US3224576A - Plastic carrier-package - Google Patents

Plastic carrier-package Download PDF

Info

Publication number
US3224576A
US3224576A US861015A US86101559A US3224576A US 3224576 A US3224576 A US 3224576A US 861015 A US861015 A US 861015A US 86101559 A US86101559 A US 86101559A US 3224576 A US3224576 A US 3224576A
Authority
US
United States
Prior art keywords
containers
package
container
web
packaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US861015A
Inventor
Carlton L Whiteford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RA Jones and Co Inc
Original Assignee
RA Jones and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RA Jones and Co Inc filed Critical RA Jones and Co Inc
Priority to US861015A priority Critical patent/US3224576A/en
Application granted granted Critical
Publication of US3224576A publication Critical patent/US3224576A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D71/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material
    • B65D71/50Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material comprising a plurality of articles held together only partially by packaging elements formed otherwise than by folding a blank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0045Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/565Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits involving interference fits, e.g. force-fits or press-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/545Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles one hollow-preform being placed inside the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/717Cans, tins

Definitions

  • This invention relates to a packaging device for containers which is also provided with carrier means for the package thus formed, and more particularly to an improvement of the packaging device disclosed in my copending application, Serial Number 809,664 filed April 29, 1959.
  • this invention is particularly adapted and hereinafter described as a carrying and packaging device for two or more of the well-known beaded type, cylindrical, metallic cans for beer, soft drinks, fruit juices, soup and the like, it is not limited thereto and can be used as Well for headless type cans for evaporated or condensed milk, extruded aluminum cans, drinking glasses and other glasswear and for paper or plastic containers whether cylindrical in shape or otherwise.
  • the carrierpackaging device comprises a conformed sheet or web of resilient thermoplastic material, having a thickness on the order of 10 to 20 mils, such as polypropylene, polyethylene, polyvinyl chloride (PVC), or any other suitable thermoplastic material; and a plurality of resilient container-receiving-pockets formed integral with the web and projecting from one side thereof.
  • Each pocket has an entrance portion which may be cylindrical or other shape, depending on the cross-sectional configuration of the containers to be packaged.
  • the peripheral dimension of the entrance portion of the container-receiving-pockets is normally less than the peripheral dimension of a container (these dimensions are equal when a container is forced into one end of a pocket).
  • one end of each container is removably secured within a pocket and with the carrier web from which the pockets are formed.
  • the packaging device of said co-pending application is formed with the pockets spaced apart and when assembled with a plurality of containers the package thus formed holds the containers spaced apart. Therefore, such a package is not of maximum compactness and when carried, by holding the carrier at one end, the containers sag downwardly from the horizontal plane creating an unsightly appearance. Further, a plurality of containers which are loosely packaged are difficult to handle in making up the mother package, such as packing sixpacks of beer in case lots of four or eight six-packs.
  • One way to overcome this problem (sagging), in the packaging device as described in said co-pending application is to incorporate a separate or independent element with the carrier-package to impart rigidity thereto. Obviously, this expedient would materially increase the cost of the packaging device.
  • the carrier-package according to the co-pending invention, which can be made of 10 to 20 mils thermoplastic sheet by heat and pressure (positive and/or negative pressure) forming methods, and which when assembled with a plurality of containers, provides a package of maximum compactness and rigidity without the necessity of incorporating a separate structural element, or increasing the cost of the packaging device.
  • the improved packaging device is formed with the distance between container-receiving-pockets made less than the distance between the centers of the containers to be packaged when the containers are placed in aligned side-by-side abutment.
  • the packaging device 3,224,576 Patented Dec. 21, 1965 is made smaller than the package to be formed therewith.
  • forty (40) packaging devices according to said prior application could be made from one 1) pound of thermoplastic sheet stock, whereas forty-five (45) packaging devices are made according to this invention from one (1) pound of sheet stock.
  • forty-five (45) packaging devices are made according to this invention from one (1) pound of sheet stock.
  • the containers of the package are forcibly held in a cluster, the containers become the stiflfening or rigidifying structure and remain in a fixed position relative to the carrier regardless of the package attitude, i.e. with the carrier in a vertical plane, the longitudinal axes of the containers will remain parallel in horizontal planes.
  • the improved packaging device comprises: 1) a plurality of tension band means for each of a plurality of containers to be packaged in combination therewith, and (2) a package tension means which forces and holds adjacent containers in abutment by virtue of the tensile strength and resiliency of the thermoplastic packaging material and the energy imparted thereto by work done in stretching the material prior to assembling the package.
  • a package tension means which forces and holds adjacent containers in abutment by virtue of the tensile strength and resiliency of the thermoplastic packaging material and the energy imparted thereto by work done in stretching the material prior to assembling the package.
  • a primary object of this invention is to provide an improved carrier and packaging device for a plurality of containers.
  • Another object of the invention is to provide a packaging device which holds adjacent containers in forced abutment to form a rigid package in which the containers themselves provide rigidity for the package.
  • Another object of the invention is to provide a package of thermoplastic material and a plurality of containers which occupies a space substantially equal to the space normally occupied by said plurality of containers aligned in abutment one with another.
  • a further object of the invention is to provide a carrier and packaging device, of thermoplastic material, for a plurality of containers having a tension band means surrounding each container and other tension band means surrounding a plurality of containers all within said device.
  • Another object of this invention is to provide a method of assembling a plurality of containers with a packaging device of the invention.
  • FIG. 1 is a cross-sectional view, taken along line 1-ll of HG. 2, of a presently preferred embodiment of a packaging device according to the invention.
  • FIG. 2 is a top plan view of the packaging device shown in FIG. 1.
