US3234402A - Multivibrator system for logic circuits - Google Patents
Multivibrator system for logic circuits Download PDFInfo
- Publication number
- US3234402A US3234402A US182896A US18289662A US3234402A US 3234402 A US3234402 A US 3234402A US 182896 A US182896 A US 182896A US 18289662 A US18289662 A US 18289662A US 3234402 A US3234402 A US 3234402A
- Authority
- US
- United States
- Prior art keywords
- transistor
- potential
- electrode
- transistors
- base electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000903 blocking effect Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- BALXUFOVQVENIU-KXNXZCPBSA-N pseudoephedrine hydrochloride Chemical compound [H+].[Cl-].CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 BALXUFOVQVENIU-KXNXZCPBSA-N 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/60—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/08—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
- H03K19/082—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using bipolar transistors
- H03K19/084—Diode-transistor logic
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/26—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
- H03K3/28—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
- H03K3/281—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
- H03K3/286—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/26—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
- H03K3/28—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
- H03K3/281—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
- H03K3/286—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
- H03K3/2893—Bistables with hysteresis, e.g. Schmitt trigger
Definitions
- Jeanne Ealigant (Wife of De Senigon tie Ronmefort), Paris, France, assignors to Societe de Diffusion dEquipernents Electroniques S.D.E.E., Paris, France, a corporation Filed Mar. 27, 1962, Ser. No. 182,896 Claims priority, application France, Mar. 30, 1961,
- the present invention relates to transistorized multivibrator systems of the type disclosed in our earlier patent application Ser. No. 829,699, filed on July 27, 1959, now Patent No. 3,041,477.
- the object of the present invention is to provide further improvements in that system.
- FIG. 1 is a diagram of an improved functional unit, according to the invention.
- FIG. 2 is a diagram of a control unit operating upon the receipt of an instruction or by self-feed.
- the functional unit of FIG. 1 is a transistor flip-flop or multivibrator. sistor T1 and T2, respectively. One is cut off when the other is conductive.
- the control point is denoted by reference numeral 7. If there is no signal at this point, the transistor T1 conducts and the multivibrator is regarded as being in its inoperative state; at that time the potential of point 1 (i.e. of the collector of transistor T1) is approximately equal to that of the point 9 and the point 15 (i.e. the collector of transistor T2) is at a potential of about 24 volts which diflers considerably from that of the point 9 tied to the emitters of the two transistors.
- the multivibrator If a signal appears at the point 7, a positive potential being applied thereto, the multivibrator is considered as operative (with transistor T2 conducting) and the point 1 passes to a voltage of -24 volts, the point 15 assuming a potential close to that of the point 9.
- the system is energized by a source of direct current connected to the junction 5, maintained at a negative potential here given as 24 volts, and the point 10 tied to the positive terminal of the source.
- the point 9 represents a common terminal of several functional units of the type illustrated in FIG. 1.
- Such a unit has the following properties:
- T2 The base of T2 is connected to a junction formed by resisters R2, R7 and R9. This latter resistor is in parallel with the resistor R10 at a beginning of the application of voltage, while C is not charged.
- T1 The base of T1 is connected to potentiometer bridge formed by the resistors R4 on the one hand, R8 and R6 on the other hand, in parallel with resistive branch R11 through the rectifier means or diode D2.
- T1 The base of T1 is negative and hence T1 conducts the It comprises a first and a second tran- Patented Feb. 8, 1966 emitter-collector current being limited by the resistors R1 and R2.
- the potential between the points 9 and 1 is at a minimum.
- the operation of the system is as if the points 9 and 1 were in closed contact, representing an inoperative condition.
- the potential between the points 9 and 15 being as high as possible, it may be said that the contact is open between points 9 and 15, representing the operative condition.
- the passage of the functional unit into the operative condition is abrupt and may be produced by a control signal which may be either continuous or variable with time.
- the point 7 is connected to the positive pole, the contacts I2 being closed.
- the transistor T1 is thus cut off and the point 1 becomes more negative.
- T2 goes negative and T2 becomes conductive.
- the potential across the junctions or terminals 9 and 15 is practically zero (closed operative contact).
- the purpose of the capacitor C6 is to hold constant the potential of the terminal 9 during the flip-flop operation.
- This capacitor is a single capacitor common to all the units of an installation, and its value is about 10 microfarads per functional unit used.
- a variable current is applied to the point 7, for example by disposing a continually decreasing resistance X between the positive terminal of the source and the point 7.
