US3238109A - Fuel elements for nuclear reactors - Google Patents
Fuel elements for nuclear reactors Download PDFInfo
- Publication number
- US3238109A US3238109A US6427A US642760A US3238109A US 3238109 A US3238109 A US 3238109A US 6427 A US6427 A US 6427A US 642760 A US642760 A US 642760A US 3238109 A US3238109 A US 3238109A
- Authority
- US
- United States
- Prior art keywords
- sleeve
- fuel
- rod
- lifting member
- fuel element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
- G21C3/14—Means forming part of the element for inserting it into, or removing it from, the core; Means for coupling adjacent elements, e.g. to form a stringer
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/10—Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
- G21C17/102—Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain the sensitive element being part of a fuel element or a fuel assembly
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/30—Assemblies of a number of fuel elements in the form of a rigid unit
- G21C3/32—Bundles of parallel pin-, rod-, or tube-shaped fuel elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C5/00—Moderator or core structure; Selection of materials for use as moderator
- G21C5/02—Details
- G21C5/06—Means for locating or supporting fuel elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- This invention relates to fuel elements for nuclear reactors.
- An object of the invention is to provide an improved fuel element suitable for use in a gas-cooled nuclear reactor designed to operate at temperatures of the order of 500-600 C.
- a fuel element according to the invention comprises stacks of clusters of sheathed nuclear fuel members, said sheathed members being located at both ends in support plates so that their weight is carried from one end and the other end is free to expand; annular spacers for the support plates such that the assemblage of sheathed members, plates and spacers forms a self-supporting body; a graphite sleeve supporting said body from one end; and a central aperture in said support plates so that the fuel element can be threaded together with other elements on to a rod for lifting and lowering of an assembly of fuel elements.
- Means are preferably provided for releasable attachment to the lower end of a fuel element, said means serving for support of the element by the said rod when the element forms the lowermost of an assembly of elements threaded on to the rod.
- the invention furthermore includes an assembly comprising a plurality of fuel elements threaded in stacked manner on to a central rod, the lowermost fuel element being supported from the lower end of the said rod, whereby the assembly can be removed from or inserted in a fuel element channel by lifting or lowering the said rod.
- the upper end of the said rod of an assembly of fuel elements may be secured to a tubular member forming a distance piece secured to a further member, for example a shield plug, and disposed between the assembly of fuel elements and the further member.
- FIGURE 1 is a side view mainly in medial section with the part below AA sectioned on a line corresponding to line XX of FIG. 2;
- FIGURE 2 is a section on the line IIII of FIG. 1;
- FIGURE 3 is a plan view from beneath
- FIGURE 4 is a section on the line 1VIV of FIG. 1;
- FIGURE 5 is a side elevation partly in medial section
- FIGURE 6 is an exploded view illustrating a modification
- FIGURE 7 is a medial section illustrating a further modification.
- FIG. 1 a fuel element 10 comprising sheathed nuclear fuel members 11, conveniently of uranium dioxide sheathed in beryllium, arranged in three clusters 12 which are stacked one upon another.
- the sheathed nuclear fuel members 11 carry beryllium end plugs 37 by which they are located at both ends in beryllium support plates 13.
- the plates 13 are spaced apart by annular graphite spacers 14 so that the weight of the fuel members 11 is carried by the support plates at their lower ends and their upper ends are free to expand, yet the assembly of sheathed members 11, support plates 13 and annular spacers 14 forms a self-supporting body.
- a graphite sleeve 15 surrounds this self-supporting body and has at its lower end an annular shoulder 16, formed 3,238,109 Patented Mar. 1, 1956 either as an integral part of the sleeve 15 or by a ring secured thereto, on which the body is supported.
- the graphite spacers 14 are spaced from the interior of the graphite sleeve 15 over the greater part of their length, forming an annular space 51 which serves for thermal insulation of the graphite sleeve 15 whereby a coolant fraction can be arranged to flow in .an annular space between the exterior of the graphite sleeve 15 and the wall of a fuel element channel in the moderator for cooling the moderator, for example as described in copending applications Nos. 821,493 or 835,523.
- a retaining ring 17 of graphite is screwed into or otherwise secured in the upper end of the sleeve 15.
