US3205403A - Electroluminescent display systems - Google Patents

Electroluminescent display systems Download PDF

Info

Publication number
US3205403A
US3205403A US167672A US16767262A US3205403A US 3205403 A US3205403 A US 3205403A US 167672 A US167672 A US 167672A US 16767262 A US16767262 A US 16767262A US 3205403 A US3205403 A US 3205403A
Authority
US
United States
Prior art keywords
conductors
electrodes
electrode
layer
electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US167672A
Inventor
Frederick A Schwertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US638008A external-priority patent/US3221335A/en
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US167672A priority Critical patent/US3205403A/en
Priority claimed from US192233A external-priority patent/US3220012A/en
Application granted granted Critical
Publication of US3205403A publication Critical patent/US3205403A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present invention relates to the electrostatic recording of signal intelligence and the visual presentation thereof.
  • the recording pulses are applied to an electrode structure which is mounted above a moving web of insulating material and as the web advances, successive lines of information are electrostatically impressed thereon.
  • the rate at which recording takes place is ultimately limited by the speed at which the web may be moved.
  • an object of the invention to provide an electrostatic electrode structure adapted to impress successive lines of data on an insulating surface and requiring no mechanical movement either of the electrodes or of the insulating surface associated therewith.
  • a salient advantage of the invention resides in the fact that digital or analog data may be recorded at extremely high speeds, the system being altogether free of mechanical limitations.
  • an object of the invention is to provide an electrostatic technique wherein an electrostatically charged area is rendered immediately visible. Because of the extreme rapidity of the electrostatic recording system computational information or other forms of intelligence are displayed at speeds comparable to that of a cathode rayscanning beam.
  • a further object of the invention is to provide a display device wherein images are formed by electrostatically exciting an electroluminescent surface by means of shaped electrodes, the surface being movable relative to the electrodes. Thus information may be recorded at high speed and rendered immediately visible.
  • Yet another object of the invention is to provide a television display device wherein an electroluminescent screen is electrostatically excited.
  • a significant feature of the invention lies in the use of an electrostatic electrode Patented Sept. 7, 1965 structure adapted to effect dot sequential scanning of the screen to produce luminous images thereon.
  • FIG. 1 is a schematic diagram illustrating in perspective an electrostatic recording apparatus in accordance with the invention for applying information on a motionless medium.
  • FIG. 2 is a sectional view of the electrode structure shown in FIG. 1.
  • FIG. 3 shows in perspective another embodiment of the invention for the visual display of electrostatically recorded intelligence.
  • FIG. 4 is a front View of the display screen shown in FIG. 3.
  • FIG. 5 is a sectional view of the display screen shown in FIG. 3.
  • FIG. 6 is a perspective view of a modified form of display screen.
  • FIG. 7 is a section taken through the screen shown in FIG. 6.
  • the insulating medium may be constituted by a plastic-coated paper or any other dielectric sheet having a sufliciently high resistance to hold an electrostatic image for a period of such duration as to permit subsequent utilization of the image by transfer to another surface or by development.
  • materials suitable for this purpose are terephthalate, cellulose acetate and polyethylene.
  • Electrode set 11 is constituted by a plurality of equi-spaced conductors 11a, 11b, 11c and 11d disposed in parallel relation and embedded or printed by electrochemical techniques on the upper face of an insulating plate 13 which may be formed of glass or a rigid plastic material.
  • electrode set 12 Disposed above electrode set 11 and spaced therefrom is electrode set 12 which is similarly constituted by a plurality of conductors 12a, 12b, 12c and 12d extending perpendicularly with respect to the conductors of set 11 and embedded or printed on the under [face of an insulating plate 14. While for purposes of simplicity each electrode set is illustrated as being composed of four wires, it is to be understood that in practice a greater number may be used, as desired.
  • an electrostatic point image can be transferred to the paper at a position corresponding to the point of virtual intersection of the activated conductors. For example, if a potential of the proper magnitude is applied between conductor 12c and 11a, an electrostatic image will be formed .at the point on medium 10 aligned with the point of virtual intersection 12c-11a as indicated by arrow 15.