- the current passing through the base of T1 will therefore drop, the emitter-collector current of T1 will fall and the junction 1 will become more negative; the same applies to the bridge (R7/R9).
- the base of T2 becomes negative and T2 begins to conduct.
- the diode D1 tends to accelerate this process by reducing the bias of T1 through R3.
- This flip-flop process is abrupt and takes place in a few microseconds.
- the passage of the unit into the inoperative condition is abrupt and may be produced by a control signal which is constant or which is variable with time.
- any signal disappears at the point 7 (for example by the opening of a switch), the base of transistor T1 is then biased negatively via resistors R11 and D2. The transistor T1 conducts and the potential at the point 1 becomes less negative so as to cut off transistor T2.
- a variable voltage is applied to the terminal 7, for example by connecting a continually increasing resistance X between the positive supply terminal and the point 7. The same process as described above takes place.
- the functional unit may be self-energizing.
- the diode D2 acts as a valve and the circuit remains in sary to cancel the order produced at the .point 8.
- .tionsused at the point 7 by the control units. can be digards number.
- each functional unit is designed according to the circuit diagram shown in FIG. 1. It will be seen that the point 1 'is connected to three diodes and the point 15 to another three diodes. Thisarrangement gives three inoperative and three operative states, the common junction being the point '9.
- Each functional unit is in the form of a unit having plug-in rectangular surfaces. The plug contains the connections indicated by reference numerals 1 to 15 inFlG. l.
- the diode DI, the ,diode D2 and the point will be considered .R6 and .R8 is so designed that when the three output points 12, 13, 14, are connected to control units the potentialof R3 .is equal to the potential of R6.
- the diode D1 is at the minimum cut-off level and the .current at the base oftransistor T1 will remain constant for a .zero load on theoutput points considered or for .the maximum load provided.
- the current required to cancelout the bias of transistor T1 will always be constant and will be more readily controllable by an external element. In other 'words, the flip-flop will always be controlled by.the point 7 inresponse to currents of constant characteristics.
- IIL-Common point 9 In an assembly of functional units connected together to provide a predetermined program, it should be noted that these output points 12, 13, 14 and 2, 3, 4 (FIG. 1) are at a potential in the region of the point 9 when the points in question correspond to conduction of transistor T1 and T2. As a result, the point 9 will be common to all the functional units so that irrespective of the possible variations of the resistances of the circuits, all the emitters of the transistors are at the-same potential. The transmission of orders at a given level therefore enables a stable system to be obtained.
- the flip-flop shown in FIG. 1 will be in the operative position when the point 7 is made positive with respect to the point 9, either by direct connection to the position pole or by the use of a calibrated resistance between the point 7 and the positive pole, or by the use of a control unit, the output points 25 of which (FIG. 2) is connected to the point 7 ('FIG. 1),
- a multivibrator circuit arrangement comprising a first and a second transistor each with a base electrode, an emitter electrode, a collector electrode, a first resistive branch connecting the base electrode of one .of'said transistors to a source of emitterpotential, a second resistive branch connecting said base electrodeofsaid one of said transistors to the collector electrode of the otherof said transistors and forming with said first-branch apotentiometer, and resistance means connectingsaid collector electrode of said other of said transistor to a source of collector potential, the potentials of said sources and the branches ofeach potentiometer maintaining each of said transistors nonconductive upon the passage ,of current through the other transistor and the associated; resistance means; a common resistor connecting the emitter electrodes-of both transistors to said source of emitter potential; and input connected to the base electrode of said first transistor for controlling the potential thereof to maintain said first :transistorconductive in-the absence of a switching signal on .said input; at least'one output connected to the collector electrode of said second-trans
- a multivibrator circuit arrangement comprising a first and second transistor each with a base electrode, an emitter electrode, a collector electrode, a first resistive branch connecting the base electrode of one of said transistors to a source of emitter potential, asecond resistive branch connecting said base electrode of said one of said transistors to the collector electrode of theother of said transistors and forming with said first branch a potentiometer, and resistance means connecting.
- said collector electrode of said other of said transistors to a source of collector potential, the potentials of said sources and the branches ofcach potentiometer maintaining each of said transistors nonconductive upon the passage of current through the other transistor and therassociated resistance means; a common resistor connecting the emitter electrodes of both transistors to said source of emitter potential; an input connected to the base electrode of said first transistor for controlling the potential thereof to maintain said first transistor conductive in the absence of a switching signal on said input; at least one output connected to one of said collector electrodes; a resistive connection extending from the base electrode of said first transistor to said source of collector potential; circuit means having a junction with said connection for connecting said connection to a source of blocking potential for the base electrode of said first transistor; and rectifier means in said connection between said junction and the base electrode of said first transistor with a polarity preventing the application of said blocking potential to the base electrode of said first transistor in the absence of a biasing current through said rectifier means due to conduction of said second transistor.