- a clearance is left between the uppermost support plate 13 and the retaining ring 17 so as to allow for differential expansion of the beryllium support plates 13, the graphite sleeve 15 and graphite spacers 14.
- the support plates 13 (shown more clearly in FIG. 2) each have a central aperture 18 and a number of other apertures 19 which allow coolant flow along the fuel element in contact with the fuel members 11.
- a generally cylindrical stainless steel lifting member or rod 20 shown enlarged for the sake of clarity is threaded through the central apertures 18.
- Ceramic sleeves 39 fitted on to the rod 20 at intervals have ribs 50 engaging the walls of apertures 18 and serve to prevent contact between the rod 20 and the beryllium support plates 13.
- the rod 20 extends beyond the fuel element so that other fuel elements may also be threaded on it to form a string of fuel elements rigidly connected together by the rod.
- Part of a second fuel element 21 is shown in FIG. l.
- the rod 20 has at its lower end a boss 22 which fits in a stepped recess 23 in a bush 24, carried by webs 25 on a ring 26 and located in a nuclear reactor fuel element channel 40 about a spigot 41 projecting from a stool 49.
- the ring 26 is fastened by screws 27 and dowels 28 (FIGS. 3 and 4) to another ring 29 with ribs 30 carrying a central boss 31.
- a wire gauze 32 is clamped between the two rings to retain any debris from the fuel members and to filter solids from the coolant.
- the ring 29 is screwed into the sleeve 15, and the ring 29 together with the ring 26 and its bush 24 forms a sleeve support means which supports the fuel element or stack of fuel elements above it by way of the sleeve 15 so that the fuel element or stack of fuel elements can be lifted or lowered by lifting or lowering the rod 20.
- fuel elements can be simply inserted in and withdrawn from a fuel element channel in a nuclear reactor.
- the rod 20 is provided with longitudinal flats or relievings 33 for accommodation of thermocouple cables 34 extending to any desired fuel member 11. Only one cable 34 is shown in FIG. 1 for the sake of clarity. This cable terminates in a hot junction 35 embedded in a raised portion 36 on the sheath 38 of a nuclear fuel member 11. The sleeve 39 assists in maintaining the cable or cables 34 in position.
- the upper end of the rod 20 (shown in FIG. 5) terminates in a boss 42 having a shaped bore 43. The boss 42 can pass through the apertures 18 in the support plates 13.
- the rod is secured to a tubular member 44 by a bolt 45 which passes through the shaped bore 43, with clearance to allow for upward expansion of the rod 20, and apertures 46 in the tubular member 44.
- a sleeve 47 is Welded to the inside of the tubular member 44 about the aperture 46 for location of the boss 42 in an axial position.
- a flanged sleeve 48 is also welded inside the tubular member 44 to assist in location of the tubular member 44 with respect to the adjacent element 10.
- the tubular member 44 can be secured to a shield plug to provide a complete assembly for loading into a fuel element channel in a nuclear reactor as a single unit.
- the single rod 20 linking a stack of fuel elements together takes up very little space in the fuel elements. Only the centre fuel member in a concentric pitching of fuel members has to be sacrificed to accommodate the rod. It is also an advantage that, during lifting and lowering, the rod 20 is in tension whilst the remainder of the assembly, particularly the graphite sleeves 15, is in compression. Furthermore, due to the fuel elements being stacked upon one another when constituted into an assembly, their ends, which are relieved as can clearly be seen in FIGURE 1, rest upon one another in a sealing manner and largely prevent coolant flowing within the elements from passing outwardly to the annulus between the graphite sleeves of an assembly and the wall of a fuel element channel containing it. Alternatively, adjacent graphite sleeves may be interconnected by spigots, for example, the better to prevent outward coolant flow be tween sleeve ends whilst allowing slight flexibility at the joints.
- each means comprises a Nirnonic alloy bush S1 welded to the rod and carrying a support leg 58 and two leaf springs 52 (of which only one is shown) the support leg and springs being symmetrically disposed around the bush 51.
- Central apertures 18 in the support plates 13 are provided with stainless steel liners 57 chromised where they are in contact with the beryllium of the support plates 13 and the fuel element is assembled by drawing the rod 20 and the bush 51 up through the liner 57 so that the springs 52 contact the liners 57 and locate the rod 20 relative to the support plates 13. Thereby contact between the stainless steel rod and the beryllium support plates is avoided and vibration of the rod under reactor coolant flow is reduced.