  • the upper conductors at the points of intersection with the lower conductors may be shaped rather than made linear so as to impress similarly shaped images on the paper.
  • the problem of recording data on the medium involves the distribution of symbols thereon in an arbitrary manner.
  • data expressed by a four place binary system is to be recorded, each binary value being indicated by a pulse representing 1 or by a blank representing 0.
  • these binary pulses are yielded simultaneously or singly in the output of a digital computer represented by block 16, each binary value being applied to a respective conductor of electrode set 11.
  • the application of the pulses to the conductors may be serially in a train or parallel in time.
  • a timing pulse generator 17 is initiated to actuate a ring-counter time base circuit 18 having stages A, B, C and D arranged in cascade relation and connected respectively to electrodes 11a, 11b, 11c and 11d.
  • a stepping action occurs in the ring counter 18 which is arranged to have the activated stage establish a high voltage on the associated conductor of set 11, the other stages remaining at a comparatively low voltage.
  • the high voltage is shifted from stage A to B to C to D, the high voltage being relative to ground.
  • the pulse voltages applied to conductors 12a to 12b are also relative to ground, the pulses being of a polarity with respect to the voltage from the ring counter as to have an additive field effect.
  • the combined magnitude of the pulse and the high voltage is above the critical field stress value, which defines that value of electric field strength at which field discharge or breakdown occurs. It has been found that when there is such a discharge, a transfer or charge migration through the gap between an electrode and the insulating medium occurs. If, on the other hand, the electric stress is below the critical level, dielectric breakdown is not effected and there is no charge transfer.
  • Underlying the present invention is the fact that the magnitude of voltage applied selectively to electrodes 11a to 11d by ring counter 18 is below the critical value, the stress being raised above critical value only when a pulse is applied to a conductor 12a to 12d of the other electrode set.
  • the region at which this above-critical value stress is exerted is that extending between the activated conductors of the two sets at their virtual point of intersection and at no other point. Hence a charge migration will occur at the virtual intersection point to form an electrostatic point pattern on the insulating medium.
  • transient voltage change In the event that it becomes necessary to record a transient voltage change rather than digital values, this can be accomplished by first translating the transient voltage in a suitable converter, such as a digital voltmeter into its digital equivalent.
  • the transient voltage is treated as an analog voltage which varies in time.
  • the digital number yielded by the converter is set up in a number register, the number in the register is then decoded by a line selection matrix connected to the conductors 12a to 12d to place a pulse on only one of the several conductors. The higher the instantaneous value of the transient voltage, the higher the number of the conductor which is activated.
  • the first pulse is recorded on the first line, the second pulse on the second line, etc., to produce a trace of dots representing the varying value of the transient voltage.
  • An arrangement similar to that shown in FIG. 1 but using polar or any other set of orthogonal coordinates rather than the Cartesian coordinates as defined by electrode sets 11 and 12 may be employed for recording purposes.
  • the digital information may be fed to both sets of electrodes to yield an x-y plot from which the time factor is eliminated.
  • the medium 10 After the medium 10 is charged with the data to be recorded, it may be removed from between the electrode sets and developed and fixed in the manner customary in the xerographic art. Development is accomplished by the deposition of finely divided powder on the surface of the medium, the powder adhering to the charged areas. Thereafter the charge pattern is fixed by fusing the powder on the surface of a print to which the powder pattern has been transferred.
  • a detailed description of the xerographic developing and fusing technique and the apparatus involved therein may be found in the Carlson Patent No. 2,297,691.
  • a charge pattern is formed on the insulating web when a field discharge is produced in the air gap between the insulating medium and the pulsed electrode.
  • the nature of the field discharge is such that when critical stress is attained, ions which normally are present in the gap are accelerated into collisions with nearby air molecules, thereby generating additional ions which similarly collide with molecules to create more ions, this action being cumulative. Charges are also released from the surfaces defining the gap by collisions with these surfaces by the moving ions. The travelling ions so produced deposit on the surfaces controlled by the electric field.
