US3233320A - Extrusion process of lead cladding - Google Patents

Extrusion process of lead cladding Download PDF

Info

Publication number
US3233320A
US3233320A US428833A US42883365A US3233320A US 3233320 A US3233320 A US 3233320A US 428833 A US428833 A US 428833A US 42883365 A US42883365 A US 42883365A US 3233320 A US3233320 A US 3233320A
Authority
US
United States
Prior art keywords
lead
basic metal
nickel
aluminum
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US428833A
Inventor
Victor E Knapp
Neil F Ritchey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knapp Mills Inc
Original Assignee
Knapp Mills Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US861198A external-priority patent/US3167858A/en
Application filed by Knapp Mills Inc filed Critical Knapp Mills Inc
Priority to US428833A priority Critical patent/US3233320A/en
Application granted granted Critical
Publication of US3233320A publication Critical patent/US3233320A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/22Making metal-coated products; Making products from two or more metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Definitions

  • the present invention relates to the cladding of lead on sheets of copper, aluminum, iron and their alloys. It has been found that these metals can be cladded with lead so as to form a bonded sheet which is useful for shielding against the harmful effects of radiation or corrosion.
  • the particular metal which is to be clad will be called the basic metal, with the understanding that it may either be steel, copper, aluminum, or alloys thereof.
  • Lead cladded metal structures are becoming increasingly important in radiation shielding.
  • no completely satisfactory method has been evolved to effect the bonding of lead to these metals in a wide range of thicknesses and by a reliable and relatively easily performed commercially practical method.
  • a method which permits the creation of a strong metallurgical bond between the lead and a basic metal so as to form lead clad metal sheets or plates wherein the lead and the basic metal are so tightly bonded together that the sheets or plates may be bent, cut, shaped, or otherwise handled without any separation of the two metals.
  • an object of the present invention is to provide an improved method of cladding a basic metal with lead.
  • Another object of the present invention is to provide an improved lead clad basic metal.
  • Another object of the present invention is to provide an improved method of metallurgically bonding a basic metal and lead together.
  • Another object of the present invention is to provide a practical and reliable method of bonding lead to a basic metal which is suitable for commercial use.
  • the first step in the process comprises the coating or plating with nickel of the basic metal surface which is to be clad with lead.
  • the coating of the basic metal with the nickel may be accomplished by any of the known types of nickelplate, such as electroplating or chemical plating.
  • a preferred chemical process which provides a bond between the nickel and the basic metal is accomplished by a controlled catalytic reduction of nickel in a plating bath.
  • the basic metal parts are immersed in a hot solution containing a chemical reducing agent, such as sodium hypophospite and a buffered solution of nickel salt, such as nickel chloride.
  • Suitable solution for such a chemical plating of nickel have also been disclosed in United States Patents Nos. 2,658,841 and 2,658,842 which issued to Gu-tzeit and Kreig, Patent No. 2,694,017 which issued to Rischan and Kreig, and Patent No, 2,694,019 which issued to Gutzeit.
  • the plate solutions which were disclosed in these patents may be applied by the process described more completely in Patents No. 2,658,839 which issued to P. Tallmey et al., No. 2,717,218 which issued to P. Tallmey et al., No. 2,762,723 which issued to Tallmey and Gutzeit, and No. 2,766,138 which issued to Paul Tallmey.
  • the nickel coating is preferably thicker than .0005". A coating thickness of .001" has provided a satisfactory bond.
  • nickel is tinned with a mixture of lead and tin or antimony.
  • a preferred tinning mixture comprises about 41 percent lead and 59 percent tin which is melted to permit dipping of the nickel-plated surface into the tinning mixture.
  • the melting point for the 41 percent lead and the 59 percent tin mixture is about 360 F.
  • the basic metal is preferably fluxed with one of the suitably known fluxes for the bonding of tin to the particular basic metal prior to the tinning.
  • the tinning of the basic metal having been completed, the metal is ready to receive the lead to which it is to be bonded.
  • Several methods may be utilized to bring the lead in contact with the tinned surface of the basic metal. Each of them makes use of the principle that the leadtin eutectic coating must first be melted before the lead metal will adhere to it.
  • the lead may be hand deposited on the basic metal by simply burning a bar of lead over the basic metal.
  • the lead melts and flows by gravity so that it spreads over the tinned basic metal surface.
  • the burning may be accomplished with any heating implement capable of furnishing a sufiiciently high temperature to melt the lead, as with a torch operated with hydrogen or propane gas, for example.
  • a workman plays over the surface with a torch, and fuses the lead into the tinned surface.
  • the high temperature of the lead and the heat from the torch are more than is necessary to heat the eutectic coating so that it becomes largely or completely liquified.
  • the above procedure may be continued until the entire surface has been coated with lead. Additional layers of lead may be deposited in a similar fashion to increase the over-all thickness by repeating the same operation with new quantities of lead metal.