- thermocouple cables may be led down the inside of the graphite sleeve 15.
- FIG. 7 A further modification is shown in FIG. 7.
- the rod 20 has at its lower end a boss 22a which is small enough to pass through the apertures 18 and allow the rod to be threaded down through a stack of fuel elements.
- a split collet 53 Around the boss 22a is provided a split collet 53, held in position in a bush 24a having webs 25a by a retaining disc 54 and a circlip 55 which is fitted in a groove 56 in the boss 24w after the rod 20 has been threaded through the fuel element stack and the collet 53 has been placed around the boss 22a.
- the lifting rod 20 may be of beryllium instead of stainless steel.
- a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removably supported in a reactor fuel rods element channel, and nuclear fuel rods disposed within and carried by the sleeve, the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, the single lifting member including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve supporting means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces; and fuel rod support member separate from the sleeve support member and carrying nuclear fuel rods by their lower ends, said fuel rod support member being supported directly by the lower end of the sleeve, and said single lifting member extending freely through an aperture in said fuel rod support member.
- a fuel element according to claim 1 wherein the lifting member is made of steel.
- a fuel element according to claim 1 wherein a ceramic sleeve is mounted coaxially on the lifting member within the sleeve and in register with said fuel rod support member to prevent contact of the lifting member with said fuel rod support member.
- a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removeably supported in a reactor fuel element channel, and nuclear fuel rods disposed within and carried by the sleeve
- the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve, said sleeve supporting means comprising an annular ring supporting the sleeve and a central bush defining a stepped recess; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, said lifting member including an enlarged boss fitting into the stepped recess of said central bush, the single lifting member also including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve support means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces.
- a fuel element comprising an uprightly disposed graphite sleeve; a cluster of elongate fuel members disposed upright in parallel array within the sleeve; means carried by said sleeve to support the fuel members; a lifting member freely extending lengthwise up through the center of the sleeve and beyond said cluster; and sleeve support means supporting the sleeve disposed at the lower end of the sleeve and connected to the lower end only of the lifting member, said lifting member including means at its upper end to raise and lower the fuel element by the sleeve support means and thereby avoid subjecting the sleeve to tensile forces, and said sleeve support means comprising a ring coaxial with and adjacent to the lower end of the sleeve and a bush on the axis of the ring connecting the ring to the lifting member.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
March 1, 1966 1. KENT ETAL FUEL ELEMENTS FOR NUCLEAR REACTORS 4 Sheets-Sheet 1 Filed Feb. 5, 1960 INVENTORS IVOR GENT GORDON PACKMAN FIGJ.
PETER WAINE I. KENT ETAL FUEL ELEMENTS FOR NUCLEAR REACTORS I March 1, 1966 4 Sheets-Sheet 2 Filed Feb. 5. 1960 INVENTORS IVOR ICEN'I GOR PETER March 1, 1966 l. KENT ETAL 3,238,109
FUEL ELEMENTS FOR NUCLEAR REACTORS Filed Feb. 5, 1960 4 Sheets-Sheet 3 IVOR KENT March 1, 1966 l. KENT ETAL FUEL ELEMENTS FOR NUCLEAR REACTORS 4 Sheets-Sheet 4 Filed Feb. 5, 19 0 FIGS.
KENT ON PACKMAN PETER WAINE S m m IVOR GORD United States Patent M 3,238,109 FUEL ELEMENTS FOR NUCLEAR REACTORS Ivor Kent and Gordon Packman, Culcheth, Lancashire,
and Peter Waine, Padgate, Warrington, England, assignors to United Kingdom Atomic Energy Authority, London, England Filed Feb. 3, 1960, Ser. No. 6,427 Claims priority, application Great Britain, Feb. 3, 1959, 3,745/59 9 Claims. (Cl. 176-78) This invention relates to fuel elements for nuclear reactors.
An object of the invention is to provide an improved fuel element suitable for use in a gas-cooled nuclear reactor designed to operate at temperatures of the order of 500-600 C.