  • the electric field discharges produced in the air gap may be used to excite electroluminescent phosphors whereby a direct display of information is possible.
  • FIGS. 3, 4 and 5 there is shown an information display device for exhibiting Arabic numerals including an electrode structure 19 in which conductive electrode elements 20 shaped as numerals 1 to 9 are inlaid at spaced positions on an insulating plate.
  • the individual elements are connected by lines to an electronic or electromechanical switching circuit 21 adapted to apply pulses selectively thereto through potential source 25.
  • the operation of the switching circuit may be controlled by a binary converter whereby binary pulses representing given numbers eflect the excitation of the appropriate line.
  • the display screen is constituted by a layer or plate 22 made up of a dielectric in which electroluminescent phosphor material is embedded, the material being responsive to the action of an alternating or pulsed electrical field.
  • Electroluminescent plate 22 is supported on a planar transparent base 23 which may be of glass or of a suit-able plastic, the face of the base being coated with a conductive layer 24 of transparent material.
  • This conductive coating may for example take the form of an extremely thin coating of metal, such as aluminum, applied to the base by the vacuum evaporation technique.
  • the shaped metal electrode 20 is supported above the electroluminescent plate 22 and is spaced therefrom a few thousandths of an inch to form an air gap.
  • a voltage source 25 is connected between the shaped electrode 20 and the conductor coating 24 through a switch 26, whereby when the switch is momentarily closed, a pulsed potential is impressed across the air gap and a field discharge occurs which excites the phosphor in plate 22. Since this plate comprises electroluminescent phosphors bound in a plastic matrix, an outline light pulse is produced in the pattern of the shaped electrode, this result arising from the fact that such electroluminescent layers rebound to the action of an alternating or pulsed field.
  • the voltages and air gap distances are those usually associated with electrostatic recording apparatus.
  • a pre-stressing potential may be applied such that the electrode field is normally below the critical stress value whereby when a pulse is applied to the shaped electrode, the pulse magnitude raises the field above critical stress to cause a field discharge.
  • the conductive layer 24 is transparent, it in no way interferes with the transmission of light from the luminescent plate 22, and the characters on the plate may readily be observed by a viewer. While the shaped electrode 20 has been described as being in the form of Arabic numerals, it is obvious that any other shape may be used to render visible any desired form of intelligence.
  • optical display arrangement shown herein resides in the fact that relative motion may exist between the actuating electrode and the electroluminescent layer by virtue of the existence of the small air gap therebetween.
  • electrostatic recording involving a moving medium all of the concepts of electrostatic recording involving a moving medium are applicable here.
  • the insulating web may be replaced by a moving luminescent surface to afford directly visible readings.
  • successive points of intersection may be excited across a horizontal line on the screen and after each horizontal line is traversed, the scanning action may be shifted vertically to effect a scanning action along a succeeding horizontal line in the manner analogous to the action of the deflection system in a cathode ray tube.
  • the screen in FIG. 7 is constituted by a dielectric plate 27 having luminescent phosphors embedded therein.
  • the plate is supported on an insulating base 28 on whose face is coated or otherwise printed conductive lines 29 of transparent material, the lines being disposed vertically in parallel relation to constitute one set of electrodes.
  • a second insulating plate 30 of like dimensions on which is printed or coated conductive lines 31 which extend horizontally, the lines 31 representing a second and orthogonal set of electrodes.
  • the operation of the display device is similar to that disclosed in connection with FIG. 1 and when the voltage between two electrodes at their virtual point of intersection is above critical stress, a field discharge occurs. This field discharge excites the phosphor at the corresponding point to produce a visible display.
  • the display structure in FIGS. 6 and 7 may be used to present video images. This is accomplished by connecting the horizontal conductors 31 to a time base circuit 32 which may be in the form of a ring counter having a like number of stages. Timing pulses from a source 33 effect step advance of the ring counter upon completion of each horizontal scan of the screen, thereby shifting the scan vertically one line down.
