US3212884A - Ferrous base alloys containing boron - Google Patents

Ferrous base alloys containing boron Download PDF

Info

Publication number
US3212884A
US3212884A US293238A US29323863A US3212884A US 3212884 A US3212884 A US 3212884A US 293238 A US293238 A US 293238A US 29323863 A US29323863 A US 29323863A US 3212884 A US3212884 A US 3212884A
Authority
US
United States
Prior art keywords
alloy
alloys
stress rupture
boron
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US293238A
Inventor
Marjorie O Soler
Freeman Hyman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US293238A priority Critical patent/US3212884A/en
Application granted granted Critical
Publication of US3212884A publication Critical patent/US3212884A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%

Definitions

  • Alloys of the type referred to are used for parts in jet engines for aircraft, gas turbines and other high temperature applications where it is necessary to have consistently high strength properties.
  • Each of such engines is made up of a great many individual parts fabricated from the high temperature alloy. The failure of any single part can result in the failure of the entire engine.
  • Typical specifications for alloys used in the high temperature applications described require a minimum stress rupture life of 23 hours at a temperature of 1200 F. and loads varying from 60,000 to 65,000 pounds per square inch. In many cases, they also require that the stress rupture life of a notched test specimen exceed that of a smooth test specimen, i.e., thematerial should not be notched sensitive.
  • An object of this invention is to provide an alloy composition which possesses consistently high minimum strength at elevated temperatures.
  • a further object of this invention is to provide an alloy which has improved notch ductility at elevated temperatures as determined by values obtained from notched stress rupture specimens.
  • Another object is to provide an alloy having consistent stress rupture properties and which can be melted commercially and wrought by commercial practices.
  • Ferrous base alloys according to the present invention contain nickel, chromium, titanium and boron within the following ranges:
  • the alloy may contain from 0.02 to 0.10% carbon from 0.10 to 0.35% aluminum, from 0 to 2% manganese, from 0 to 1.50% silicon, from 0.50 to 4.0% molybdenum or from 0.50 to 8. 0% tungsten or both molybdenum and tungsten within these ranges, from 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum. The balance is substantially all iron although other elements not inconsistent with the properties desired may be present.
  • T he alloys can be melted using normal practices in any of the usual production type furnaces such as the electric arc, induction or vacuum or inert gas furnace. They are processed using regular production methods to reduce to intermediate product such as bars, wire, sheet, strip, etc., as well as for fabricating into shapes by machining, forging or other methods.
  • usual production type furnaces such as the electric arc, induction or vacuum or inert gas furnace. They are processed using regular production methods to reduce to intermediate product such as bars, wire, sheet, strip, etc., as well as for fabricating into shapes by machining, forging or other methods.
  • the alloy is heated to a temperature sufiiciently high to dissolve the intermetallic compounds present and is then quenched. it is reheated at a temperature and for a time necessary to harden it by reprecipitation of the compounds and is thereafter cooled.
  • the temperatures and times employed will vary somewhat depending upon the particular composition of the alloy being heat treated.
  • a preferred hardening treatment is to treat the material at a temperature of about 1800 F. for one hour to dissolve the intermetallic compounds present and then quench.
  • the alloy is then reheated at 1325 F. for 16 hours to cause reprecipitation of the nickel-titanium compounds and is thereafter cooled in air. This specific heat treatment was applied to an alloy of the following composition:
  • the material on which the tests in all of the tables were made was produced in commercial size furnaces, the heats weighing from 5 to 13 tons each.
  • Table I gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
  • Table II gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
  • Table III gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
  • Table IV gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
  • the alloy of this invention is less notch sensitive than an alloy having no definite boron content, forv example, Alloy 5 in Table I containing .0017 boron has a minimum value of 76.6 hours on a notched specimen and a minimum value of 60.3 hours on a smooth specimen, the notched specimen value exceeding the smooth specimen value. Alloy e in Table. III containing less than .0006 boron has a minimum value of 3.2 hours on a notched specimen and a minimum value of 21.1 hours on a smooth specimen indicating that this alloy is notch sensitive.
  • microstructure of alloys according to the invention which have been solution treated and aged, consists of fine grains of equiaXed austenite having a precipitate of fine patricles of nickel-titanium compounds throughout its structure. Such structure is only obtained'when the alloy contains sufficient titanium to cause reprecipitation of the nickel-titanium compounds during the aging treatment.
  • a ferrous base alloy consisting essentially of 2 0 to 40% nickel, 10 to 25% chromium, 1.35 to 3.0% titanium, 0.0010 to 0.0045% boron, 0.02 to 0.10% carbon, 0.10 to 0.35% aluminum, up to 2.0% manganese, up to 1.50% silicon, at least one member of the group consisting of molybdenum and tungsten, the molybdenum being from 0.50 to 4.0%, the tungsten being from 0.50 to 8.0%, 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum, the balance being iron.
  • a ferrous base alloy of the composition claimed in claim 1 which has been precipitation hardened; in the absence of hot cold-working.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