  • pour-bonding method Another method of bringing the lead into contact with the basic metal surface is called the pour-bonding method.
  • the basic metal after the basic metal has been tinned, as above, it is pre-heated to about 400 F. Meanwhile, lead metal has been heated to a temperature of 700 to 750 F., so that it is now entirely molten.
  • the lead is then simply poured over the tinned basic metal surface to any thickness required. As the molten lead comes into contact with the tinned surface of the basic metal, it forms a homogeneous mass with the eutectic coating which has melted under the heat applied so that an excellent bond with the basic metal is produced.
  • the lead coating may be applied to the base metal by extrusion.
  • the base metal in the form of rods or tubes is first nickel-plated and tinned and the lead and the base metal tubes or rods are fed through heated extrusion dies to bond a coating of lead to the outer surface of the tubes or rods.
  • the lead may also be brought into contact with the tinned basic metal surface in solid form, usually as sheets, by what is called the roller or platen pressure method.
  • the roller or platen pressure method In this method, after the basic metal surface has been nickel-plated and tinned, the surface of the lead which is to be bonded to the basic metal is cleaned to remove lead oxide by scraping or other suitable cleaning methods and the cleaned basic metal surface is also tinned.
  • the basic metal slab is preferably heated prior to the tinning. The bonding temperatures are slightly above the melting point of tin.
  • Lead eutectic alloy is used to tin both the lead and the basic metal so that the lead is heated 3040 F. above the 360 F. melting point for the tin-lead alloy.
  • the lead is now tinned.
  • a preferred method of tinning the lead is by hand wiping using an oxygen-hydrogen torch to apply heat as needed.
  • the basic metal and lead sheets or plates are bonded together under pressure by means of either platens or rollers.
  • the platens or rollers which serve to press the lead and the basic metal are heated to the bonding temperature so that the bonding temperature will be maintained during the required pressure period.
  • the platens for instance, may be heated to about 400 F. prior to the insertion of the lead and the basic metal therebetween.
  • the lead After the lead has been tinned, it is reheated, if necessary, to about 400 F. and the nickel coated and tinned face of the basic metal is placed against the tinned surface of the lead.
  • the basic metal and lead are now pressed between the platens or rollers, as the case may be.
  • the pressure is mainr tained for a sufiicient period to insure the formation of the bond. For instance, with aluminum, when the preferred of 15 p.s.i. is used, a pressure period of two minutes is preferred. At the end of this period, the lead and basic metal are cooled while still under pressure to solidify the interface. This may be done by a suitable water spray. Thereafter, the pressure is released to permit the removal of the bonded metals.
  • the present invention provides an improved method for metallurgically bonding lead to sheets or plates of a basic metal which may be copper, aluminum, iron or their alloys.
  • the method of the present invention provides an improved lead clad basic metal in which an extremely tight bond is formed between the basic metal and the lead.
  • the finished bonded sheets may be subjected to additional manufacturing processes such as bonding, cutting, and shaping without a failure of the bond.
  • the process is relatively simple and is reliable so that it is suitable for commercial usage on a large scale to provide numerous lead cladded metal products in the constantly growing market for such products.
  • the lead clad basic metal as formed by the process of the present invention in many cases has a tensile strength which is greater than would be expected from the combined strengths of the lead and basic metal and that there is an unexpected and important increase in the strength of the finished product which results from the practice of the cladding process of the invention.
  • iron includes steel or any of the other alloys of iron.
  • the process of metallurgically bonding lead to a basic metal included in the group consisting of copper, aluminum, iron, and their alloys which comprises the steps of coating a surface of the basic metal with nickel, applying a tin-lead eutectic to the nickel coated surface of the basic metal, and feeding the basic metal through a heated extrusion die with a surrounding layer of lead.
  • the process of metallurgically bonding lead to a basic metal included in the group consisting of copper, aluminum, iron, and their alloys which comprises the steps of chemically coating a surface of the basic metal with nickel, applying a tin-lead eutectic coating to the nickel coated surface of the basic metal, and feeding the basic metal through a heated extrusion die with a sur-. rounding layer of lead.
  • nickel salt comprises nickel chloride and the chemical reducing agent comprises sodium hypophosphite whereby the nickel coating comprises about 8-12 percent phosphorus and about 9188 percent nickel.
  • the process of metallurgically bonding solid lead to solid aluminum which comprises the steps of coating a surface of the aluminum with nickel to a depth of at least .0005 inch by a controlled catalytic reduction in a hot bath containing a chemical reducing agent and a nickel salt, applying a tin-lead eutectic coat to the nickel coated surface, and feeding the basic metal through a heated extrusion die with a surrounding layer of lead.
  • nickel salt comprises nickel chloride and the chemical reducing agent comprises sodium hypophosphite whereby the nickel coating comprises about 8-12 percent phosphorus and about 9288 percent nickel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemically Coating (AREA)