  • the horizontal scanning action is effected by conductors 29 which are connected to a video signal circuit 34 including a line selector and associated sampling circuits adapted to apply pulses serially to the conductors, the magnitude of each pulse depending on the instantaneous intensity of the video signal.
  • the effect is comparable to that of a dot sequential system in which successive dot areas across the screens are excited to a degree depending on the picture values, the scanning line being shifted vertically to cover the entire screen area. Obviously, the greater the number of lines in the electrode grid, the finer the resolution of the picture.
  • a display device for the visual presentation of information signals comprising an electroluminescent layer, at least one electrode disposed on either side of said layer, oneof said electrodes engaging one side of said layer, the other of said electrodes being spaced from the other side of said layer so as to define a fluid gap, and means responsive to information signals to impress a voltage of suflicient strength between said electrodes to effect a field discharge in said gap, whereby said layer is rendered luminescent.
  • Apparatus as set forth in claim 1 further including means to shift the electroluminescent layer and its engaging electrode with respect to the electrode on the fluid gap side of said layer while maintaining the separation between them constant.
  • a display device for the visual presentation of information signals comprising a dielectric plate having electroluminescent material embedded therein, a first electrode formed of translucent material disposed on one side of said plate in electrical contact therewith, a second electrode having a predetermined shape representative of a character and spaced from the opposite side of said dielectric plate from said first electrode and means to apply a voltage to said second electrode relative to said first electrode having an intensity sufficient to effect a field discharge across said space so as to excite said plate to luminescence in the image of said character shape.
  • the electroluminescent layer comprises a dielectric plate having electroluminescent material embedded therein.
  • a device for the visual presentation of information represented by signals comprising a dielectric layer having an electroluminescent material embedded therein, at least one electrode disposed on one side of said layer, a plurality of electrodes disposed on the opposite side of said layer from said first mentioned electrode and spaced from said layer so as to define an air gap and means responsive to information signals to impress a voltage between one or more of the plurality of electrodes and the electrode on the opposite side of the electroluminescent layer of sufficient strength to effect a gaseous discharge in said air gap.
  • Apparatus according to claim 6 including switching means to actuate selected electrodes from said plurality of electrodes in accordance with characteristics of incoming information signals.
  • Apparatus as set forth in claim 7 further including means to shift the position of said plurality of electrodes with respect to said electroluminescent layer while maintaining the separation between them constant.
  • Apparatus according to claim 1 including means to maintain the electrodes on opposing sides of the electroluminescent layer at a base voltage difference just below that required to initiate a field discharge between them, and in which said means responsive to said information signals impresses an additional voltage on said electrodes suflicient to effect a field discharge between them when added to the base voltage.
  • Apparatus for visually displaying intelligence comprising an electroluminescent plate, a first set of electrodes comprising a plurality of conductors spaced from each other lying on one side of and spaced from said plate, a second set of conductors spaced from each other lying on the opposite side of said plate from said first set of conductors, said conductors of said second set being arrayed so that the conductors of the two sets would intersect if they were in the same plane, and means responsive to incoming intelligence to selectively apply potentials of sufiicient strength between the conductors of said first set and the conductors of said second set to initiate a field discharge between selected points of virtual conductor intersection.
  • Apparatus for electrostatically impressing and visually displaying intelligence comprising, an electroluminescent plate, a first set of electrodes constituted by a plurality of conductors lying in a plane above said plate, a second set of conductors lying in a plane below said plate, said conductors of said second set being arrayed virtually to intersect the conductors of said first set and means responsive to incoming intelligence to selectively apply potentials between the conductors of the first set and conductors of the second set to establish an electric field of suflicient strength to initiate conduction between selected points of intersection.