A fuel element according to the invention comprises stacks of clusters of sheathed nuclear fuel members, said sheathed members being located at both ends in support plates so that their weight is carried from one end and the other end is free to expand; annular spacers for the support plates such that the assemblage of sheathed members, plates and spacers forms a self-supporting body; a graphite sleeve supporting said body from one end; and a central aperture in said support plates so that the fuel element can be threaded together with other elements on to a rod for lifting and lowering of an assembly of fuel elements.
Means are preferably provided for releasable attachment to the lower end of a fuel element, said means serving for support of the element by the said rod when the element forms the lowermost of an assembly of elements threaded on to the rod.
The invention furthermore includes an assembly comprising a plurality of fuel elements threaded in stacked manner on to a central rod, the lowermost fuel element being supported from the lower end of the said rod, whereby the assembly can be removed from or inserted in a fuel element channel by lifting or lowering the said rod.
The upper end of the said rod of an assembly of fuel elements may be secured to a tubular member forming a distance piece secured to a further member, for example a shield plug, and disposed between the assembly of fuel elements and the further member.
A constructional example embodying the invention will now be described with reference to the accompanying drawings, wherein:
FIGURE 1 is a side view mainly in medial section with the part below AA sectioned on a line corresponding to line XX of FIG. 2;
FIGURE 2 is a section on the line IIII of FIG. 1;
FIGURE 3 is a plan view from beneath;
FIGURE 4 is a section on the line 1VIV of FIG. 1;
FIGURE 5 is a side elevation partly in medial section;
FIGURE 6 is an exploded view illustrating a modification; and
FIGURE 7 is a medial section illustrating a further modification.
In FIG. 1 is shown a fuel element 10 comprising sheathed nuclear fuel members 11, conveniently of uranium dioxide sheathed in beryllium, arranged in three clusters 12 which are stacked one upon another. The sheathed nuclear fuel members 11 carry beryllium end plugs 37 by which they are located at both ends in beryllium support plates 13. The plates 13 are spaced apart by annular graphite spacers 14 so that the weight of the fuel members 11 is carried by the support plates at their lower ends and their upper ends are free to expand, yet the assembly of sheathed members 11, support plates 13 and annular spacers 14 forms a self-supporting body. A graphite sleeve 15 surrounds this self-supporting body and has at its lower end an annular shoulder 16, formed 3,238,109 Patented Mar. 1, 1956 either as an integral part of the sleeve 15 or by a ring secured thereto, on which the body is supported. The graphite spacers 14 are spaced from the interior of the graphite sleeve 15 over the greater part of their length, forming an annular space 51 which serves for thermal insulation of the graphite sleeve 15 whereby a coolant fraction can be arranged to flow in .an annular space between the exterior of the graphite sleeve 15 and the wall of a fuel element channel in the moderator for cooling the moderator, for example as described in copending applications Nos. 821,493 or 835,523. A retaining ring 17 of graphite is screwed into or otherwise secured in the upper end of the sleeve 15. A clearance is left between the uppermost support plate 13 and the retaining ring 17 so as to allow for differential expansion of the beryllium support plates 13, the graphite sleeve 15 and graphite spacers 14. The support plates 13 (shown more clearly in FIG. 2) each have a central aperture 18 and a number of other apertures 19 which allow coolant flow along the fuel element in contact with the fuel members 11. A generally cylindrical stainless steel lifting member or rod 20 shown enlarged for the sake of clarity is threaded through the central apertures 18. Ceramic sleeves 39 fitted on to the rod 20 at intervals have ribs 50 engaging the walls of apertures 18 and serve to prevent contact between the rod 20 and the beryllium support plates 13. The rod 20 extends beyond the fuel element so that other fuel elements may also be threaded on it to form a string of fuel elements rigidly connected together by the rod. Part of a second fuel element 21 is shown in FIG. l. The rod 20 has at its lower end a boss 22 which fits in a stepped recess 23 in a bush 24, carried by webs 25 on a ring 26 and located in a nuclear reactor fuel element channel 40 about a spigot 41 projecting from a stool 49. The ring 26 is fastened by screws 27 and dowels 28 (FIGS. 3 and 4) to another ring 29 with ribs 30 carrying a central boss 31. A wire gauze 32 is clamped between the two rings to retain any debris from the fuel members and to filter solids from the coolant. The ring 29 is screwed into the sleeve 15, and the ring 29 together with the ring 26 and its bush 24 forms a sleeve support means which supports the fuel element or stack of fuel elements above it by way of the sleeve 15 so that the fuel element or stack of fuel elements can be lifted or lowered by lifting or lowering the rod 20. Thus fuel elements can be simply inserted in and withdrawn from a fuel element channel in a nuclear reactor.