Description

United States Patent Ofiice 3,233,320 Patented Feb. 8, 1966 EXTRUSION PRGCESS 0F LEAD CLADDING Victor E. Knapp, Roslyn, N.Y., and Neil F. Ritchey,
Wilmington, DeL, assignors to Knapp Mills Incorporated, Long Island City, N.Y., a corporation of New York No Drawing. ()riginal application Dec. 22, 1959, Ser.
No. 861,198. Divided and this application Jan. 28,
1965, Ser. No. 428,833
9 Claims. (Cl. 29528) This application is a division of application Serial No. 861,198 filed December 22, 1959 now Patent Number 3,167,858 which is a continuation in par-t of our application No. 686,876 filed September 30, 1957 now abancloned.
The present invention relates to the cladding of lead on sheets of copper, aluminum, iron and their alloys. It has been found that these metals can be cladded with lead so as to form a bonded sheet which is useful for shielding against the harmful effects of radiation or corrosion. In the following description of the invention, the particular metal which is to be clad will be called the basic metal, with the understanding that it may either be steel, copper, aluminum, or alloys thereof.
Lead cladded metal structures are becoming increasingly important in radiation shielding. Until the present invention, no completely satisfactory method has been evolved to effect the bonding of lead to these metals in a wide range of thicknesses and by a reliable and relatively easily performed commercially practical method.
According to the present invention, a method is disclosed which permits the creation of a strong metallurgical bond between the lead and a basic metal so as to form lead clad metal sheets or plates wherein the lead and the basic metal are so tightly bonded together that the sheets or plates may be bent, cut, shaped, or otherwise handled without any separation of the two metals.
Accordingly, an object of the present invention is to provide an improved method of cladding a basic metal with lead.
Another object of the present invention is to provide an improved lead clad basic metal.
Another object of the present invention is to provide an improved method of metallurgically bonding a basic metal and lead together.
Another object of the present invention is to provide a practical and reliable method of bonding lead to a basic metal which is suitable for commercial use.
Other and further objects of the invention will be obvious upon an understanding of the illustrative embodiment about to be described, or will be indicated in the appended claims, and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice.
The first step in the process comprises the coating or plating with nickel of the basic metal surface which is to be clad with lead. The coating of the basic metal with the nickel may be accomplished by any of the known types of nickelplate, such as electroplating or chemical plating.
A preferred chemical process which provides a bond between the nickel and the basic metal is accomplished by a controlled catalytic reduction of nickel in a plating bath. In such a bath, the basic metal parts are immersed in a hot solution containing a chemical reducing agent, such as sodium hypophospite and a buffered solution of nickel salt, such as nickel chloride.
Suitable solution for such a chemical plating of nickel have also been disclosed in United States Patents Nos. 2,658,841 and 2,658,842 which issued to Gu-tzeit and Kreig, Patent No. 2,694,017 which issued to Rischan and Kreig, and Patent No, 2,694,019 which issued to Gutzeit. The plate solutions which were disclosed in these patents may be applied by the process described more completely in Patents No. 2,658,839 which issued to P. Tallmey et al., No. 2,717,218 which issued to P. Tallmey et al., No. 2,762,723 which issued to Tallmey and Gutzeit, and No. 2,766,138 which issued to Paul Tallmey. These patents disclose processes for depositing nickel on the basic metals. The coatings which result from these processes are not in all cases pure nickel. They may, for example, include phosphides. The presence of these additional elements in the coatings have been found to have no adverse affect upon the lead cladding process and in the case of the phosphides, their presence in the nickel coats has been found to provide improved adherence between the lead and the basic metal for reasons which at this time are not clearly understood.
The nickel coating is preferably thicker than .0005". A coating thickness of .001" has provided a satisfactory bond.
After the basic metal has been nickel-plated, the
nickel is tinned with a mixture of lead and tin or antimony. A preferred tinning mixture comprises about 41 percent lead and 59 percent tin which is melted to permit dipping of the nickel-plated surface into the tinning mixture. The melting point for the 41 percent lead and the 59 percent tin mixture is about 360 F. The basic metal is preferably fluxed with one of the suitably known fluxes for the bonding of tin to the particular basic metal prior to the tinning. The tinning of the basic metal having been completed, the metal is ready to receive the lead to which it is to be bonded. Several methods may be utilized to bring the lead in contact with the tinned surface of the basic metal. Each of them makes use of the principle that the leadtin eutectic coating must first be melted before the lead metal will adhere to it.