  • Apparatus for electrostatically impressing and visually displaying video intelligence comprising a screen formed by an insulating plate having electroluminescent phosphor embedded therein, first and second insulating plates, said screen being interposed therebetween and spaced by an air gap from at least one of said plates; a
  • first set of electrodes embedded in said first plate comprising :a plurality of substantially parallel conductors extending in a given direction, a second set of electrodes embedded in said second plate and comprising a plurality of substantially parallel conductors extending in a direction substantially perpendicular to that of said first conductors and being in a plane substantially parallel to the plane of said first set of electrodes, one of said first and second plates and its associated conductors being of transparent material, a source of video intelligence comprising a pulsatory signal, horizontal dot sequential scanning means to apply said pulsatory signal to respective conductors of said first set and vertical scanning means to apply a high voltage to respective conductors of said second set so as to effect field discharge at points of intersection between said first conductors from which the signal was applied and second conductors on which the voltage is applied.

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

Se t. 7, 1965 F. A. SCHWERTZ 3,205,403
ELECTROLUMINESCENT DISPLAY SYSTEMS Original Filed Feb. 4, 1957 RECORDING MEDWM RING COUNTER TIME BASE INVEN TOR. FkEDE/e/L'K ,4. Saw 5M2 A770/WVEV United States Patent 12 Claims. (Cl. 315169) The present invention relates to the electrostatic recording of signal intelligence and the visual presentation thereof.
This application is a division of my copen-ding case S.N. 638,008 filed February 4, 1957.
In my c-opending patent application entitled Electrostatic Recording of Information, filed November 20, 1956 and assigned Serial No. 623,327, now abandoned, there is disclosed an electrostatic image-forming process for recording digital or analog information at high speed. In this process, by means of shaped electrodes, symbols or characters are impressed as electrostatic charges on an insulating web. The web is electrically pro-stressed to a condition below the critical stress value. Transfer of the character or symbol from the shaped electrode is effected by the use of a relatively small triggering pulse which raises the electric field above critical stress to produce a field discharge. This discharge action in-the air space between the shaped electrodes and the insulating web gives rise to the formation of an electrostatic charge pattern of the symbol on the web. Electronic switching circuits are associated with the electrostatic electrodes to supply triggering pulses thereto in accordance with information received electrically from a digital computer or other signal or other signal source.
In the system disclosed in the above-identified application, the recording pulses are applied to an electrode structure which is mounted above a moving web of insulating material and as the web advances, successive lines of information are electrostatically impressed thereon. Thus the rate at which recording takes place is ultimately limited by the speed at which the web may be moved.
Accordingly, it is a major object of this invention to provide an electrostatic recording system without moving parts wherein signal intelligence may be impressed on an immobile surface.
More specifically, it is an object of the invention to provide an electrostatic electrode structure adapted to impress successive lines of data on an insulating surface and requiring no mechanical movement either of the electrodes or of the insulating surface associated therewith. A salient advantage of the invention resides in the fact that digital or analog data may be recorded at extremely high speeds, the system being altogether free of mechanical limitations.
Also an object of the invention is to provide an electrostatic technique wherein an electrostatically charged area is rendered immediately visible. Because of the extreme rapidity of the electrostatic recording system computational information or other forms of intelligence are displayed at speeds comparable to that of a cathode rayscanning beam.
A further object of the invention is to provide a display device wherein images are formed by electrostatically exciting an electroluminescent surface by means of shaped electrodes, the surface being movable relative to the electrodes. Thus information may be recorded at high speed and rendered immediately visible.
Yet another object of the invention is to provide a television display device wherein an electroluminescent screen is electrostatically excited. A significant feature of the invention lies in the use of an electrostatic electrode Patented Sept. 7, 1965 structure adapted to effect dot sequential scanning of the screen to produce luminous images thereon.
For a better understanding of the invention as well as other objects and further features thereof, reference is had to the following detailed description to be read in connection with the accompanying drawings.
In the drawings:
FIG. 1 is a schematic diagram illustrating in perspective an electrostatic recording apparatus in accordance with the invention for applying information on a motionless medium.
FIG. 2 is a sectional view of the electrode structure shown in FIG. 1.
FIG. 3 shows in perspective another embodiment of the invention for the visual display of electrostatically recorded intelligence.