The rod 20 is provided with longitudinal flats or relievings 33 for accommodation of thermocouple cables 34 extending to any desired fuel member 11. Only one cable 34 is shown in FIG. 1 for the sake of clarity. This cable terminates in a hot junction 35 embedded in a raised portion 36 on the sheath 38 of a nuclear fuel member 11. The sleeve 39 assists in maintaining the cable or cables 34 in position. The upper end of the rod 20 (shown in FIG. 5) terminates in a boss 42 having a shaped bore 43. The boss 42 can pass through the apertures 18 in the support plates 13. The rod is secured to a tubular member 44 by a bolt 45 which passes through the shaped bore 43, with clearance to allow for upward expansion of the rod 20, and apertures 46 in the tubular member 44. A sleeve 47 is Welded to the inside of the tubular member 44 about the aperture 46 for location of the boss 42 in an axial position. A flanged sleeve 48 is also welded inside the tubular member 44 to assist in location of the tubular member 44 with respect to the adjacent element 10. The tubular member 44 can be secured to a shield plug to provide a complete assembly for loading into a fuel element channel in a nuclear reactor as a single unit.
The single rod 20 linking a stack of fuel elements together takes up very little space in the fuel elements. Only the centre fuel member in a concentric pitching of fuel members has to be sacrificed to accommodate the rod. It is also an advantage that, during lifting and lowering, the rod 20 is in tension whilst the remainder of the assembly, particularly the graphite sleeves 15, is in compression. Furthermore, due to the fuel elements being stacked upon one another when constituted into an assembly, their ends, which are relieved as can clearly be seen in FIGURE 1, rest upon one another in a sealing manner and largely prevent coolant flowing within the elements from passing outwardly to the annulus between the graphite sleeves of an assembly and the wall of a fuel element channel containing it. Alternatively, adjacent graphite sleeves may be interconnected by spigots, for example, the better to prevent outward coolant flow be tween sleeve ends whilst allowing slight flexibility at the joints.
In an alternative arrangement shown in FIG. 6 the ceramic sleeves 39 are replaced by resilient locating means. Each means comprises a Nirnonic alloy bush S1 welded to the rod and carrying a support leg 58 and two leaf springs 52 (of which only one is shown) the support leg and springs being symmetrically disposed around the bush 51. Central apertures 18 in the support plates 13 are provided with stainless steel liners 57 chromised where they are in contact with the beryllium of the support plates 13 and the fuel element is assembled by drawing the rod 20 and the bush 51 up through the liner 57 so that the springs 52 contact the liners 57 and locate the rod 20 relative to the support plates 13. Thereby contact between the stainless steel rod and the beryllium support plates is avoided and vibration of the rod under reactor coolant flow is reduced.
In FIG. 6 the rod 20 is shown to scale and without flats 33 to accommodate thermocouple cables. As an alternative thermocouple cables may be led down the inside of the graphite sleeve 15.
A further modification is shown in FIG. 7. As shown in FIG. 7 the rod 20 has at its lower end a boss 22a which is small enough to pass through the apertures 18 and allow the rod to be threaded down through a stack of fuel elements. Around the boss 22a is provided a split collet 53, held in position in a bush 24a having webs 25a by a retaining disc 54 and a circlip 55 which is fitted in a groove 56 in the boss 24w after the rod 20 has been threaded through the fuel element stack and the collet 53 has been placed around the boss 22a.
The lifting rod 20 may be of beryllium instead of stainless steel.
We claim:
1. In a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removably supported in a reactor fuel rods element channel, and nuclear fuel rods disposed within and carried by the sleeve, the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, the single lifting member including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve supporting means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces; and fuel rod support member separate from the sleeve support member and carrying nuclear fuel rods by their lower ends, said fuel rod support member being supported directly by the lower end of the sleeve, and said single lifting member extending freely through an aperture in said fuel rod support member.
2. The improvement according to claim 1 wherein the sleeve is supported in the fuel element channel by the sleeve support means.
