member extending freely through an aperture in said fuel rod support member.
  • a fuel element according to claim 1 wherein the lifting member is made of steel.
  • a fuel element according to claim 1 wherein a ceramic sleeve is mounted coaxially on the lifting member within the sleeve and in register with said fuel rod support member to prevent contact of the lifting member with said fuel rod support member.
  • a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removeably supported in a reactor fuel element channel, and nuclear fuel rods disposed within and carried by the sleeve
  • the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve, said sleeve supporting means comprising an annular ring supporting the sleeve and a central bush defining a stepped recess; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, said lifting member including an enlarged boss fitting into the stepped recess of said central bush, the single lifting member also including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve support means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces.
  • a fuel element comprising an uprightly disposed graphite sleeve; a cluster of elongate fuel members disposed upright in parallel array within the sleeve; means carried by said sleeve to support the fuel members; a lifting member freely extending lengthwise up through the center of the sleeve and beyond said cluster; and sleeve support means supporting the sleeve disposed at the lower end of the sleeve and connected to the lower end only of the lifting member, said lifting member including means at its upper end to raise and lower the fuel element by the sleeve support means and thereby avoid subjecting the sleeve to tensile forces, and said sleeve support means comprising a ring coaxial with and adjacent to the lower end of the sleeve and a bush on the axis of the ring connecting the ring to the lifting member.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