FIG. 4 is a front View of the display screen shown in FIG. 3.
FIG. 5 is a sectional view of the display screen shown in FIG. 3.
FIG. 6 is a perspective view of a modified form of display screen.
FIG. 7 is a section taken through the screen shown in FIG. 6.
Referring now to the drawings and more particularly to FIG. 1, there is shown an arrangement adapted to record information electrostatically on a motionless insulating medium 10. The insulating medium may be constituted by a plastic-coated paper or any other dielectric sheet having a sufliciently high resistance to hold an electrostatic image for a period of such duration as to permit subsequent utilization of the image by transfer to another surface or by development. Among the materials suitable for this purpose are terephthalate, cellulose acetate and polyethylene.
The medium 10 is interposed between two orthogonally arranged sets of electrodes, generally designated by nurnerals 11 and v12. Electrode set 11 is constituted by a plurality of equi-spaced conductors 11a, 11b, 11c and 11d disposed in parallel relation and embedded or printed by electrochemical techniques on the upper face of an insulating plate 13 which may be formed of glass or a rigid plastic material. Disposed above electrode set 11 and spaced therefrom is electrode set 12 which is similarly constituted by a plurality of conductors 12a, 12b, 12c and 12d extending perpendicularly with respect to the conductors of set 11 and embedded or printed on the under [face of an insulating plate 14. While for purposes of simplicity each electrode set is illustrated as being composed of four wires, it is to be understood that in practice a greater number may be used, as desired.
In accordance with the invention, if any two conductors, one from each set, are electrically activated, an electrostatic point image can be transferred to the paper at a position corresponding to the point of virtual intersection of the activated conductors. For example, if a potential of the proper magnitude is applied between conductor 12c and 11a, an electrostatic image will be formed .at the point on medium 10 aligned with the point of virtual intersection 12c-11a as indicated by arrow 15. The upper conductors at the points of intersection with the lower conductors may be shaped rather than made linear so as to impress similarly shaped images on the paper.
In its broad aspect the problem of recording data on the medium involves the distribution of symbols thereon in an arbitrary manner. Let us assume that data expressed by a four place binary system is to be recorded, each binary value being indicated by a pulse representing 1 or by a blank representing 0. Let us further assume that these binary pulses are yielded simultaneously or singly in the output of a digital computer represented by block 16, each binary value being applied to a respective conductor of electrode set 11. The application of the pulses to the conductors may be serially in a train or parallel in time.
At the instant the binary information is applied to the electrode set 11, the operation of a timing pulse generator 17 is initiated to actuate a ring-counter time base circuit 18 having stages A, B, C and D arranged in cascade relation and connected respectively to electrodes 11a, 11b, 11c and 11d. Each time the binary pulses representing a given number are applied to the electrodes 12a to 12d, a stepping action occurs in the ring counter 18 which is arranged to have the activated stage establish a high voltage on the associated conductor of set 11, the other stages remaining at a comparatively low voltage. Thus with successive operations, the high voltage is shifted from stage A to B to C to D, the high voltage being relative to ground.
The pulse voltages applied to conductors 12a to 12b are also relative to ground, the pulses being of a polarity with respect to the voltage from the ring counter as to have an additive field effect. The combined magnitude of the pulse and the high voltage is above the critical field stress value, which defines that value of electric field strength at which field discharge or breakdown occurs. It has been found that when there is such a discharge, a transfer or charge migration through the gap between an electrode and the insulating medium occurs. If, on the other hand, the electric stress is below the critical level, dielectric breakdown is not effected and there is no charge transfer.
Underlying the present invention is the fact that the magnitude of voltage applied selectively to electrodes 11a to 11d by ring counter 18 is below the critical value, the stress being raised above critical value only when a pulse is applied to a conductor 12a to 12d of the other electrode set. The region at which this above-critical value stress is exerted is that extending between the activated conductors of the two sets at their virtual point of intersection and at no other point. Hence a charge migration will occur at the virtual intersection point to form an electrostatic point pattern on the insulating medium.