  • MG. 3 is a schematic representation illustrating the difference in appearance, compactness and rigidity of prior art carrier-packages for containers and the device according to this invention.
  • FIG. 4 is a schematic illustration of the forces acting on the package when held in a vertical plane.
  • FIG. 5 is a partial schematic representation of various contemplated modifications of the packaging device according to FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a modification of the carrier-packaging device shown in FIGS. 1 and 2.
  • FIG. 7 illustrates a novel method of forming finger grips for thermoplastic packages such as illustrated herein.
  • reference numeral 10 generally designates an integral, conformed, thermoplastic packaging device for six customary beaded cans.
  • the device 10 comprises a web 12 having finger grips 11 which may be in the form of a sock, as shown, or an apertured sleeve (not shown).
  • the finger grips are conveniently located between the middle and end pair of containers 13 as shown. Additionally, finger grips may also be provided in the generally triangular web portions located at the end of the device 10 intermediate the end pair of containers (not shown). While any suitable carrying means may be used instead of the finger sock or finger aperture, this type of carrying means is preferred since it will not interfere with stacking one package on top of another to form a stable column of packaged containers.
  • a plurality of container-receiving pockets or receptacles 14 are formed integral with the web 12 by a heat and pressure forming process and apparatus such as described in my co-pending application above identified.
  • Each con tainer-receiving pocket 14 comprises a cylindrical entrance portion 15 having a beveled annulus 16 to guide the containers into the pockets.
  • the open end cylinders or sleeves 15, 16 described immediately above will sufiice to removably secure the containers in the web
  • important additional advantages are obtained by forming the cylinders 15 with an end wall as seen in FIG. 1.
  • an undercut or annular recess 17 is formed to receive the bead of a container 13.
  • the end wall of the pockets 14 comprises an annular disk portion 18 and upstanding ridge 19 which nests within an end closure of a container 13A, as seen in phantom at the upper left of FIG. 1, whereby packaged containers can be safely stacked.
  • the remainder of the end wall of pockets 14 comprises a central depression 20 which will keep the end of a container within a pocket 14 free of dirt and other foreign matter.
  • the inner peripheral dimension, or circumference of the entrance portion 15 is made smaller than the outer circumference of the side Wall of a container to be removably secured within the pocket, and the cross-sectional configuration of the pocket is of the same general cross-section configuration as the container.
  • entrance portion 15 is stretched when a container is forced into pocket 14.
  • each container is removably secured within a pocket 14 by a tension band or ring, i.e., entrance portion 15.
  • the tension or gripping force applied by tension band 15 need be sufiicient only to secure the containers against accidental removal under all normal handling conditions.
  • a container is readily removed from the package by levering or camming the free end of the container outwardly and upwardly in an arc to snap the top end of the container out of the associated pocket.
  • the distance B between container-centers P is greater than the distance A between container-receiving-pockets-centers Q when the packaging device is in a relaxed state, i.e., prior to being stretched and assembled with a plurality of containers.
  • the packaging device must be stretched in planes either co-extensive or parallel with both X and Y axes of symmetry. That is, the packaging device must be stretched laterally a distance 2D and longitudinally a distance 2(B-A).
  • the containers 13 are forced into pockets 14, stretching entrance portion 15 which then firmly grasps the side wallof the container just below the bead or chime thereof.
  • the container head is enclosed within the annular recess 17 of the packaging device.
  • each pocket is preferably unequally spaced from both the X and Y axes, as seen in FIG. 2, it is also contemplated to form the pockets 14 such that the centers P and Q of each pocket are equally spaced from one axis of symmetry and unequally spaced from the other axis of symmetry. In other words, the centers P and Q of each pocket would be aligned parallel with the XX axis but at unequal distances from the YY axis or vice versa. Thus, the packaging device would be stretched in only one direction to coaxially align the centers P and Q of each pocket.
  • Stretching and assembling the packaging device 10 and containers 13 may be accomplished by hand and preferably by machinery not shown herein. In practice, it will be necessary to stretch the packaging device a slightly greater distance than the device is stretched by the containers after assembly since the containers must be held spaced apart to allow the web portion 12 between the pockets 14 to pass between adjacent cans. However, this additional stretch is small and substantially all the energy utilized in stretching the packaging device is stored therein and applied to the containers to hold them in abutment.
  • a peripheral or marginal portion of web 12 may be extended a small distance beyond the pockets 14 in the horizontal plane and preferably terminates in an integral peripherally extending corner 32 and upstanding flange 31.
  • Flange 31, as seen in FIG. 1, is preferred because it provides a convenient means for a suitable tool (not shown) to grasp or be inserted between flange 31 and pockets 14 whereby the device 10 is stretched outwardly from the datum point 0.
  • the potential energy (tension) stored in device 10 is distributed throughout the web 12, corner 32 and a portion of flange 31 adjacent corner 32.
  • the remaining portion of the flange 31 essentially provides a guiding means for a tool (not shown) to be inserted between the flange and pockets.
  • FIG. 5 While the arrangement shown in FIG. 1 is preferred, contemplated alternative arrangements are schematically illustrated in FIG. 5. As seen in view A of FIG. 5, a flange 31a may be utilized without the guiding portions thereof as shown in FIG. 1. Alternatively, the peripheral margin of web 12 may terminate in a peripheral bead or inverted U-shaped bend 32b shown in view b. It is also contemplated to form the device 10 without any appendages at the peripheral margin of web 12 as at 320 of view 0. As seen in view d of FIG. 5 the portions of web 12 integral with and extending horizontally outwardly from guide surface 16 may be disposed with entirely.
  • flanges 31 and 31a, and bead 32b in addition to providing a gripping surface whereby the device 10 may be stretched, also provide a stiffening means or structural element (when under tension), to reduce the tendency of device 10 to bow or bend as shown at FIG. 3, prior art.
  • the flange 31 of FIG. 1 is preferred since it provides a larger bumper area to give a measure of protection to the side walls of the packaged containers while being handled or shipped. While the device made according to view d of FIG. 5 does not have all the advantages of the device shown in FIG. 1, it still improves the appearance, compactness and rigidity of the package according to this invention over the prior art packages which engage or telescope over one end of a plurality of containers.