3. A fuel element according to claim 1 wherein the lifting member is made of steel.
4. A fuel element according to claim 1 wherein a ceramic sleeve is mounted coaxially on the lifting member within the sleeve and in register with said fuel rod support member to prevent contact of the lifting member with said fuel rod support member.
5. In a nuclear fuel element of the kind comprising an upright hollow graphite sleeve removeably supported in a reactor fuel element channel, and nuclear fuel rods disposed within and carried by the sleeve, the improvement comprising sleeve support means attached to the sleeve adjacent the lower end of the sleeve, said sleeve supporting means comprising an annular ring supporting the sleeve and a central bush defining a stepped recess; a single lifting member extending lengthwise up through the center of the sleeve and attached only at its lower end to the sleeve support means, said lifting member including an enlarged boss fitting into the stepped recess of said central bush, the single lifting member also including means at its upper end for raising and lowering the lifting member to correspondingly raise and lower the sleeve support means and sleeve from adjacent the said lower end to avoid subjecting the sleeve to tensile forces.
6. A fuel element comprising an uprightly disposed graphite sleeve; a cluster of elongate fuel members disposed upright in parallel array within the sleeve; means carried by said sleeve to support the fuel members; a lifting member freely extending lengthwise up through the center of the sleeve and beyond said cluster; and sleeve support means supporting the sleeve disposed at the lower end of the sleeve and connected to the lower end only of the lifting member, said lifting member including means at its upper end to raise and lower the fuel element by the sleeve support means and thereby avoid subjecting the sleeve to tensile forces, and said sleeve support means comprising a ring coaxial with and adjacent to the lower end of the sleeve and a bush on the axis of the ring connecting the ring to the lifting member.
7. A fuel element according to claim 6 wherein the bush defines an internal stepped recess on the said axis, and the lifting member includes an enlarged boss fitting in the stepped recess.
8. A fuel element according to claim 7 and further comprising a collet within the recess and surrounding the boss, and a returning disc within the recess holding the collet and boss within the recess.
9. A fuel element according to claim 6 wherein the bush defines the central bore, and the lifting member passes through the bore and includes spring means disposed thereon below the bush, the spring means engaging the wall of the bore to connect the lifting member to the bush.
References Cited by the Examiner UNITED STATES PATENTS 2,841,545 7/1958 Zinn 176-48 2,848,404 8/1958 Treshow 176-44 2,851,410 9/1958 Vernon et a1. l763l 2,852,456 9/1958 Wade l76l8 2,938,848 5/1960 Ladd et a1. 17672 2,985,575 5/1961 Dennis et al l7643 2,999,059 9/1961 Treshow l76-42 3,015,616 1/1962 Sturtz et al l7678 3,090,742 5/1963 Fawcett 176-20 3,128,235 4/1964 Hackney et a1 176-78 CARL D. QUARFORTH, Primary Examiner.
ROGER L. CAMPBELL, Examiner.
Claims (1)
1. IN A NUCLEAR FUEL ELEMENT OF THE KIND COMPRISING AN UPRIGHT HOLLOW GRAPHITE SLEEVE REMOVABLY SUPPORTED IN A REACTOR FUEL RODS ELEMENT, CHANNEL, AND NUCLEAR FUEL RODS DISPOSED WITHIN AND CARRIED BY THE SLEEVE, THE IMPROVEMENT COMPRISING SLEEVE SUPPORT MEANS ATTACHED TO THE SLEEVE ADJACENT THE LOWER END OF THE SLEEVE; A SINGLE LIFTING MEMBER EXTENDING LENGTHWISE UP THROUGH THE CENTER OF THE SLEEVE AND ATTACHED ONLY AT ITS LOWER END TO THE SLEEVE SUPPORT MEANS, THE SINGLE LIFTING MEMBER INCLUDING MEANS AT IS UPPER END FOR RAISING AND LOWERING THE LIFTING MEMBER TO CORRESPONDINGLY RAISE AND LOWER THE SLEEVE SUPPORTING MEANS AND SLEEVE FROM ADJACENT THE SAID LOWER END TO AVOID SUBJECTING THE SLEEVE TO TENSILE FORCES; AND FUEL ROD SUPPORT MEMBER SEPARATGE FROM THE SLEEVE SUP-