United States Patent 3,212,884 FERROUS BASE ALLOYS CONTAINING BORON Gilbert Soler, deceased, late of Pittsburgh, Pa., by Marjorie 0. Soler, executrix, Columbus, Ohio, and Hyman Freeman, Pittsburgh, and Kenneth Metcalfe, Bridgeville, Pa.
No Drawing. Continuation of application Ser. No. 598,520, July 8, 1956. This application July 3, 1963, Ser. No. 293,238
3 Claims. (Cl. 75-124) This application is a continuation of Serial No. 598,520, filed July 18, 1956 and now abandoned.
Alloys of the type referred to are used for parts in jet engines for aircraft, gas turbines and other high temperature applications where it is necessary to have consistently high strength properties. Each of such engines is made up of a great many individual parts fabricated from the high temperature alloy. The failure of any single part can result in the failure of the entire engine.
Increased use of alloys having high strength at elevated temperatures has developed requirements that specify minimum strength as determined by the stress rupture life of the material. Some commercially produced alloys of this type gave very erratic stress rupture properties with many values below those acceptable for the application. It was not unusual to obtain extremely low as well as acceptable stress rupture properties on products from the same heat, thus making the application of such material questionable. In fact, where such varying results were obtained, the entire heat was scrapped rather than to apply questionable material for such critical use. The necessary rejection of the material having such variable stress rupture properties resulted in low yields of product and reduced production making'it extremely difiicult to meet delivery requirements.
Typical specifications for alloys used in the high temperature applications described require a minimum stress rupture life of 23 hours at a temperature of 1200 F. and loads varying from 60,000 to 65,000 pounds per square inch. In many cases, they also require that the stress rupture life of a notched test specimen exceed that of a smooth test specimen, i.e., thematerial should not be notched sensitive.
An object of this invention, therefore, is to provide an alloy composition which possesses consistently high minimum strength at elevated temperatures.
A further object of this invention is to provide an alloy which has improved notch ductility at elevated temperatures as determined by values obtained from notched stress rupture specimens.
' Another object is to provide an alloy having consistent stress rupture properties and which can be melted commercially and wrought by commercial practices.-
Other objects of this invention will be apparent to those skilled in the art from the following description.
It has been discovered that the stress rupture properties of ferrous base alloys are improved and made more consistent by the presence of definite amounts of boron. In the alloys of this invention having a definite boron content, low stress rupture properties are avoided. Alloys of our invention are precipitation hardenable by-heat treatment alone and do not require any special processing such as hot cold-working to bring about the desirable properties.
In many cases, it is not possible to make a use of hot cold-working to achieve the high strength because of the shape and nature of the finished part.
It has been discovered that improved and consistent stress rupture properties can be obtained in ferrous base alloys containing 20 to 40% nickel, 10 to 25% chromium and 0.0006 to 0.0045% boron when the alloys contain a critical minimum percentage of titanium neces sary for causing nickel-titanium compounds to precipitate after proper heat treatment. From the experience of the inventors, this minimum content of titanium in the alloys of our invention appears to be about 1.35%. In the absence of a critical amount of titanium, the nickel-titanium compounds do not precipitate upon aging.