  • FIG. 3 shows the improvement in appearance, compactness and rigidity between prior art plastic can packages of the type which telescope over one end of a plurality of cans, and particularly comparing the device and package a described in said co-pending application with the improved device disclosed herein.
  • Both packages illustrated in FIG. 3 are identical in all respects with the exception that the improved package incorporates the teachings of this invention. That is, the improvement in appearance, compactness and rigidity is due mainly to the fact that the distance between pocket-centers of the improved packaging device, is made less than the distance between container-centers (when the containers are aligned in side by side abutment).
  • the containers clustered in the package thus formed maintain web 12 under tension.
  • the addition of a flange 31, bead or corner 32 (FIG. 1) or flange 31a and bead 32b (FIG. 5) materially increased the rigidity of the assembly or package by virtue of the location of and the increased amount of thermoplastic under tension.
  • FIG. 4 is a generally schematic representation of a bead type container package according to this invention and a simplified lever diagram of the resultant theoretical force system acting on the containers within such as a package.
  • Reference numeral 50 indicates the fulcrum for the lever system which corresponds with the point of contact of the container beads enclosed within the carrier 10.
  • a force Y proportional to the tension, or potential energy, of the stretched packaging device 10 is shown acting at a moment arm equal approximately to the distance measured from the abutting container beads 50 to the plane of the web 12 and bead or corner 32. This moment arm may be increased as in the modification illustrated in FIG. 6 hereinafter fully described.
  • the weight of the can and contents X will act at a point approximately midway between the ends of the container. It will be clear from FIG. 4 that the force Y can be made to establish and maintain equilibrium for all normal handling conditions to which the package is subject.
  • a flange 31b is turned down and tapered inwardly toward the containers so that the innermost peripheral dimension of the flange is appreciably less than the peripheral dimension of the plurality of containers to be packaged.
  • the distance between pocket-centers of the packaging device may be equal to, or less than, the distance between the container centers when packaged. If these center distances are equal, the flange 31b functions as the tension band to rigidify the package.
  • these center distances can be made unequal, according to the teachings herein, in which case the web 12, under tension after the package is assembled, comprises one package tensioning means and the downturned flange 31b comprises a second independent package tensioning means or band.
  • FIG. 6 adds a second force Y at a greater distance from the fulcrum 50 to counterbalance the weight of container and contents, force X. Therefore, force Y may be decreased proportionally and the degree of stretch required to rigidify the package may also be decreased.
  • the modification of FIG. 6 would be most useful for larger cans, say 16 ounce cans, while the device as shown in FIG. 1 is very satisfactory for 12 ounce cans.
  • FIG. 7 is a view taken along line 7-7 of FIG. 2 illustrating a novel method of forming the finger sock 11 of the packaging device 10.
  • the sock 11a is formed in the same mold and in the same operation that forms pockets 14. That is, the pockets l4 and sock 11a protrude from the same side of the web. To place the sock 11a in an operative position, indicated by reference numeral 11, it is inverted in an ⁇ suitable manner and since the material in the end of the sock is drawn exceedingly thin, it is easily ruptured to convert the sock into a finger sleeve. Sock 11a may be inverted, and ruptured if desired, by suitable tool means (not shown) at the same time the finishing or trimming operation is performed to separate the device 10 from the excess material needed during manufacture.
  • the novel method of forming a finger sock or sleeve disclosed herein comprises a single one piece mold where the sock and pockets are formed simultaneously and protrude from the same side of the sheet, and the finger sock is thereafter inverted at the same time the trimming operation is performed or by hand after the package is assembled. That is, a purchaser of the package can easily invert the finger sock 11a to operative position 11 by pushing the sock out the other side of web 12 with a finger.
  • a package comprising in combination a plurality of containers aligned in side by side abutment, a web of resilient thermoplastic material having a plurality of constricted container-receiving-pockets formed integral with said web and extending from one side thereof, in normal conditions the distance measured between centers of adjacent pockets being less than the distance measured between centers of adjacent containers when said containers are in side by side abutment, whereby the containers socketed within said pockets stretch said web material which in turn urges adjacent containers within said package into forced abutment.
  • a package according to claim 1 having carrier means operatively associated with said web.
  • a package according to claim ll having at least one finger receiving means formed in said web whereby said package is carried.
  • a package comprising in combination a plurality of beaded containers aligned in side by side abutment, a web of resilient thermoplastic material, a plurality of container-receiving-pockets protruding from one side of said web, in normal conditions the distance between centers of said pockets being less than the distance between centers of said containers when aligned in side by side abutment, tension band means integral with each said pocket for removably securing said containers therein, and flange means integral with said web about the peripheral margin thereof.
  • a package according to claim 4 wherein the end wall portion of said pockets comprises a container beadreceiving-recess contiguous with said tension band means, and stacking means comprising an annular disk portion contiguous with said recess, a contiguous upstanding annular ridge, and a central depressed disk means in contact with the top of said containers.
  • a packaging device for a plurality of containers comprising an imperforate sheet of elastic material having a web portion and a plurality of first conformations, said first conformations defining a plurality of discrete pocket means having side walls, each said pocket means having an entrance portion adapted to receive and guide containers into said pocket means, each said pocket means also having a constriction band member in the side wall thereof adapted to grip a container receivable in said pocket means, and continuous peripheral flange means extending around the edges of said imperforate sheet and having portions extending parallel to and at a substantial angle to the plane of said web portion for rigidifying said elastic device.
  • a packaging device for a plurality of containers comprising an imperforate sheet of elastic material having a web portion and a plurality of conformations defining discrete pocket means having side walls protruding from one side of said sheet, each said pocket means being References Cited by the Examiner UNITED STATES PATENTS 2,554,636 5/1951 Pfeiffer 53--30 2,680,039 6/1954 Burge. 2,754,962 7/ 1956 Scrymgeour 206-65 2,764,284 9/1956 Arneson 20665 2,874,835 2/1959 Poupitch 206-65 2,898,714 8/1959 Keith 53-30 THERON E. CONDON, Primary Examiner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)