- a multivibrator circuit arrangement comprising a first and a second transistor each With a base electrode, an emitter electrode, a collector electrode, a first resistive branch connecting said base electrode of one of said transistors to a source of emitter potential, a second resistive branch connecting said base electrode of said one of said transistors to the collector electrode of the other of said transistors and forming with said first branch a 130- tentiometer, and resistance means connecting said collector electrode of said other of said transistors to a source of collector potential, the potentials of said sources and the branches of each potentiometer maintaining each of said transistors nonconductive upon the passage of current through the other transistor and the associated resistance means; a common resistor connecting the emitter electrodes of both transistors to said source of emitter potential; an input connected to the base electrode of said first transistor for controlling the potential thereof to maintain said first transistor conductive in the absence of a switching signal on said input; at least one output connected to the collector electrode of said second transistor; a first diode connected in said second resistive branch with a polarity
- a multivibrator circuit arrangement comprising a first and a second transistor each with a base electrode, an emitter electrode, a collector electrode, a first resistive branch connecting said base electrode of one of said transistors to a source of emitter potential, a second resistive branch connecting said base electrode of said one of said transistors to the collector electrode of the other of said transistors and forming with said first branch a potentiometer, and resistance means connecting said collector electrode of said other of said transistors to a source of collector potential, the potential of said sources and the branches of each potentiometer maintaining each of said transistors nonconductive upon the passage of current through the other transistor and the associated resistance means; a common resistor connecting the emitter electrodes of both transistors to said source of emitter potential; capacitive means connected across said first resistive branch of said second transistor for rendering said first transistor preferentially conductive upon application of said emitter and collector potentials; an input connected to the base electrode of said first transistor for controlling the potential thereof to render.
- said first transistor nonconductive in the presence of a switching signal on said input; at least one output connected to the collector electrode of said second transistor; rectifier means connected in said second resistive branch with a polarity facilitating the fiow of a biasing current in the conductive condition of said second transistor for maintaining the base electrode of said first transistor at cutoff potential; and circuit means connecting said rectifier means to a source of biasing potential for isolating the base electrode of said first transistor from said output in the nonconductive condition of said second transistor.
- a multivibrator circuit arrangement comprising a first and a second transistor each with a base electrode, an emitter electrode, a collector electrode, a first resistive branch connecting said base electrode of one of said transistors to a source of emitter potential, a second resistive branch connecting said base electrode of said one of said transistors to the collector electrode of the other of said transistors and forming with said first branch a potentiometer, and resistance means connecting said collector electrode of said other of said transistors to a source of collector potential, the potentials of said sources and the branches of each potentiometer maintaining each of said transistors nonconductive upon the passage of current through the other transistor and the associated resistance means; a common resistor connecting the emitter electrodes of both transistors to said source of emitter potential; capacitive means connected across said first resistive branch of said second transistor for rendering said first transistor preferentially conductive upon application of said emitter and collector potentials; an input connected to the base electrode of said first transistor for controllin the potential thereof to render said first transistor nonconductive in the presence of a switching signal
- a multivibrator circuit arrangement comprising a first and a second transistor each with a base electrode, an emitter electrode, a collector electrode, a first resistive branch connecting said base electrode of one of said transistors to a source of emitter potential, a second resistive branch connecting said base electrode of said one of said transistors to the collector electrode of the other of said transistors and forming with said first branch a potentiometer, and resistance means connecting said collector electrode of said other of said transistors to a source of collector potential, the potentials of said sources and the branches of each potentiometer maintaining each of said transistors nonconductive upon the passage of current through the other transistor and the associated resistance means; a common resistor connecting the emitter electrodes of both transistors to said source of emitter potential; capacitive means connected across said first resistive branch of said second transistor for rendering said first transistor preferentially conductive upon application of said emitter and collector potentials; an input connected to the base electrode of said first transistor for controlling the potential thereof to render said first transistor nonconductive in the presence of a switching signal on said