Ferrous base alloys according to the present invention contain nickel, chromium, titanium and boron within the following ranges:
Ni 20 to 40%.
Cr 10 to 25% Ti 1.35 to 3.0%.
B 0.0010 to 0.0045%.
In addition to these elements, the alloy may contain from 0.02 to 0.10% carbon from 0.10 to 0.35% aluminum, from 0 to 2% manganese, from 0 to 1.50% silicon, from 0.50 to 4.0% molybdenum or from 0.50 to 8. 0% tungsten or both molybdenum and tungsten within these ranges, from 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum. The balance is substantially all iron although other elements not inconsistent with the properties desired may be present.
T he alloys can be melted using normal practices in any of the usual production type furnaces such as the electric arc, induction or vacuum or inert gas furnace. They are processed using regular production methods to reduce to intermediate product such as bars, wire, sheet, strip, etc., as well as for fabricating into shapes by machining, forging or other methods.
Improved and consistent stress rupture properties and other properties of the alloys are obtained by giving a suitable heat treatment to the product in finished form. Generally, the alloy is heated to a temperature sufiiciently high to dissolve the intermetallic compounds present and is then quenched. it is reheated at a temperature and for a time necessary to harden it by reprecipitation of the compounds and is thereafter cooled. The temperatures and times employed will vary somewhat depending upon the particular composition of the alloy being heat treated. A preferred hardening treatment is to treat the material at a temperature of about 1800 F. for one hour to dissolve the intermetallic compounds present and then quench. The alloy is then reheated at 1325 F. for 16 hours to cause reprecipitation of the nickel-titanium compounds and is thereafter cooled in air. This specific heat treatment was applied to an alloy of the following composition:
' Percent Percent Ni 25.38 Mn 1.53 Cr -4 14.97 Si .68 .Ti 2.23 Mo 1.26 B 0.0022 V .25
C .066 1% Balance Al .27
Patented Oct. 19, 1965 3 4 This alloy, when tested at 1200 F. under a load of 62,500 The stress rupture properties of alloys of this invention poundsper square inch using notched specimens, gave are given in Tables I and II. Stress rupture properties of Stress rupture P p as follows! alloys not made in accordance with this invention are Hours to Rupture: 815.0 803.6 762.7 655.3 given in Tables III and IV.
Table l OUR ALLOY HAVING A DEFINITE BORON CONTENT [Test Conditions: Temperature, 1200 F.; Load, 65,000 p.s.i.]
Stress rupture life in hours Alloy Boron Notched specimen 7 Smooth specimen N 0. content No.0f Minimum Maximum No.01 Minimum Maximum tests value value tests value value C Mn Si N 1 C1 Ti V Al M0 Table II OUR ALLOY HAVING A DEFINITE BORON CONTENT [Test Conditions: Temperature, 1200 F.; Load, 62,500.p.s.i.]
Stress rupture life in hours Alloy Boron Notched specimen Smooth specimen No. content No. of Minimum Maximum No. of Minimum Maximum tests value value tests value value LLLLLLLLLLLLLI value Smooth specimen Stress rupture life in hours value L L2 L2 L1 1 2 L L 2 value Smooth specimen tests Table III ANALYSES OF ALLOYS value LLLLLLLLLLLLLL 037221455444 12 2 .QLLLL-L 1 l M ANALYSES OF ALLOYS Notched specimen No.0! Minimum Maximum No.0i Minimum Maximum tests MnSi'Ni Stress rupture life in hours value Table IV value 13201769 0 LL L5 3 5 3 Notched specimen No. of Minimum Maximum No.0! Minimum Maximum tests [Test Conditions: Temperature, 1200 F.; Load, 65,000 p.s.i.]