Description

Dec. 21, 1965 WHITEFORD PLASTIC CARRIER-PACKAGE 5 Sheets-Sheet 1 Filed Dec. 21, 1959 INVENTOR.
I i I CARLTON L. WHITEFORD BY Dec. 21, 1965 c. L. WHITEFORD 3,224,576
PLAST I C CARRIER-PACKAGE Filed Dec. 21, 1959 3 Sheets-Sheet 2 PRIOR ART W IN VEN TOR. 32c
CARLTON L. WHITE FORD ATTORNE Dec. 21, 1965 c. 1... WHITEFORD 3,224,576
PLASTIC CARRIER-PACKAGE Filed Dec. 21, 1959 3 Sheets-Sheet 3 INVENTOR.
CARLTON L WHITEFORD ATTORN Y.
United States Patent Oiitice 3,224,576 PLASTIC CARRIER-PACKAGE Carlton 1L. Whiteford, New Canaan, Conn, assignor, by
mesne assignments, to R. A. Jones & (30., line, Covington, Ky., a corporation of Kentucky Filed Dec. 21, 1959, .Eer. No. 861,015 8 Claims. (Cl. 266-65) This invention relates to a packaging device for containers which is also provided with carrier means for the package thus formed, and more particularly to an improvement of the packaging device disclosed in my copending application, Serial Number 809,664 filed April 29, 1959.
While this invention is particularly adapted and hereinafter described as a carrying and packaging device for two or more of the well-known beaded type, cylindrical, metallic cans for beer, soft drinks, fruit juices, soup and the like, it is not limited thereto and can be used as Well for headless type cans for evaporated or condensed milk, extruded aluminum cans, drinking glasses and other glasswear and for paper or plastic containers whether cylindrical in shape or otherwise.
As disclosed in said co-pending application, the carrierpackaging device comprises a conformed sheet or web of resilient thermoplastic material, having a thickness on the order of 10 to 20 mils, such as polypropylene, polyethylene, polyvinyl chloride (PVC), or any other suitable thermoplastic material; and a plurality of resilient container-receiving-pockets formed integral with the web and projecting from one side thereof. Each pocket has an entrance portion which may be cylindrical or other shape, depending on the cross-sectional configuration of the containers to be packaged. The peripheral dimension of the entrance portion of the container-receiving-pockets is normally less than the peripheral dimension of a container (these dimensions are equal when a container is forced into one end of a pocket). As a result, one end of each container is removably secured within a pocket and with the carrier web from which the pockets are formed.
The packaging device of said co-pending application is formed with the pockets spaced apart and when assembled with a plurality of containers the package thus formed holds the containers spaced apart. Therefore, such a package is not of maximum compactness and when carried, by holding the carrier at one end, the containers sag downwardly from the horizontal plane creating an unsightly appearance. Further, a plurality of containers which are loosely packaged are difficult to handle in making up the mother package, such as packing sixpacks of beer in case lots of four or eight six-packs. One way to overcome this problem (sagging), in the packaging device as described in said co-pending application, is to incorporate a separate or independent element with the carrier-package to impart rigidity thereto. Obviously, this expedient would materially increase the cost of the packaging device.
However, I have discovered an improvement for the carrier-package according to the co-pending invention, which can be made of 10 to 20 mils thermoplastic sheet by heat and pressure (positive and/or negative pressure) forming methods, and which when assembled with a plurality of containers, provides a package of maximum compactness and rigidity without the necessity of incorporating a separate structural element, or increasing the cost of the packaging device. To accomplish the fore going, the improved packaging device is formed with the distance between container-receiving-pockets made less than the distance between the centers of the containers to be packaged when the containers are placed in aligned side-by-side abutment. In eltect, the packaging device 3,224,576 Patented Dec. 21, 1965 is made smaller than the package to be formed therewith. For example, forty (40) packaging devices according to said prior application could be made from one 1) pound of thermoplastic sheet stock, whereas forty-five (45) packaging devices are made according to this invention from one (1) pound of sheet stock. Thus, better than a 10% increase in yield is realized. As a result, it is necessary to stretch the packaging device prior to assembling with the containers so that pocket and container centers are in alignment, or coaxial, when the containers are forced into the constricted pockets. Upon release of the device, the containers are snapped into abutment and held together under a force due to the tension of the resilient web. Because the containers of the package are forcibly held in a cluster, the containers become the stiflfening or rigidifying structure and remain in a fixed position relative to the carrier regardless of the package attitude, i.e. with the carrier in a vertical plane, the longitudinal axes of the containers will remain parallel in horizontal planes.
It will be evident from the foregoing that the improved packaging device comprises: 1) a plurality of tension band means for each of a plurality of containers to be packaged in combination therewith, and (2) a package tension means which forces and holds adjacent containers in abutment by virtue of the tensile strength and resiliency of the thermoplastic packaging material and the energy imparted thereto by work done in stretching the material prior to assembling the package. Thus, an exceptionally rigid package of maximum compactness is made of 10 to 20 mils thermoplastic sheet material without the need for separate rigidifying structure other than the containers to be packaged.
Therefore, a primary object of this invention is to provide an improved carrier and packaging device for a plurality of containers.
Another object of the invention is to provide a packaging device which holds adjacent containers in forced abutment to form a rigid package in which the containers themselves provide rigidity for the package.
Another object of the invention is to provide a package of thermoplastic material and a plurality of containers which occupies a space substantially equal to the space normally occupied by said plurality of containers aligned in abutment one with another.
A further object of the invention is to provide a carrier and packaging device, of thermoplastic material, for a plurality of containers having a tension band means surrounding each container and other tension band means surrounding a plurality of containers all within said device.
Another object of this invention is to provide a method of assembling a plurality of containers with a packaging device of the invention.
Additional objects and advantages will be readily apparent from the following detailed description of the annexed drawings illustrating a preferred embodiment of the invention and modifications wherein:
FIG. 1 is a cross-sectional view, taken along line 1-ll of HG. 2, of a presently preferred embodiment of a packaging device according to the invention.
FIG. 2 is a top plan view of the packaging device shown in FIG. 1.
MG. 3 is a schematic representation illustrating the difference in appearance, compactness and rigidity of prior art carrier-packages for containers and the device according to this invention.
FIG. 4 is a schematic illustration of the forces acting on the package when held in a vertical plane.
FIG. 5 is a partial schematic representation of various contemplated modifications of the packaging device according to FIG. 1.
FIG. 6 is a cross-sectional view illustrating a modification of the carrier-packaging device shown in FIGS. 1 and 2.
FIG. 7 illustrates a novel method of forming finger grips for thermoplastic packages such as illustrated herein.