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3745/59A GB889536A (en) | 1959-02-03 | 1959-02-03 | Improvements in or relating to fuel elements for nuclear reactors |
Publications (1)
Publication Number | Publication Date |
---|---|
US3238109A true US3238109A (en) | 1966-03-01 |
Family
ID=9764173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US6427A Expired - Lifetime US3238109A (en) | 1959-02-03 | 1960-02-03 | Fuel elements for nuclear reactors |
Country Status (5)
Country | Link |
---|---|
US (1) | US3238109A (en) |
BE (1) | BE587232A (en) |
DE (1) | DE1211342B (en) |
FR (1) | FR1246699A (en) |
GB (1) | GB889536A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3366549A (en) * | 1966-06-30 | 1968-01-30 | Atomic Energy Commission Usa | Gas-cooled nuclear reactor |
US3407115A (en) * | 1965-11-24 | 1968-10-22 | Babcock & Wilcox Co | Fuel element-control rod assembly |
US3441477A (en) * | 1966-04-29 | 1969-04-29 | Atomic Energy Authority Uk | Cooling of nuclear reactors |
FR2197208A2 (en) * | 1971-08-12 | 1974-03-22 | Commissariat Energie Atomique | |
US4326922A (en) * | 1978-02-06 | 1982-04-27 | Westinghouse Electric Corp. | Composite nuclear fuel assembly |
CN111537545A (en) * | 2020-05-14 | 2020-08-14 | 中国核动力研究设计院 | Experimental fuel rod for research on source item release characteristics |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3161571A (en) * | 1960-11-21 | 1964-12-15 | Joseph M Harrer | Boiling-water nuclear reactor |
NL275721A (en) * | 1961-03-09 | |||
GB959470A (en) * | 1961-05-24 | 1964-06-03 | Atomic Energy Authority Uk | Improvements in or relating to fuel elements for nuclear reactors |
BE624769A (en) * | 1961-11-15 | 1900-01-01 | ||
GB977544A (en) * | 1962-12-10 | 1964-12-09 | Atomic Energy Authority Uk | Improvements in or relating to nuclear fuel assemblies |
GB2164195B (en) * | 1984-09-03 | 1988-05-25 | Nat Nuclear Corp Ltd | Fuel element stringer construction |
US5071617A (en) * | 1989-12-11 | 1991-12-10 | Combustion Engineering, Inc. | Reduced flow resistance cast lower end fitting |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2841545A (en) * | 1954-06-15 | 1958-07-01 | Walter H Zinn | Power reactor |
US2848404A (en) * | 1956-08-02 | 1958-08-19 | Treshow Michael | Neutronic reactor |
US2851410A (en) * | 1945-05-28 | 1958-09-09 | Harcourt C Vernon | Neutronic reactor construction |
US2852456A (en) * | 1953-11-17 | 1958-09-16 | Elmer J Wade | Neutronic reactor |
US2938848A (en) * | 1958-04-30 | 1960-05-31 | Conrad M Ladd | Fuel elements for nuclear reactors |
US2985575A (en) * | 1955-07-27 | 1961-05-23 | Gen Electric Co Ltd | Nuclear reactors |
US2999059A (en) * | 1958-04-04 | 1961-09-05 | Treshow Michael | Nuclear reactor |
US3015616A (en) * | 1956-11-02 | 1962-01-02 | Westinghouse Electric Corp | Rod type fuel assembly |
US3090742A (en) * | 1958-06-27 | 1963-05-21 | Atomic Energy Authority Uk | Temperature control means for nuclear reactors |
US3128235A (en) * | 1958-01-24 | 1964-04-07 | Atomic Energy Authority Uk | Fuel elements for nuclear reactors |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL113539C (en) * | 1956-08-06 | |||
DE1046209B (en) * | 1957-01-24 | 1958-12-11 | Metallgesellschaft Ag | Combined fuel element - control element for nuclear reactors |
-
1959
- 1959-02-03 GB GB3745/59A patent/GB889536A/en not_active Expired
-
1960
- 1960-02-02 DE DEU6878A patent/DE1211342B/en active Pending