Alloy No.
OUR ALLOY HAVING NO DEFINIIE BORON CONTENT Boron content ALLOYS HAVING NO DEFINITE BORON CONTENT [Test Conditions: Temperature, 1200 F.; Load, 62,500 p.s.i.]
Alloy Alloy No.
Alloy ANALYSES OF ALLOYS Alloy N 0 Mn S1 N1 C1 Ti V A1 M0 The plus sign after some values in the tables indicates that the test was not carried to failure of the specimen for it is common practice to discontinue the test after the specimen has been under load for a period of time that considerably exceeds the required hours to rupture. Such values would be expected to be greater if the tests had been allowed to continue to failure. However, since. they are well above the requirements, discontinuing the tests makes testing equipment available.
The material on which the tests in all of the tables were made was produced in commercial size furnaces, the heats weighing from 5 to 13 tons each.
The values in all of the tables were obtained on specimens which had been precipitation hardened.
Table I gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
Table II gives the stress rupture properties of alloys of our invention having a definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
Table III gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 65,000 pounds per square inch.
Table IV gives the stress rupture properties of alloys having no definite boron content and tested at a temperature of 1200 F. using a load of 62,500 pounds per square inch.
Each table gives values for the notched and the smooth type of specimen.
Comparison of the minimum values of Tables I and II with the minimum values in Tables III and IV shows the.
improved stress rupture properties obtainable in alloys of this invention having a definite boron content.
The alloy of this invention is less notch sensitive than an alloy having no definite boron content, forv example, Alloy 5 in Table I containing .0017 boron has a minimum value of 76.6 hours on a notched specimen and a minimum value of 60.3 hours on a smooth specimen, the notched specimen value exceeding the smooth specimen value. Alloy e in Table. III containing less than .0006 boron has a minimum value of 3.2 hours on a notched specimen and a minimum value of 21.1 hours on a smooth specimen indicating that this alloy is notch sensitive.
The microstructure of alloys according to the invention, which have been solution treated and aged, consists of fine grains of equiaXed austenite having a precipitate of fine patricles of nickel-titanium compounds throughout its structure. Such structure is only obtained'when the alloy contains sufficient titanium to cause reprecipitation of the nickel-titanium compounds during the aging treatment.
We claim:
1. A ferrous base alloy consisting essentially of 2 0 to 40% nickel, 10 to 25% chromium, 1.35 to 3.0% titanium, 0.0010 to 0.0045% boron, 0.02 to 0.10% carbon, 0.10 to 0.35% aluminum, up to 2.0% manganese, up to 1.50% silicon, at least one member of the group consisting of molybdenum and tungsten, the molybdenum being from 0.50 to 4.0%, the tungsten being from 0.50 to 8.0%, 0.10 to 0.50% vanadium, up to 2.0% zirconium, up to 5.0% niobium and up to 5.0% tantalum, the balance being iron.
2. A precipitation hardened ferrous base alloy of the composition claimed in claim 1.
3. A ferrous base alloy of the composition claimed in claim 1 which has been precipitation hardened; in the absence of hot cold-working.
References Cited by the Examiner UNITED STATES PATENTS 11/62 Aggen l24