Referring to FIG. 1, reference numeral 10 generally designates an integral, conformed, thermoplastic packaging device for six customary beaded cans. The device 10 comprises a web 12 having finger grips 11 which may be in the form of a sock, as shown, or an apertured sleeve (not shown). The finger grips are conveniently located between the middle and end pair of containers 13 as shown. Additionally, finger grips may also be provided in the generally triangular web portions located at the end of the device 10 intermediate the end pair of containers (not shown). While any suitable carrying means may be used instead of the finger sock or finger aperture, this type of carrying means is preferred since it will not interfere with stacking one package on top of another to form a stable column of packaged containers.
A plurality of container-receiving pockets or receptacles 14 are formed integral with the web 12 by a heat and pressure forming process and apparatus such as described in my co-pending application above identified. Each con tainer-receiving pocket 14 comprises a cylindrical entrance portion 15 having a beveled annulus 16 to guide the containers into the pockets.
While the open end cylinders or sleeves 15, 16 described immediately above will sufiice to removably secure the containers in the web, important additional advantages are obtained by forming the cylinders 15 with an end wall as seen in FIG. 1. Thus, contiguous with cylinder 15 an undercut or annular recess 17 is formed to receive the bead of a container 13. The end wall of the pockets 14 comprises an annular disk portion 18 and upstanding ridge 19 which nests within an end closure of a container 13A, as seen in phantom at the upper left of FIG. 1, whereby packaged containers can be safely stacked. The remainder of the end wall of pockets 14 comprises a central depression 20 which will keep the end of a container within a pocket 14 free of dirt and other foreign matter.
The inner peripheral dimension, or circumference of the entrance portion 15 is made smaller than the outer circumference of the side Wall of a container to be removably secured within the pocket, and the cross-sectional configuration of the pocket is of the same general cross-section configuration as the container. Thus, entrance portion 15 is stretched when a container is forced into pocket 14. As a result, each container is removably secured within a pocket 14 by a tension band or ring, i.e., entrance portion 15. Obviously, the tension or gripping force applied by tension band 15 need be sufiicient only to secure the containers against accidental removal under all normal handling conditions. However, a container is readily removed from the package by levering or camming the free end of the container outwardly and upwardly in an arc to snap the top end of the container out of the associated pocket.
As illustrated in FIGS. 1 and 2, the distance B between container-centers P is greater than the distance A between container-receiving-pockets-centers Q when the packaging device is in a relaxed state, i.e., prior to being stretched and assembled with a plurality of containers.
Referring particularly to FIG. 2, it will be seen that the axes of symmetry XX and YY intersect at datum point 0 and that centers P and Q of the end pairs of containers and pockets are spaced unequal distances from both X and Y axes whereas, the central pair of container and pocket centers P and Q lie in the plane of the axis of symmetry YY at unequal distances D from the X-X axis only. Thus, to coaxially align corresponding pocket and container centers, the packaging device must be stretched in planes either co-extensive or parallel with both X and Y axes of symmetry. That is, the packaging device must be stretched laterally a distance 2D and longitudinally a distance 2(B-A). When each of the centers P and Q are coaxial, the containers 13 are forced into pockets 14, stretching entrance portion 15 which then firmly grasps the side wallof the container just below the bead or chime thereof. The container head is enclosed within the annular recess 17 of the packaging device.
Therefore, when the package, thus assembled, is released from the stretching apparatus, the packaging device tends to draw each container toward datum point 0.
While the centers P and Q of each pocket are preferably unequally spaced from both the X and Y axes, as seen in FIG. 2, it is also contemplated to form the pockets 14 such that the centers P and Q of each pocket are equally spaced from one axis of symmetry and unequally spaced from the other axis of symmetry. In other words, the centers P and Q of each pocket would be aligned parallel with the XX axis but at unequal distances from the YY axis or vice versa. Thus, the packaging device would be stretched in only one direction to coaxially align the centers P and Q of each pocket.
Stretching and assembling the packaging device 10 and containers 13 may be accomplished by hand and preferably by machinery not shown herein. In practice, it will be necessary to stretch the packaging device a slightly greater distance than the device is stretched by the containers after assembly since the containers must be held spaced apart to allow the web portion 12 between the pockets 14 to pass between adjacent cans. However, this additional stretch is small and substantially all the energy utilized in stretching the packaging device is stored therein and applied to the containers to hold them in abutment.
It will be obvious from the foregoing that the circumference of entrance portion 15 and the distances A and B between centers P and Q along the X axis and the distance D along the Y axis may be varied for a given package, depending on the characteristics of the thermoplastic used, the thickness of the sheet or web 12, size and weight of containers to be packaged, etc.
As seen in FIG. 1, a peripheral or marginal portion of web 12 may be extended a small distance beyond the pockets 14 in the horizontal plane and preferably terminates in an integral peripherally extending corner 32 and upstanding flange 31. Flange 31, as seen in FIG. 1, is preferred because it provides a convenient means for a suitable tool (not shown) to grasp or be inserted between flange 31 and pockets 14 whereby the device 10 is stretched outwardly from the datum point 0. The potential energy (tension) stored in device 10 is distributed throughout the web 12, corner 32 and a portion of flange 31 adjacent corner 32. The remaining portion of the flange 31 essentially provides a guiding means for a tool (not shown) to be inserted between the flange and pockets.
While the arrangement shown in FIG. 1 is preferred, contemplated alternative arrangements are schematically illustrated in FIG. 5. As seen in view A of FIG. 5, a flange 31a may be utilized without the guiding portions thereof as shown in FIG. 1. Alternatively, the peripheral margin of web 12 may terminate in a peripheral bead or inverted U-shaped bend 32b shown in view b. It is also contemplated to form the device 10 without any appendages at the peripheral margin of web 12 as at 320 of view 0. As seen in view d of FIG. 5 the portions of web 12 integral with and extending horizontally outwardly from guide surface 16 may be disposed with entirely. However, flanges 31 and 31a, and bead 32b, in addition to providing a gripping surface whereby the device 10 may be stretched, also provide a stiffening means or structural element (when under tension), to reduce the tendency of device 10 to bow or bend as shown at FIG. 3, prior art. Finally, the flange 31 of FIG. 1 is preferred since it provides a larger bumper area to give a measure of protection to the side walls of the packaged containers while being handled or shipped. While the device made according to view d of FIG. 5 does not have all the advantages of the device shown in FIG. 1, it still improves the appearance, compactness and rigidity of the package according to this invention over the prior art packages which engage or telescope over one end of a plurality of containers.
FIG. 3 shows the improvement in appearance, compactness and rigidity between prior art plastic can packages of the type which telescope over one end of a plurality of cans, and particularly comparing the device and package a described in said co-pending application with the improved device disclosed herein. Both packages illustrated in FIG. 3 are identical in all respects with the exception that the improved package incorporates the teachings of this invention. That is, the improvement in appearance, compactness and rigidity is due mainly to the fact that the distance between pocket-centers of the improved packaging device, is made less than the distance between container-centers (when the containers are aligned in side by side abutment). The containers clustered in the package thus formed maintain web 12 under tension. However, the addition of a flange 31, bead or corner 32 (FIG. 1) or flange 31a and bead 32b (FIG. 5), materially increased the rigidity of the assembly or package by virtue of the location of and the increased amount of thermoplastic under tension.