March 1, 1966 1. KENT ETAL FUEL ELEMENTS FOR NUCLEAR REACTORS 4 Sheets-Sheet 1 Filed Feb. 5, 1960 INVENTORS IVOR GENT GORDON PACKMAN FIGJ.
PETER WAINE I. KENT ETAL FUEL ELEMENTS FOR NUCLEAR REACTORS I March 1, 1966 4 Sheets-Sheet 2 Filed Feb. 5. 1960 INVENTORS IVOR ICEN'I GOR PETER March 1, 1966 l. KENT ETAL 3,238,109
FUEL ELEMENTS FOR NUCLEAR REACTORS Filed Feb. 5, 1960 4 Sheets-Sheet 3 IVOR KENT March 1, 1966 l. KENT ETAL FUEL ELEMENTS FOR NUCLEAR REACTORS 4 Sheets-Sheet 4 Filed Feb. 5, 19 0 FIGS.
KENT ON PACKMAN PETER WAINE S m m IVOR GORD United States Patent M 3,238,109 FUEL ELEMENTS FOR NUCLEAR REACTORS Ivor Kent and Gordon Packman, Culcheth, Lancashire,
and Peter Waine, Padgate, Warrington, England, assignors to United Kingdom Atomic Energy Authority, London, England Filed Feb. 3, 1960, Ser. No. 6,427 Claims priority, application Great Britain, Feb. 3, 1959, 3,745/59 9 Claims. (Cl. 176-78) This invention relates to fuel elements for nuclear reactors.
An object of the invention is to provide an improved fuel element suitable for use in a gas-cooled nuclear reactor designed to operate at temperatures of the order of 500-600 C.
A fuel element according to the invention comprises stacks of clusters of sheathed nuclear fuel members, said sheathed members being located at both ends in support plates so that their weight is carried from one end and the other end is free to expand; annular spacers for the support plates such that the assemblage of sheathed members, plates and spacers forms a self-supporting body; a graphite sleeve supporting said body from one end; and a central aperture in said support plates so that the fuel element can be threaded together with other elements on to a rod for lifting and lowering of an assembly of fuel elements.
Means are preferably provided for releasable attachment to the lower end of a fuel element, said means serving for support of the element by the said rod when the element forms the lowermost of an assembly of elements threaded on to the rod.
The invention furthermore includes an assembly comprising a plurality of fuel elements threaded in stacked manner on to a central rod, the lowermost fuel element being supported from the lower end of the said rod, whereby the assembly can be removed from or inserted in a fuel element channel by lifting or lowering the said rod.
The upper end of the said rod of an assembly of fuel elements may be secured to a tubular member forming a distance piece secured to a further member, for example a shield plug, and disposed between the assembly of fuel elements and the further member.
A constructional example embodying the invention will now be described with reference to the accompanying drawings, wherein:
FIGURE 1 is a side view mainly in medial section with the part below AA sectioned on a line corresponding to line XX of FIG. 2;
FIGURE 2 is a section on the line IIII of FIG. 1;
FIGURE 3 is a plan view from beneath;
FIGURE 4 is a section on the line 1VIV of FIG. 1;
FIGURE 5 is a side elevation partly in medial section;
FIGURE 6 is an exploded view illustrating a modification; and
FIGURE 7 is a medial section illustrating a further modification.
In FIG. 1 is shown a fuel element 10 comprising sheathed nuclear fuel members 11, conveniently of uranium dioxide sheathed in beryllium, arranged in three clusters 12 which are stacked one upon another. The sheathed nuclear fuel members 11 carry beryllium end plugs 37 by which they are located at both ends in beryllium support plates 13. The plates 13 are spaced apart by annular graphite spacers 14 so that the weight of the fuel members 11 is carried by the support plates at their lower ends and their upper ends are free to expand, yet the assembly of sheathed members 11, support plates 13 and annular spacers 14 forms a self-supporting body. A graphite sleeve 15 surrounds this self-supporting body and has at its lower end an annular shoulder 16, formed 3,238,109 Patented Mar. 1, 1956 either as an integral part of the sleeve 15 or by a ring secured thereto, on which the body is supported. The graphite spacers 14 are spaced from the interior of the graphite sleeve 15 over the greater part of their length, forming an annular space 51 which serves for thermal insulation of the graphite sleeve 15 whereby a coolant fraction can be arranged to flow in .an annular space between the exterior of the graphite sleeve 15 and the wall of a fuel element channel in the moderator for cooling the moderator, for example as described in copending applications Nos. 821,493 or 835,523. A retaining ring 17 of graphite is screwed into or otherwise secured in the upper end of the sleeve 15. A clearance is left between the uppermost support plate 13 and the retaining ring 17 so as to allow for differential expansion of the beryllium support plates 13, the graphite sleeve 15 and graphite spacers 14. The support plates 13 (shown more clearly in FIG. 2) each have a central aperture 18 and a number of other apertures 19 which allow coolant flow along the fuel element in contact with the fuel members 11. A generally cylindrical stainless steel lifting member or rod 20 shown enlarged for the sake of clarity is threaded through the central apertures 18. Ceramic sleeves 39 fitted on to the rod 20 at intervals have ribs 50 engaging the walls of apertures 18 and serve to prevent contact between the rod 20 and the beryllium support plates 13. The rod 20 extends beyond the fuel element so that other fuel elements may also be threaded on it to form a string of fuel elements rigidly connected together by the rod. Part of a second fuel element 21 is shown in FIG. l. The rod 20 has at its lower end a boss 22 which fits in a stepped recess 23 in a bush 24, carried by webs 25 on a ring 26 and located in a nuclear reactor fuel element channel 40 about a spigot 41 projecting from a stool 49. The ring 26 is fastened by screws 27 and dowels 28 (FIGS. 3 and 4) to another ring 29 with ribs 30 carrying a central boss 31. A wire gauze 32 is clamped between the two rings to retain any debris from the fuel members and to filter solids from the coolant. The ring 29 is screwed into the sleeve 15, and the ring 29 together with the ring 26 and its bush 24 forms a sleeve support means which supports the fuel element or stack of fuel elements above it by way of the sleeve 15 so that the fuel element or stack of fuel elements can be lifted or lowered by lifting or lowering the rod 20. Thus fuel elements can be simply inserted in and withdrawn from a fuel element channel in a nuclear reactor.