The manner in which data is impressed line by line on medium is as follows: Let us at the outset assume that the binary pulses representing the first number to be printed is applied to conductors 12a to 12d. At that moment, stage A of the ring counter 18 is activated and field discharges occur at those intersections of conductors 12a to 12d and conductor 11a at which voltage pulses are present. In this way a first data line is laid down electrostatically. The next set of binary pulses is also applied to conductors 12a to 120! but at this time stage B of the counter 18 is activated to apply the high voltage to conductor 11b. Hence field discharges now occur at those intersections of conductors 12a to 120! and conductor 11b at which voltage pulses are present, thereby laying down a second line. The same process is repeated for the intersections of conductors 12a to 12d and conductors 11c and 11d, thereby printing the third and fourth line. Of course the number of lines depends on the number of counter stages and associated conductors and this may be augmented as desired.
In the event that it becomes necessary to record a transient voltage change rather than digital values, this can be accomplished by first translating the transient voltage in a suitable converter, such as a digital voltmeter into its digital equivalent. The transient voltage is treated as an analog voltage which varies in time. The digital number yielded by the converter is set up in a number register, the number in the register is then decoded by a line selection matrix connected to the conductors 12a to 12d to place a pulse on only one of the several conductors. The higher the instantaneous value of the transient voltage, the higher the number of the conductor which is activated. Thus in operation, the first pulse is recorded on the first line, the second pulse on the second line, etc., to produce a trace of dots representing the varying value of the transient voltage. A more detailed description of the apparatus for translating voltages which vary in time to digital values and for selectively exciting a plurality of lines is disclosed in the above-cited copending application.
An arrangement similar to that shown in FIG. 1 but using polar or any other set of orthogonal coordinates rather than the Cartesian coordinates as defined by electrode sets 11 and 12 may be employed for recording purposes. Alternatively, the digital information may be fed to both sets of electrodes to yield an x-y plot from which the time factor is eliminated.
After the medium 10 is charged with the data to be recorded, it may be removed from between the electrode sets and developed and fixed in the manner customary in the xerographic art. Development is accomplished by the deposition of finely divided powder on the surface of the medium, the powder adhering to the charged areas. Thereafter the charge pattern is fixed by fusing the powder on the surface of a print to which the powder pattern has been transferred. A detailed description of the xerographic developing and fusing technique and the apparatus involved therein may be found in the Carlson Patent No. 2,297,691.
As pointed out previously, a charge pattern is formed on the insulating web when a field discharge is produced in the air gap between the insulating medium and the pulsed electrode. The nature of the field discharge is such that when critical stress is attained, ions which normally are present in the gap are accelerated into collisions with nearby air molecules, thereby generating additional ions which similarly collide with molecules to create more ions, this action being cumulative. Charges are also released from the surfaces defining the gap by collisions with these surfaces by the moving ions. The travelling ions so produced deposit on the surfaces controlled by the electric field.
It has been found that the electric field discharges produced in the air gap may be used to excite electroluminescent phosphors whereby a direct display of information is possible.
In FIGS. 3, 4 and 5 there is shown an information display device for exhibiting Arabic numerals including an electrode structure 19 in which conductive electrode elements 20 shaped as numerals 1 to 9 are inlaid at spaced positions on an insulating plate. The individual elements are connected by lines to an electronic or electromechanical switching circuit 21 adapted to apply pulses selectively thereto through potential source 25. The operation of the switching circuit may be controlled by a binary converter whereby binary pulses representing given numbers eflect the excitation of the appropriate line.
The display screen, as shown separately in FIG. 5, is constituted by a layer or plate 22 made up of a dielectric in which electroluminescent phosphor material is embedded, the material being responsive to the action of an alternating or pulsed electrical field. Electroluminescent plate 22 is supported on a planar transparent base 23 which may be of glass or of a suit-able plastic, the face of the base being coated with a conductive layer 24 of transparent material. This conductive coating may for example take the form of an extremely thin coating of metal, such as aluminum, applied to the base by the vacuum evaporation technique.