- 1960-02-02 FR FR817374A patent/FR1246699A/en not_active Expired
- 1960-02-03 US US6427A patent/US3238109A/en not_active Expired - Lifetime
- 1960-02-03 BE BE587232A patent/BE587232A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2851410A (en) * | 1945-05-28 | 1958-09-09 | Harcourt C Vernon | Neutronic reactor construction |
US2852456A (en) * | 1953-11-17 | 1958-09-16 | Elmer J Wade | Neutronic reactor |
US2841545A (en) * | 1954-06-15 | 1958-07-01 | Walter H Zinn | Power reactor |
US2985575A (en) * | 1955-07-27 | 1961-05-23 | Gen Electric Co Ltd | Nuclear reactors |
US2848404A (en) * | 1956-08-02 | 1958-08-19 | Treshow Michael | Neutronic reactor |
US3015616A (en) * | 1956-11-02 | 1962-01-02 | Westinghouse Electric Corp | Rod type fuel assembly |
US3128235A (en) * | 1958-01-24 | 1964-04-07 | Atomic Energy Authority Uk | Fuel elements for nuclear reactors |
US2999059A (en) * | 1958-04-04 | 1961-09-05 | Treshow Michael | Nuclear reactor |
US2938848A (en) * | 1958-04-30 | 1960-05-31 | Conrad M Ladd | Fuel elements for nuclear reactors |
US3090742A (en) * | 1958-06-27 | 1963-05-21 | Atomic Energy Authority Uk | Temperature control means for nuclear reactors |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3407115A (en) * | 1965-11-24 | 1968-10-22 | Babcock & Wilcox Co | Fuel element-control rod assembly |
US3441477A (en) * | 1966-04-29 | 1969-04-29 | Atomic Energy Authority Uk | Cooling of nuclear reactors |
US3366549A (en) * | 1966-06-30 | 1968-01-30 | Atomic Energy Commission Usa | Gas-cooled nuclear reactor |
FR2197208A2 (en) * | 1971-08-12 | 1974-03-22 | Commissariat Energie Atomique | |
US4326922A (en) * | 1978-02-06 | 1982-04-27 | Westinghouse Electric Corp. | Composite nuclear fuel assembly |
CN111537545A (en) * | 2020-05-14 | 2020-08-14 | 中国核动力研究设计院 | Experimental fuel rod for research on source item release characteristics |
Also Published As
Publication number | Publication date |
---|---|
DE1211342B (en) | 1966-02-24 |
GB889536A (en) | 1962-02-14 |
BE587232A (en) | 1960-08-03 |
FR1246699A (en) | 1960-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3238109A (en) | Fuel elements for nuclear reactors | |
US3595748A (en) | Nuclear reactor control device | |
US4348355A (en) | Fuel assembly for a boiling nuclear reactor | |
US3039947A (en) | Fuel elements for nuclear reactors | |
GB873073A (en) | Improvements in or relating to fuel elements for nuclear reactors | |
US3089837A (en) | Fuel elements for nuclear reactors | |
GB1422796A (en) | Improvements in nuclear reactors | |
US3291698A (en) | Fuel element | |
US3185632A (en) | Fuel elements for nuclear reactors | |
US3240681A (en) | Fuel elements for nuclear reactors | |
GB931972A (en) | Reflector for nuclear reactors | |
GB1139969A (en) | Fuel assemblies for nuclear reactors | |
US3527669A (en) | Molten-salt-fueled nuclear breeder reactor and fuel cell for use therein | |
US2986509A (en) | Fuel element for a nuclear reactor | |
US3287230A (en) | Nuclear fuel element stringer assembly with improved coupling device | |
US2984612A (en) | Nuclear reactor refuelling devices | |
US3238106A (en) | Nuclear reactors | |
US3247076A (en) | Fuel elements for nuclear reactors with lateral support means | |
US5100608A (en) | In-core nuclear instrumentation for fast breeder reactors | |
GB877418A (en) | Improvements in fuel arrangements for use in nuclear reactors having vertical channels | |
US3206369A (en) | Fuel elements for nuclear reactors | |
US3361635A (en) | Nuclear reactor control rod winding arrangements | |
US3309280A (en) | Pressure-tube nuclear reactor including fuel assembly with thermal baffle | |
GB990429A (en) | Nuclear reactors | |
GB1519546A (en) | Nuclear reactor |