In the lead burning method, the lead may be hand deposited on the basic metal by simply burning a bar of lead over the basic metal. Thus the lead. melts and flows by gravity so that it spreads over the tinned basic metal surface. The burning may be accomplished with any heating implement capable of furnishing a sufiiciently high temperature to melt the lead, as with a torch operated with hydrogen or propane gas, for example.
As the lead is spreading over the tinned surface, a workman plays over the surface with a torch, and fuses the lead into the tinned surface. The high temperature of the lead and the heat from the torch are more than is necessary to heat the eutectic coating so that it becomes largely or completely liquified. The above procedure may be continued until the entire surface has been coated with lead. Additional layers of lead may be deposited in a similar fashion to increase the over-all thickness by repeating the same operation with new quantities of lead metal.
Another method of bringing the lead into contact with the basic metal surface is called the pour-bonding method.
In this method, after the basic metal has been tinned, as above, it is pre-heated to about 400 F. Meanwhile, lead metal has been heated to a temperature of 700 to 750 F., so that it is now entirely molten. The lead is then simply poured over the tinned basic metal surface to any thickness required. As the molten lead comes into contact with the tinned surface of the basic metal, it forms a homogeneous mass with the eutectic coating which has melted under the heat applied so that an excellent bond with the basic metal is produced.
The lead coating may be applied to the base metal by extrusion. In this method the base metal in the form of rods or tubes is first nickel-plated and tinned and the lead and the base metal tubes or rods are fed through heated extrusion dies to bond a coating of lead to the outer surface of the tubes or rods.
Finally, the lead may also be brought into contact with the tinned basic metal surface in solid form, usually as sheets, by what is called the roller or platen pressure method. In this method, after the basic metal surface has been nickel-plated and tinned, the surface of the lead which is to be bonded to the basic metal is cleaned to remove lead oxide by scraping or other suitable cleaning methods and the cleaned basic metal surface is also tinned. As the basic metal must be heated for the bonding, the basic metal slab is preferably heated prior to the tinning. The bonding temperatures are slightly above the melting point of tin. Lead eutectic alloy is used to tin both the lead and the basic metal so that the lead is heated 3040 F. above the 360 F. melting point for the tin-lead alloy. The lead is now tinned. A preferred method of tinning the lead is by hand wiping using an oxygen-hydrogen torch to apply heat as needed.
The basic metal and lead sheets or plates are bonded together under pressure by means of either platens or rollers. Preferably, the platens or rollers which serve to press the lead and the basic metal are heated to the bonding temperature so that the bonding temperature will be maintained during the required pressure period. The platens, for instance, may be heated to about 400 F. prior to the insertion of the lead and the basic metal therebetween. After the lead has been tinned, it is reheated, if necessary, to about 400 F. and the nickel coated and tinned face of the basic metal is placed against the tinned surface of the lead. The basic metal and lead are now pressed between the platens or rollers, as the case may be.
' Sufficient pressure is applied to insure a tight engagement of the two tinned surfaces. Where aluminum has been used as a basic metal, a pressure of about p.s.i.
has been found to be satisfactory. The pressure is mainr tained for a sufiicient period to insure the formation of the bond. For instance, with aluminum, when the preferred of 15 p.s.i. is used, a pressure period of two minutes is preferred. At the end of this period, the lead and basic metal are cooled while still under pressure to solidify the interface. This may be done by a suitable water spray. Thereafter, the pressure is released to permit the removal of the bonded metals.