FIG. 4 is a generally schematic representation of a bead type container package according to this invention and a simplified lever diagram of the resultant theoretical force system acting on the containers within such as a package. Reference numeral 50 indicates the fulcrum for the lever system which corresponds with the point of contact of the container beads enclosed within the carrier 10. A force Y proportional to the tension, or potential energy, of the stretched packaging device 10 is shown acting at a moment arm equal approximately to the distance measured from the abutting container beads 50 to the plane of the web 12 and bead or corner 32. This moment arm may be increased as in the modification illustrated in FIG. 6 hereinafter fully described. The weight of the can and contents X will act at a point approximately midway between the ends of the container. It will be clear from FIG. 4 that the force Y can be made to establish and maintain equilibrium for all normal handling conditions to which the package is subject.
Referring now to the modification shown in FIG. 6, it will be seen that a flange 31b is turned down and tapered inwardly toward the containers so that the innermost peripheral dimension of the flange is appreciably less than the peripheral dimension of the plurality of containers to be packaged. In this modification the distance between pocket-centers of the packaging device may be equal to, or less than, the distance between the container centers when packaged. If these center distances are equal, the flange 31b functions as the tension band to rigidify the package. Alternatively, these center distances can be made unequal, according to the teachings herein, in which case the web 12, under tension after the package is assembled, comprises one package tensioning means and the downturned flange 31b comprises a second independent package tensioning means or band. Referring again to FIG. 4, it will be seen that the modification of FIG. 6 adds a second force Y at a greater distance from the fulcrum 50 to counterbalance the weight of container and contents, force X. Therefore, force Y may be decreased proportionally and the degree of stretch required to rigidify the package may also be decreased. The modification of FIG. 6 would be most useful for larger cans, say 16 ounce cans, while the device as shown in FIG. 1 is very satisfactory for 12 ounce cans.
FIG. 7 is a view taken along line 7-7 of FIG. 2 illustrating a novel method of forming the finger sock 11 of the packaging device 10.
The sock 11a is formed in the same mold and in the same operation that forms pockets 14. That is, the pockets l4 and sock 11a protrude from the same side of the web. To place the sock 11a in an operative position, indicated by reference numeral 11, it is inverted in an} suitable manner and since the material in the end of the sock is drawn exceedingly thin, it is easily ruptured to convert the sock into a finger sleeve. Sock 11a may be inverted, and ruptured if desired, by suitable tool means (not shown) at the same time the finishing or trimming operation is performed to separate the device 10 from the excess material needed during manufacture.
The method of forming the finger sock 11, as shown in FIG. 7 and described above, greatly simplifies the operations required in making the packaging device 10 according to known prior art methods. These methods required one forming operation for a finger sock or sleeve and another for the pockets 14 because they must protrude in opposite directions from the sheet or web 12. As shown in FIG. 3 of said copending application, these operations could be performed simultaneously by the use of a special two piece mold. Accordingly, the novel method of forming a finger sock or sleeve disclosed herein comprises a single one piece mold where the sock and pockets are formed simultaneously and protrude from the same side of the sheet, and the finger sock is thereafter inverted at the same time the trimming operation is performed or by hand after the package is assembled. That is, a purchaser of the package can easily invert the finger sock 11a to operative position 11 by pushing the sock out the other side of web 12 with a finger.
While I have shown and described a preferred embodiment, modifications thereof and various features of this invention, it will be obvious to those skilled in the art that further modifications may be made without departing from the spirit of the invention. Therefore, the above description is intended only to illustrate the invention defined by the appended claims.
I claim:
1. A package comprising in combination a plurality of containers aligned in side by side abutment, a web of resilient thermoplastic material having a plurality of constricted container-receiving-pockets formed integral with said web and extending from one side thereof, in normal conditions the distance measured between centers of adjacent pockets being less than the distance measured between centers of adjacent containers when said containers are in side by side abutment, whereby the containers socketed within said pockets stretch said web material which in turn urges adjacent containers within said package into forced abutment.
2. A package according to claim 1 having carrier means operatively associated with said web.
3. A package according to claim ll having at least one finger receiving means formed in said web whereby said package is carried.
4. A package comprising in combination a plurality of beaded containers aligned in side by side abutment, a web of resilient thermoplastic material, a plurality of container-receiving-pockets protruding from one side of said web, in normal conditions the distance between centers of said pockets being less than the distance between centers of said containers when aligned in side by side abutment, tension band means integral with each said pocket for removably securing said containers therein, and flange means integral with said web about the peripheral margin thereof.
5. A package according to claim 4 wherein said pockets comprise a container guiding bevel portion intermediate said web and said tension band means.
6. A package according to claim 4 wherein the end wall portion of said pockets comprises a container beadreceiving-recess contiguous with said tension band means, and stacking means comprising an annular disk portion contiguous with said recess, a contiguous upstanding annular ridge, and a central depressed disk means in contact with the top of said containers.
7. A packaging device for a plurality of containers comprising an imperforate sheet of elastic material having a web portion and a plurality of first conformations, said first conformations defining a plurality of discrete pocket means having side walls, each said pocket means having an entrance portion adapted to receive and guide containers into said pocket means, each said pocket means also having a constriction band member in the side wall thereof adapted to grip a container receivable in said pocket means, and continuous peripheral flange means extending around the edges of said imperforate sheet and having portions extending parallel to and at a substantial angle to the plane of said web portion for rigidifying said elastic device.
8. A packaging device for a plurality of containers comprising an imperforate sheet of elastic material having a web portion and a plurality of conformations defining discrete pocket means having side walls protruding from one side of said sheet, each said pocket means being References Cited by the Examiner UNITED STATES PATENTS 2,554,636 5/1951 Pfeiffer 53--30 2,680,039 6/1954 Burge. 2,754,962 7/ 1956 Scrymgeour 206-65 2,764,284 9/1956 Arneson 20665 2,874,835 2/1959 Poupitch 206-65 2,898,714 8/1959 Keith 53-30 THERON E. CONDON, Primary Examiner.
EARLE J. DRUMMOND, Examiner.