The rod 20 is provided with longitudinal flats or relievings 33 for accommodation of thermocouple cables 34 extending to any desired fuel member 11. Only one cable 34 is shown in FIG. 1 for the sake of clarity. This cable terminates in a hot junction 35 embedded in a raised portion 36 on the sheath 38 of a nuclear fuel member 11. The sleeve 39 assists in maintaining the cable or cables 34 in position. The upper end of the rod 20 (shown in FIG. 5) terminates in a boss 42 having a shaped bore 43. The boss 42 can pass through the apertures 18 in the support plates 13. The rod is secured to a tubular member 44 by a bolt 45 which passes through the shaped bore 43, with clearance to allow for upward expansion of the rod 20, and apertures 46 in the tubular member 44. A sleeve 47 is Welded to the inside of the tubular member 44 about the aperture 46 for location of the boss 42 in an axial position. A flanged sleeve 48 is also welded inside the tubular member 44 to assist in location of the tubular member 44 with respect to the adjacent element 10. The tubular member 44 can be secured to a shield plug to provide a complete assembly for loading into a fuel element channel in a nuclear reactor as a single unit.
The single rod 20 linking a stack of fuel elements together takes up very little space in the fuel elements. Only the centre fuel member in a concentric pitching of fuel members has to be sacrificed to accommodate the rod. It is also an advantage that, during lifting and lowering, the rod 20 is in tension whilst the remainder of the assembly, particularly the graphite sleeves 15, is in compression. Furthermore, due to the fuel elements being stacked upon one another when constituted into an assembly, their ends, which are relieved as can clearly be seen in FIGURE 1, rest upon one another in a sealing manner and largely prevent coolant flowing within the elements from passing outwardly to the annulus between the graphite sleeves of an assembly and the wall of a fuel element channel containing it. Alternatively, adjacent graphite sleeves may be interconnected by spigots, for example, the better to prevent outward coolant flow be tween sleeve ends whilst allowing slight flexibility at the joints.
In an alternative arrangement shown in FIG. 6 the ceramic sleeves 39 are replaced by resilient locating means. Each means comprises a Nirnonic alloy bush S1 welded to the rod and carrying a support leg 58 and two leaf springs 52 (of which only one is shown) the support leg and springs being symmetrically disposed around the bush 51. Central apertures 18 in the support plates 13 are provided with stainless steel liners 57 chromised where they are in contact with the beryllium of the support plates 13 and the fuel element is assembled by drawing the rod 20 and the bush 51 up through the liner 57 so that the springs 52 contact the liners 57 and locate the rod 20 relative to the support plates 13. Thereby contact between the stainless steel rod and the beryllium support plates is avoided and vibration of the rod under reactor coolant flow is reduced.
In FIG. 6 the rod 20 is shown to scale and without flats 33 to accommodate thermocouple cables. As an alternative thermocouple cables may be led down the inside of the graphite sleeve 15.
A further modification is shown in FIG. 7. As shown in FIG. 7 the rod 20 has at its lower end a boss 22a which is small enough to pass through the apertures 18 and allow the rod to be threaded down through a stack of fuel elements. Around the boss 22a is provided a split collet 53, held in position in a bush 24a having webs 25a by a retaining disc 54 and a circlip 55 which is fitted in a groove 56 in the boss 24w after the rod 20 has been threaded through the fuel element stack and the collet 53 has been placed around the boss 22a.
The lifting rod 20 may be of beryllium instead of stainless steel.
We claim:
1. In a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removably supported in a reactor fuel rods element channel, and nuclear fuel rods disposed within and carried by the sleeve, the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, the single lifting member including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve supporting means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces; and fuel rod support member separate from the sleeve support member and carrying nuclear fuel rods by their lower ends, said fuel rod support member being supported directly by the lower end of the sleeve, and said single lifting member extending freely through an aperture in said fuel rod support member.
2. The improvement according to claim 1 wherein the sleeve is supported in the fuel element channel by the sleeve support means.
3. A fuel element according to claim 1 wherein the lifting member is made of steel.
4. A fuel element according to claim 1 wherein a ceramic sleeve is mounted coaxially on the lifting member within the sleeve and in register with said fuel rod support member to prevent contact of the lifting member with said fuel rod support member.
5. In a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removeably supported in a reactor fuel element channel, and nuclear fuel rods disposed within and carried by the sleeve, the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve, said sleeve supporting means comprising an annular ring supporting the sleeve and a central bush defining a stepped recess; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, said lifting member including an enlarged boss fitting into the stepped recess of said central bush, the single lifting member also including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve support means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces.
6. A fuel element comprising an uprightly disposed graphite sleeve; a cluster of elongate fuel members disposed upright in parallel array within the sleeve; means carried by said sleeve to support the fuel members; a lifting member freely extending lengthwise up through the center of the sleeve and beyond said cluster; and sleeve support means supporting the sleeve disposed at the lower end of the sleeve and connected to the lower end only of the lifting member, said lifting member including means at its upper end to raise and lower the fuel element by the sleeve support means and thereby avoid subjecting the sleeve to tensile forces, and said sleeve support means comprising a ring coaxial with and adjacent to the lower end of the sleeve and a bush on the axis of the ring connecting the ring to the lifting member.
7. A fuel element according to claim 6 wherein the bush defines an internal stepped recess on the said axis, and the lifting member includes an enlarged boss fitting in the stepped recess.
8. A fuel element according to claim 7 and further comprising a collet within the recess and surrounding the boss, and a returning disc within the recess holding the collet and boss within the recess.
9. A fuel element according to claim 6 wherein the bush defines the central bore, and the lifting member passes through the bore and includes spring means disposed thereon below the bush, the spring means engaging the wall of the bore to connect the lifting member to the bush.
References Cited by the Examiner UNITED STATES PATENTS 2,841,545 7/1958 Zinn 176-48 2,848,404 8/1958 Treshow 176-44 2,851,410 9/1958 Vernon et a1. l763l 2,852,456 9/1958 Wade l76l8 2,938,848 5/1960 Ladd et a1. 17672 2,985,575 5/1961 Dennis et al l7643 2,999,059 9/1961 Treshow l76-42 3,015,616 1/1962 Sturtz et al l7678 3,090,742 5/1963 Fawcett 176-20 3,128,235 4/1964 Hackney et a1 176-78 CARL D. QUARFORTH, Primary Examiner.
ROGER L. CAMPBELL, Examiner.