In the particular case of bonding aluminum to lead, where the aluminum has been hardened or otherwise treated for increased strength, it is necessary to limit the heating of the aluminum during the bonding to an amount which will not cause over-aging of the heat treated aluminum. It is well known that where heat treated alloys are subjected to heat, a time is reached when the strengths of the aluminum alloys begin to decrease. This is known as over-aging. It is desirable to keep the total time for the bonding process for aluminum alloys below the over-aging range. The aluminum or the aluminum alloy is heated twice in the above-described process to a temperature of about 400 F. The first heat ing is in the tinning bath and the second heating occurs during the bonding operation in the press. The total heating time for both periods hould be kept below the Maximum Time B cfore 0 Ver- Aging Temperature,
Aluminum Alloy Degrees F.
2024-T86 and 6061-16 700 600 15 sec. 30 sec.
3 min. 10 min. 20 hours 15 sec. 30 sec.
2 min.
5 min. 30 min.
It will be seen that the present invention provides an improved method for metallurgically bonding lead to sheets or plates of a basic metal which may be copper, aluminum, iron or their alloys. The method of the present invention provides an improved lead clad basic metal in which an extremely tight bond is formed between the basic metal and the lead. The finished bonded sheets may be subjected to additional manufacturing processes such as bonding, cutting, and shaping without a failure of the bond. The process is relatively simple and is reliable so that it is suitable for commercial usage on a large scale to provide numerous lead cladded metal products in the constantly growing market for such products. It has been found that the lead clad basic metal as formed by the process of the present invention in many cases has a tensile strength which is greater than would be expected from the combined strengths of the lead and basic metal and that there is an unexpected and important increase in the strength of the finished product which results from the practice of the cladding process of the invention.
As various changes may be made in the form, construction, and arrangement of the parts herein without departing from the spirit and scope of the invention and without sacrificing any of its advantages, it is to be understood that all matter herein is to be interpreted as illustrative and not in a limiting sense.
Similarly, it is to be understood that the mention of any metal is intended to include any of its alloys as well. Thus, iron includes steel or any of the other alloys of iron.
Having thus described our invention, we claim:
1. The process of metallurgically bonding lead to a basic metal included in the group consisting of copper, aluminum, iron, and their alloys, which comprises the steps of coating a surface of the basic metal with nickel, applying a tin-lead eutectic to the nickel coated surface of the basic metal, and feeding the basic metal through a heated extrusion die with a surrounding layer of lead.
2. The process as claimed in claim 1 in which said tin-lead eutectic coat comprises about 59 percent tin and 41 percent lead.
3. The process as claimed in claim 1 in which said nickel coating on said basic metal is at least .0005 inch in thickness.
4. The process as claimed in claim 1 in which said eutectic coating is melted by the heating of the lead to a temperature of about 400 F. during its passage through the die.
5. The process of metallurgically bonding lead to a basic metal included in the group consisting of copper, aluminum, iron, and their alloys, which comprises the steps of chemically coating a surface of the basic metal with nickel, applying a tin-lead eutectic coating to the nickel coated surface of the basic metal, and feeding the basic metal through a heated extrusion die with a sur-. rounding layer of lead.
6. The process as claimed in claim 5 in Which the basic metal is aluminum and the nickel plating of the aluminum comprises a controlled catalytic reduction in a hot bath comprising a chemical reducing agent and a nickel salt.
7. The process as claimed in claim 6 in which the nickel salt comprises nickel chloride and the chemical reducing agent comprises sodium hypophosphite whereby the nickel coating comprises about 8-12 percent phosphorus and about 9188 percent nickel.
8. The process of metallurgically bonding solid lead to solid aluminum which comprises the steps of coating a surface of the aluminum with nickel to a depth of at least .0005 inch by a controlled catalytic reduction in a hot bath containing a chemical reducing agent and a nickel salt, applying a tin-lead eutectic coat to the nickel coated surface, and feeding the basic metal through a heated extrusion die with a surrounding layer of lead.
9. The process as claimed in claim 8 in which the nickel salt comprises nickel chloride and the chemical reducing agent comprises sodium hypophosphite whereby the nickel coating comprises about 8-12 percent phosphorus and about 9288 percent nickel.
References Cited by the Examiner UNITED STATES PATENTS 1,280,908 10/1918 Wales et a1 29-1966 XR 2,746,136 5/1956 Richaud 29197 2,841,546 7/1958 Robinson 20710.3 XR 2,887,766 5/1959 Pike et al 29197 XR WHITMORE A. WILTZ, Primary Examiner.