Claims (1)

1. A FERROUS BASE ALLOY CONSISTING ESSENTIALLY OF 20 TO 40% NICKEL, 10 TO 25% CHROMIUM, 1.35 TO 3.0% TITANIUM, 0.0010 TO 0.0045% BORON, 0.02 TO 0.10% CARBON, 0.10 TO 0.35% ALUMINUM, UP TO 2.0% MANGANESE, UP TO 1.50% SILICON, AT LEAST ONE MEMBER OF THE GROUP CONSISTING OF MOLYBDENUM AND TUNGSTEN, THE MOLYBDENUM BEING FROM 0.50 TO 4.0%, THE TUNGSTEN BEING FROM 0.50 TO 8.0%, 0.10 TO 0.50% VANADIUM, UP TO 2.0% ZIRCONIUM, UP TO 5.0% NIOBIUM AND UP TO 5.0% TANTALUM, THE BALANCE BEING IRON.
US293238A 1963-07-03 1963-07-03 Ferrous base alloys containing boron Expired - Lifetime US3212884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US293238A US3212884A (en) 1963-07-03 1963-07-03 Ferrous base alloys containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US293238A US3212884A (en) 1963-07-03 1963-07-03 Ferrous base alloys containing boron

Publications (1)

Publication Number Publication Date
US3212884A true US3212884A (en) 1965-10-19

Family

ID=23128277

Family Applications (1)

Application Number Title Priority Date Filing Date
US293238A Expired - Lifetime US3212884A (en) 1963-07-03 1963-07-03 Ferrous base alloys containing boron

Country Status (1)

Country Link
US (1) US3212884A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384476A (en) * 1963-11-22 1968-05-21 Sandvikens Jernverks Ab Alloy steel and method of making same
US3663213A (en) * 1970-05-11 1972-05-16 Int Nickel Co Nickel-chromium-iron alloy
US3708353A (en) * 1971-08-05 1973-01-02 United Aircraft Corp Processing for iron-base alloy
US3837846A (en) * 1971-04-08 1974-09-24 Ver Deutsche Metallwerke Ag Austenitic steel alloy adapted to be welded without cracking
US3935037A (en) * 1974-04-18 1976-01-27 Carpenter Technology Corporation Austenitic iron-nickel base alloy
US4165997A (en) * 1977-03-24 1979-08-28 Huntington Alloys, Inc. Intermediate temperature service alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065067A (en) * 1959-01-21 1962-11-20 Allegheny Ludlum Steel Austenitic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065067A (en) * 1959-01-21 1962-11-20 Allegheny Ludlum Steel Austenitic alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384476A (en) * 1963-11-22 1968-05-21 Sandvikens Jernverks Ab Alloy steel and method of making same
US3663213A (en) * 1970-05-11 1972-05-16 Int Nickel Co Nickel-chromium-iron alloy
US3837846A (en) * 1971-04-08 1974-09-24 Ver Deutsche Metallwerke Ag Austenitic steel alloy adapted to be welded without cracking
US3708353A (en) * 1971-08-05 1973-01-02 United Aircraft Corp Processing for iron-base alloy
US3935037A (en) * 1974-04-18 1976-01-27 Carpenter Technology Corporation Austenitic iron-nickel base alloy
US4165997A (en) * 1977-03-24 1979-08-28 Huntington Alloys, Inc. Intermediate temperature service alloy

Similar Documents

Publication Publication Date Title
US2905577A (en) Creep resistant chromium steel
US20190040501A1 (en) Nickel-cobalt alloy
US2994605A (en) High temperature alloys
US5059257A (en) Heat treatment of precipitation hardenable nickel and nickel-iron alloys
US3235417A (en) High temperature alloys and process of making the same
KR950704522A (en) THERMOMECHANICAL PROCESSING OF METALLIC MATERIALS
US3065067A (en) Austenitic alloy
US2397034A (en) Heat-resisting alloys containing cobalt
US11384413B2 (en) High temperature titanium alloys
US2873187A (en) Austenitic alloys
US2562854A (en) Method of improving the high-temperature strength of austenitic steels
US3331715A (en) Damping alloys and members prepared therefrom
WO2018071328A1 (en) High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
US2829048A (en) High damping alloy and members prepared therefrom
US2879194A (en) Method of aging iron-base austenitic alloys
US3212884A (en) Ferrous base alloys containing boron
US3741824A (en) Method to improve the weldability and formability of nickel-base superalloys
KR20210060179A (en) Austenitic stainless steel having a large amount of unifromly distributed nanometer-sized precipitates and preparing method of the same
US2486576A (en) Heat-treatment of cobalt base alloys and products
US2975051A (en) Nickel base alloy
US3649379A (en) Co-precipitation-strengthened nickel base alloys and method for producing same
US2416515A (en) High temperature alloy steel and articles made therefrom
US3230119A (en) Method of treating columbium-base alloy
US2826496A (en) Alloy steel
US3194697A (en) Heat treatment of refractory metals