Claims (1)

  1. 7. A PACKAGING DEVICE FOR A PLURALITY OF CONTAINERS COMPRISING AN IMPERFORATE SHEET OF ELASTIC MATERIAL HAVING A WEB PORTION AND A PLURALITY OF FIRST CONFORMATIONS, SAID FIRST CONFORMATIONS DEFINING A PLURALITY OF DISCRETE POCKET MEANS HAVING SIDE WALLS, EACH SAID POCKET MEANS HAVING AN ENTRANCE PORTION ADAPTED TO RECEIVE AND GUIDE CONTAINERS INTO SAID POCKET MEANS, EACH SAID POCKET MEANS ALSO HAVING A CONSTRICTION BAND MEMBER IN THE SIDE WALL THEREOF ADAPTED TO GRIP A CONTAINER RECEIVABLE IN SAID POCKET MEANS, AND CONTINUOUS PERIPHERAL FLANGE MEANS EXTENDING AROUND THE EDGES OF SAID IMPERFORATE SHEET AND HAVING PORTIONS EXTENDING PARALLEL TO AND AT A SUBSTANTIAL ANGLE TO THE PLANE OF SAID WEB PORTION FOR RIGIDIFYING SAID ELASTIC DEVICE.
US861015A 1959-12-21 1959-12-21 Plastic carrier-package Expired - Lifetime US3224576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US861015A US3224576A (en) 1959-12-21 1959-12-21 Plastic carrier-package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US861015A US3224576A (en) 1959-12-21 1959-12-21 Plastic carrier-package

Publications (1)

Publication Number Publication Date
US3224576A true US3224576A (en) 1965-12-21

Family

ID=25334640

Family Applications (1)

Application Number Title Priority Date Filing Date
US861015A Expired - Lifetime US3224576A (en) 1959-12-21 1959-12-21 Plastic carrier-package

Country Status (1)