Claims (1)

1. THE PROCESS OF METALLURGICALLY BONDING LEAD TO A BASIC METAL INCLUDED IN THE GROUP CONSISTING OF COPPER, ALUMINUM, IRON, AND THEIR ALLOYS, WHICH COMPRISES THE STEPS OF COATING A SURFACE OF THE BASIC METAL WITH NICKEL, APPLYING A TIN-LEAD EUTECTIC TO THE NICKEL COATED SURFACE OF THE BASIC METAL, AND FEEDING THE BASIC METAL THROUGH A HEATED EXTRUSION DIE WITH A SURROUNDING LAYER OF LEAD.
US428833A 1959-12-22 1965-01-28 Extrusion process of lead cladding Expired - Lifetime US3233320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US428833A US3233320A (en) 1959-12-22 1965-01-28 Extrusion process of lead cladding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US861198A US3167858A (en) 1959-12-22 1959-12-22 Process of lead cladding
US428833A US3233320A (en) 1959-12-22 1965-01-28 Extrusion process of lead cladding

Publications (1)

Publication Number Publication Date
US3233320A true US3233320A (en) 1966-02-08

Family

ID=27027933

Family Applications (1)

Application Number Title Priority Date Filing Date
US428833A Expired - Lifetime US3233320A (en) 1959-12-22 1965-01-28 Extrusion process of lead cladding

Country Status (1)

Country Link
US (1) US3233320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188784A1 (en) * 1984-12-21 1986-07-30 Sumitomo Electric Industries Limited Composite pipe, process for producing the same, and heat pipe using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1280908A (en) * 1916-02-05 1918-10-08 Metalco Company Reinforced metal.
US2746136A (en) * 1951-08-01 1956-05-22 Pechiney Prod Chimiques Sa Treatment of aluminum and its alloys prior to electro-plating with lead
US2841546A (en) * 1952-12-03 1958-07-01 Dow Chemical Co Extruded magnesium anodes with aluminum-coated steel core wires
US2887766A (en) * 1955-06-27 1959-05-26 Borg Warner Composite metal articles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1280908A (en) * 1916-02-05 1918-10-08 Metalco Company Reinforced metal.
US2746136A (en) * 1951-08-01 1956-05-22 Pechiney Prod Chimiques Sa Treatment of aluminum and its alloys prior to electro-plating with lead
US2841546A (en) * 1952-12-03 1958-07-01 Dow Chemical Co Extruded magnesium anodes with aluminum-coated steel core wires
US2887766A (en) * 1955-06-27 1959-05-26 Borg Warner Composite metal articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188784A1 (en) * 1984-12-21 1986-07-30 Sumitomo Electric Industries Limited Composite pipe, process for producing the same, and heat pipe using the same

Similar Documents

Publication Publication Date Title
US3078563A (en) Method of bonding aluminum to steel by roll pressure
US5316206A (en) Method of joining aluminium members
US2539246A (en) Method of making aluminum clad steel
US2464821A (en) Method of preparing a surface for soldering by coating with indium
US2473712A (en) Procedure for making multiply metal stock
US2786265A (en) Process of producing composite metal products
US2707323A (en) Method of producing copper clad steel
US2301332A (en) Aluminum clad magnesium and method of making same
US2608753A (en) Clad beryllium-copper alloys
US2167701A (en) Method of producing aluminum treated articles of iron
US3244553A (en) Process of lead cladding using molten lead
US4140821A (en) Process for preheating and preparing ferrous metal for galvanizing
US2496971A (en) Thermite coating process
DE649620C (en) Process for the production of glass objects combined from several individual parts
US3233320A (en) Extrusion process of lead cladding
US3167858A (en) Process of lead cladding
US3076260A (en) Strip and method for manufacturing bundy tubing and method of making the same
US2317510A (en) Process for the joining of metals
US2463342A (en) Metallic coatings
US3135623A (en) Surface treatment of steel billets to be extruded, and of extrusion tools
US3299503A (en) Process for the production of bonded metal structures
US1181741A (en) Method of joining metals.
US3462827A (en) Process for obtaining a composite article
US3730761A (en) Coating of metals
US3079275A (en) Spray-coating process