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Electronic Switches (AREA)
- Control Of Electrical Variables (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Soil Working Implements (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR857337A FR79516E (en, 2012) | 1958-08-08 | 1961-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3234402A true US3234402A (en) | 1966-02-08 |
Family
ID=8752072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US182896A Expired - Lifetime US3234402A (en) | 1961-03-30 | 1962-03-27 | Multivibrator system for logic circuits |
Country Status (7)
Country | Link |
---|---|
US (1) | US3234402A (en, 2012) |
BE (1) | BE615468A (en, 2012) |
DE (1) | DE1182291B (en, 2012) |
ES (1) | ES275950A1 (en, 2012) |
GB (1) | GB963159A (en, 2012) |
LU (1) | LU41421A1 (en, 2012) |
NL (1) | NL276615A (en, 2012) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3416006A (en) * | 1963-05-24 | 1968-12-10 | Electronique & Automatisme Sa | Digital data processing system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059127A (en) * | 1959-09-21 | 1962-10-16 | Nederlanden Staat | Reactance logical circuits with a plurality of grouped inputs |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL195355A (en, 2012) * | 1954-06-29 | |||
DE1059961B (de) * | 1956-01-13 | 1959-06-25 | Siemens Ag | Bistabile Kippschaltung fuer die Bildung einer relaisartig arbeitenden Einrichtung |
GB821256A (en) * | 1956-09-28 | 1959-10-07 | Atomic Energy Authority Uk | Improvements in or relating to transistor bistable circuits |
US2994784A (en) * | 1957-12-04 | 1961-08-01 | Westinghouse Electric Corp | Bistable control apparatus |
US3042812A (en) * | 1958-08-05 | 1962-07-03 | Sperry Rand Corp | Multivibrators with particular input circuits |
-
0
- NL NL276615D patent/NL276615A/xx unknown
-
1962
- 1962-03-23 BE BE615468A patent/BE615468A/fr unknown
- 1962-03-23 LU LU41421D patent/LU41421A1/xx unknown
- 1962-03-27 US US182896A patent/US3234402A/en not_active Expired - Lifetime
- 1962-03-29 ES ES275950A patent/ES275950A1/es not_active Expired
- 1962-03-30 GB GB12270/62A patent/GB963159A/en not_active Expired
- 1962-03-30 DE DEB66591A patent/DE1182291B/de active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059127A (en) * | 1959-09-21 | 1962-10-16 | Nederlanden Staat | Reactance logical circuits with a plurality of grouped inputs |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3416006A (en) * | 1963-05-24 | 1968-12-10 | Electronique & Automatisme Sa | Digital data processing system |
Also Published As
Publication number | Publication date |
---|---|
DE1182291B (de) | 1964-11-26 |
BE615468A (fr) | 1962-07-16 |
GB963159A (en) | 1964-07-08 |
ES275950A1 (es) | 1962-06-01 |
NL276615A (en, 2012) | 1900-01-01 |
LU41421A1 (en, 2012) | 1962-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3538353A (en) | Switching circuit | |
US3889159A (en) | Method and system to protect electronic switching components | |
US2823322A (en) | Electronic switch | |
US3416008A (en) | Storage circuit employing cross-connected opposite conductivity type insulated-gate field-effect transistors | |
US3396314A (en) | Overdrive circuit for inductive loads | |
US3153729A (en) | Transistor gating circuits | |
US3243606A (en) | Bipolar current signal driver | |
US2907895A (en) | Transistor trigger circuit | |
US3235750A (en) | Steering circuit for complementary type transistor switch | |
US3130326A (en) | Electronic bistable gate circuit | |
US3234402A (en) | Multivibrator system for logic circuits | |
US3122646A (en) | Control circuit | |
US3524999A (en) | Radiation hardened transistor circuit | |
US3364391A (en) | Regenerative drive circuit with current limiting | |
US3230394A (en) | Pulse generating circuit insensitive to input control switch contact bounce | |
US3175100A (en) | Transistorized high-speed reversing double-pole-double-throw switching circuit | |
US3238386A (en) | Electronic switching device | |
US3248567A (en) | Selectively shunted series-switching transmission gates | |
US3214606A (en) | Retentive memory bistable multivibrator circuit with preferred starting means | |
US3310731A (en) | Voltage reference circuit | |
GB1013692A (en) | Energization circuits for inductive devices | |
US3502900A (en) | Signal control circuit | |
US3215858A (en) | High speed transistor switching circuit | |
US3229217A (en) | "h" network d.c. amplifier having a dead zone transfer characteristic for eliminating idling currents | |
US3512010A (en) | Switching circuit with hysteresis |