Country Link
US (1) US3224576A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346106A (en) * 1965-05-03 1967-10-10 Ex Cell O Corp Container carrier
US3397003A (en) * 1966-01-11 1968-08-13 Rixey B. Wherry Container closure and carrying device
US3439798A (en) * 1966-09-13 1969-04-22 Du Pont Multipack carrier
JPS4818280U (en) * 1971-07-15 1973-03-01
JPS4820888U (en) * 1971-07-14 1973-03-09
JPS4820890U (en) * 1971-07-14 1973-03-09
JPS4820885U (en) * 1971-07-14 1973-03-09
JPS4820886U (en) * 1971-07-14 1973-03-09
US3784002A (en) * 1972-04-20 1974-01-08 Illinois Tool Works Multiple container carrier and individual container lid arrangement
JPS54123283U (en) * 1978-02-10 1979-08-29
US4606454A (en) * 1984-10-11 1986-08-19 Hambleton Thomas P Protective packaging system for a plurality of containers
US4789063A (en) * 1986-10-30 1988-12-06 International Container Systems, Inc. Spacer tray for packaging containers
US4896774A (en) * 1987-05-11 1990-01-30 International Container Systems Spacer tray for packaging containers
WO1991004919A1 (en) * 1989-10-05 1991-04-18 Francis Killingbeck Bain Limited Promotional tray
WO1993002942A1 (en) * 1991-08-08 1993-02-18 Sweetheart Cup Company Inc. Sanitary can carriers
US5246113A (en) * 1992-02-11 1993-09-21 Riverwood International Corporation Carrier for stacked articles
US9174789B2 (en) 2013-03-15 2015-11-03 Graphic Packaging International, Inc. Container with heating features
US9656776B2 (en) 2013-12-16 2017-05-23 Graphic Packaging International, Inc. Construct with stiffening features

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554636A (en) * 1945-11-06 1951-05-29 Fred B Pfeiffer Wrapping method
US2680039A (en) * 1950-04-26 1954-06-01 Keith W Burge Can carrying device
US2754962A (en) * 1953-02-17 1956-07-17 Harper D Scrymgeour Bottle closure-opener
US2764284A (en) * 1952-12-18 1956-09-25 Morris Paper Mills Can carrier package
US2874835A (en) * 1958-12-01 1959-02-24 Illinois Tool Works Container carrier and package
US2898714A (en) * 1957-05-20 1959-08-11 Keith Donald George Method of and apparatus for packaging flowable materials in thermoplastic sheet material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2554636A (en) * 1945-11-06 1951-05-29 Fred B Pfeiffer Wrapping method
US2680039A (en) * 1950-04-26 1954-06-01 Keith W Burge Can carrying device
US2764284A (en) * 1952-12-18 1956-09-25 Morris Paper Mills Can carrier package
US2754962A (en) * 1953-02-17 1956-07-17 Harper D Scrymgeour Bottle closure-opener
US2898714A (en) * 1957-05-20 1959-08-11 Keith Donald George Method of and apparatus for packaging flowable materials in thermoplastic sheet material
US2874835A (en) * 1958-12-01 1959-02-24 Illinois Tool Works Container carrier and package

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346106A (en) * 1965-05-03 1967-10-10 Ex Cell O Corp Container carrier
US3397003A (en) * 1966-01-11 1968-08-13 Rixey B. Wherry Container closure and carrying device
US3439798A (en) * 1966-09-13 1969-04-22 Du Pont Multipack carrier
JPS4820888U (en) * 1971-07-14 1973-03-09
JPS4820890U (en) * 1971-07-14 1973-03-09
JPS4820885U (en) * 1971-07-14 1973-03-09
JPS4820886U (en) * 1971-07-14 1973-03-09
JPS4818280U (en) * 1971-07-15 1973-03-01
US3784002A (en) * 1972-04-20 1974-01-08 Illinois Tool Works Multiple container carrier and individual container lid arrangement
JPS54123283U (en) * 1978-02-10 1979-08-29
US4606454A (en) * 1984-10-11 1986-08-19 Hambleton Thomas P Protective packaging system for a plurality of containers
US4789063A (en) * 1986-10-30 1988-12-06 International Container Systems, Inc. Spacer tray for packaging containers
US4896774A (en) * 1987-05-11 1990-01-30 International Container Systems Spacer tray for packaging containers
WO1991004919A1 (en) * 1989-10-05 1991-04-18 Francis Killingbeck Bain Limited Promotional tray
WO1993002942A1 (en) * 1991-08-08 1993-02-18 Sweetheart Cup Company Inc. Sanitary can carriers
US5285892A (en) * 1991-08-08 1994-02-15 Sweetheart Cup Company Inc. Sanitary can carriers and multiple beverage can packages including the same
AU667822B2 (en) * 1991-08-08 1996-04-18 Sweetheart Cup Company Inc. Sanitary can carriers
AU676652B2 (en) * 1991-08-08 1997-03-13 Sweetheart Cup Company Inc. Sanitary can carriers
US5246113A (en) * 1992-02-11 1993-09-21 Riverwood International Corporation Carrier for stacked articles
WO1994008868A1 (en) * 1992-10-09 1994-04-28 Riverwood International Corporation Carrier for stacked articles
US9174789B2 (en) 2013-03-15 2015-11-03 Graphic Packaging International, Inc. Container with heating features
US9656776B2 (en) 2013-12-16 2017-05-23 Graphic Packaging International, Inc. Construct with stiffening features

Similar Documents

Publication Publication Date Title
US3224576A (en) Plastic carrier-package
US4139094A (en) Carrier for bottles
US3325004A (en) Multi-packaging device
US3269530A (en) Unit package with handle device
US3332574A (en) Bottled beverage case
US3330408A (en) Carrier package
US5485914A (en) Composite article carrier
US3515272A (en) Container cluster
US3650395A (en) Shrink wrap package having the containers therein in contacting relation
US4911300A (en) Container packaging system
US4416373A (en) Interlocking stackable bottles
US3425543A (en) Packaged tray of articles
US4932528A (en) Multi-unit multipackages
US3268070A (en) Container package
US3257062A (en) Hermetically sealed transparent shock absorbing package for fragile articles
US3307321A (en) Article carrier and method of applying it to a plurality of containers
GB938683A (en) Covers for protecting cans and for forming packages thereof
JPS63191768A (en) Package
US3214016A (en) Heat-treated package
US3653504A (en) Container package
US5168989A (en) Package member, method for making packages, and packages of multiple container units
US3784003A (en) Bottle carrier
JPH048308B2 (en)
US3134485A (en) Multiple packaging apparatus
US4712680A (en) Reinforced self-centering plastic carrier for bottles