Claims (1)

1. IN A NUCLEAR FUEL ELEMENT OF THE KIND COMPRISING AN UPRIGHT HOLLOW GRAPHITE SLEEVE REMOVABLY SUPPORTED IN A REACTOR FUEL RODS ELEMENT, CHANNEL, AND NUCLEAR FUEL RODS DISPOSED WITHIN AND CARRIED BY THE SLEEVE, THE IMPROVEMENT COMPRISING SLEEVE SUPPORT MEANS ATTACHED TO THE SLEEVE ADJACENT THE LOWER END OF THE SLEEVE; A SINGLE LIFTING MEMBER EXTENDING LENGTHWISE UP THROUGH THE CENTER OF THE SLEEVE AND ATTACHED ONLY AT ITS LOWER END TO THE SLEEVE SUPPORT MEANS, THE SINGLE LIFTING MEMBER INCLUDING MEANS AT IS UPPER END FOR RAISING AND LOWERING THE LIFTING MEMBER TO CORRESPONDINGLY RAISE AND LOWER THE SLEEVE SUPPORTING MEANS AND SLEEVE FROM ADJACENT THE SAID LOWER END TO AVOID SUBJECTING THE SLEEVE TO TENSILE FORCES; AND FUEL ROD SUPPORT MEMBER SEPARATGE FROM THE SLEEVE SUP-
US6427A 1959-02-03 1960-02-03 Fuel elements for nuclear reactors Expired - Lifetime US3238109A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB3745/59A GB889536A (en) 1959-02-03 1959-02-03 Improvements in or relating to fuel elements for nuclear reactors

Publications (1)

Publication Number Publication Date
US3238109A true US3238109A (en) 1966-03-01

Family

ID=9764173

Family Applications (1)

Application Number Title Priority Date Filing Date
US6427A Expired - Lifetime US3238109A (en) 1959-02-03 1960-02-03 Fuel elements for nuclear reactors

Country Status (5)

Country Link
US (1) US3238109A (en)
BE (1) BE587232A (en)
DE (1) DE1211342B (en)
FR (1) FR1246699A (en)
GB (1) GB889536A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366549A (en) * 1966-06-30 1968-01-30 Atomic Energy Commission Usa Gas-cooled nuclear reactor
US3407115A (en) * 1965-11-24 1968-10-22 Babcock & Wilcox Co Fuel element-control rod assembly
US3441477A (en) * 1966-04-29 1969-04-29 Atomic Energy Authority Uk Cooling of nuclear reactors
FR2197208A2 (en) * 1971-08-12 1974-03-22 Commissariat Energie Atomique
US4326922A (en) * 1978-02-06 1982-04-27 Westinghouse Electric Corp. Composite nuclear fuel assembly
CN111537545A (en) * 2020-05-14 2020-08-14 中国核动力研究设计院 Experimental fuel rod for research on source item release characteristics

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161571A (en) * 1960-11-21 1964-12-15 Joseph M Harrer Boiling-water nuclear reactor
NL275721A (en) * 1961-03-09
GB959470A (en) * 1961-05-24 1964-06-03 Atomic Energy Authority Uk Improvements in or relating to fuel elements for nuclear reactors
BE624769A (en) * 1961-11-15 1900-01-01
GB977544A (en) * 1962-12-10 1964-12-09 Atomic Energy Authority Uk Improvements in or relating to nuclear fuel assemblies
GB2164195B (en) * 1984-09-03 1988-05-25 Nat Nuclear Corp Ltd Fuel element stringer construction
US5071617A (en) * 1989-12-11 1991-12-10 Combustion Engineering, Inc. Reduced flow resistance cast lower end fitting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841545A (en) * 1954-06-15 1958-07-01 Walter H Zinn Power reactor
US2848404A (en) * 1956-08-02 1958-08-19 Treshow Michael Neutronic reactor
US2851410A (en) * 1945-05-28 1958-09-09 Harcourt C Vernon Neutronic reactor construction
US2852456A (en) * 1953-11-17 1958-09-16 Elmer J Wade Neutronic reactor
US2938848A (en) * 1958-04-30 1960-05-31 Conrad M Ladd Fuel elements for nuclear reactors
US2985575A (en) * 1955-07-27 1961-05-23 Gen Electric Co Ltd Nuclear reactors
US2999059A (en) * 1958-04-04 1961-09-05 Treshow Michael Nuclear reactor
US3015616A (en) * 1956-11-02 1962-01-02 Westinghouse Electric Corp Rod type fuel assembly
US3090742A (en) * 1958-06-27 1963-05-21 Atomic Energy Authority Uk Temperature control means for nuclear reactors
US3128235A (en) * 1958-01-24 1964-04-07 Atomic Energy Authority Uk Fuel elements for nuclear reactors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL113539C (en) * 1956-08-06
DE1046209B (en) * 1957-01-24 1958-12-11 Metallgesellschaft Ag Combined fuel element - control element for nuclear reactors

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851410A (en) * 1945-05-28 1958-09-09 Harcourt C Vernon Neutronic reactor construction
US2852456A (en) * 1953-11-17 1958-09-16 Elmer J Wade Neutronic reactor
US2841545A (en) * 1954-06-15 1958-07-01 Walter H Zinn Power reactor
US2985575A (en) * 1955-07-27 1961-05-23 Gen Electric Co Ltd Nuclear reactors
US2848404A (en) * 1956-08-02 1958-08-19 Treshow Michael Neutronic reactor
US3015616A (en) * 1956-11-02 1962-01-02 Westinghouse Electric Corp Rod type fuel assembly
US3128235A (en) * 1958-01-24 1964-04-07 Atomic Energy Authority Uk Fuel elements for nuclear reactors
US2999059A (en) * 1958-04-04 1961-09-05 Treshow Michael Nuclear reactor
US2938848A (en) * 1958-04-30 1960-05-31 Conrad M Ladd Fuel elements for nuclear reactors
US3090742A (en) * 1958-06-27 1963-05-21 Atomic Energy Authority Uk Temperature control means for nuclear reactors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3407115A (en) * 1965-11-24 1968-10-22 Babcock & Wilcox Co Fuel element-control rod assembly
US3441477A (en) * 1966-04-29 1969-04-29 Atomic Energy Authority Uk Cooling of nuclear reactors
US3366549A (en) * 1966-06-30 1968-01-30 Atomic Energy Commission Usa Gas-cooled nuclear reactor
FR2197208A2 (en) * 1971-08-12 1974-03-22 Commissariat Energie Atomique
US4326922A (en) * 1978-02-06 1982-04-27 Westinghouse Electric Corp. Composite nuclear fuel assembly
CN111537545A (en) * 2020-05-14 2020-08-14 中国核动力研究设计院 Experimental fuel rod for research on source item release characteristics

Also Published As

Publication number Publication date
DE1211342B (en) 1966-02-24
GB889536A (en) 1962-02-14
BE587232A (en) 1960-08-03
FR1246699A (en) 1960-11-18

Similar Documents

Publication Publication Date Title
US3238109A (en) Fuel elements for nuclear reactors
US3595748A (en) Nuclear reactor control device
US4348355A (en) Fuel assembly for a boiling nuclear reactor
US3039947A (en) Fuel elements for nuclear reactors
GB873073A (en) Improvements in or relating to fuel elements for nuclear reactors
US3089837A (en) Fuel elements for nuclear reactors
GB1422796A (en) Improvements in nuclear reactors
US3291698A (en) Fuel element
US3185632A (en) Fuel elements for nuclear reactors
US3240681A (en) Fuel elements for nuclear reactors
GB931972A (en) Reflector for nuclear reactors
GB1139969A (en) Fuel assemblies for nuclear reactors
US3527669A (en) Molten-salt-fueled nuclear breeder reactor and fuel cell for use therein
US2986509A (en) Fuel element for a nuclear reactor
US3287230A (en) Nuclear fuel element stringer assembly with improved coupling device
US2984612A (en) Nuclear reactor refuelling devices
US3238106A (en) Nuclear reactors
US3247076A (en) Fuel elements for nuclear reactors with lateral support means
US5100608A (en) In-core nuclear instrumentation for fast breeder reactors
GB877418A (en) Improvements in fuel arrangements for use in nuclear reactors having vertical channels
US3206369A (en) Fuel elements for nuclear reactors
US3361635A (en) Nuclear reactor control rod winding arrangements
US3309280A (en) Pressure-tube nuclear reactor including fuel assembly with thermal baffle
GB990429A (en) Nuclear reactors
GB1519546A (en) Nuclear reactor