The shaped metal electrode 20 is supported above the electroluminescent plate 22 and is spaced therefrom a few thousandths of an inch to form an air gap. A voltage source 25 is connected between the shaped electrode 20 and the conductor coating 24 through a switch 26, whereby when the switch is momentarily closed, a pulsed potential is impressed across the air gap and a field discharge occurs which excites the phosphor in plate 22. Since this plate comprises electroluminescent phosphors bound in a plastic matrix, an outline light pulse is produced in the pattern of the shaped electrode, this result arising from the fact that such electroluminescent layers rebound to the action of an alternating or pulsed field.
The voltages and air gap distances are those usually associated with electrostatic recording apparatus. If desired, a pre-stressing potential may be applied such that the electrode field is normally below the critical stress value whereby when a pulse is applied to the shaped electrode, the pulse magnitude raises the field above critical stress to cause a field discharge.
Since the conductive layer 24 is transparent, it in no way interferes with the transmission of light from the luminescent plate 22, and the characters on the plate may readily be observed by a viewer. While the shaped electrode 20 has been described as being in the form of Arabic numerals, it is obvious that any other shape may be used to render visible any desired form of intelligence.
The importance of the optical display arrangement shown herein resides in the fact that relative motion may exist between the actuating electrode and the electroluminescent layer by virtue of the existence of the small air gap therebetween. Thus all of the concepts of electrostatic recording involving a moving medium are applicable here. For example, in a teleprinter of the type disclosed in the above identified copending application wherein a spinning electrode character cylinder is used in conjunction with a moving recording web of insulating material, the insulating web may be replaced by a moving luminescent surface to afford directly visible readings.
It is also possible to employ the same principle to produce what in effect is the equivalent of a flat cathode ray tube. In the display screen in accordance with the invention, as shown in FIGS. 6 and 7, a grid or matrix of mutually perpendicular conductors are formed on insulating plates, very much in the manner disclosed in connection with FIG. 1. However, the surface on which the charge is deposited carries a phosphorescent layer which is excited at the point of virtual intersection of the wires. By suitable time base circuits, successive points of intersection may be excited across a horizontal line on the screen and after each horizontal line is traversed, the scanning action may be shifted vertically to effect a scanning action along a succeeding horizontal line in the manner analogous to the action of the deflection system in a cathode ray tube.
The screen in FIG. 7 is constituted by a dielectric plate 27 having luminescent phosphors embedded therein. The plate is supported on an insulating base 28 on whose face is coated or otherwise printed conductive lines 29 of transparent material, the lines being disposed vertically in parallel relation to constitute one set of electrodes.
Disposed adjacent luminescent plate 28 is a second insulating plate 30 of like dimensions on which is printed or coated conductive lines 31 which extend horizontally, the lines 31 representing a second and orthogonal set of electrodes. The operation of the display device is similar to that disclosed in connection with FIG. 1 and when the voltage between two electrodes at their virtual point of intersection is above critical stress, a field discharge occurs. This field discharge excites the phosphor at the corresponding point to produce a visible display.
The display structure in FIGS. 6 and 7 may be used to present video images. This is accomplished by connecting the horizontal conductors 31 to a time base circuit 32 which may be in the form of a ring counter having a like number of stages. Timing pulses from a source 33 effect step advance of the ring counter upon completion of each horizontal scan of the screen, thereby shifting the scan vertically one line down.
The horizontal scanning action is effected by conductors 29 which are connected to a video signal circuit 34 including a line selector and associated sampling circuits adapted to apply pulses serially to the conductors, the magnitude of each pulse depending on the instantaneous intensity of the video signal. The effect is comparable to that of a dot sequential system in which successive dot areas across the screens are excited to a degree depending on the picture values, the scanning line being shifted vertically to cover the entire screen area. Obviously, the greater the number of lines in the electrode grid, the finer the resolution of the picture.
While there has been shown what are considered to be preferred embodiments of the invention, it will be manifest that many changes and modifications may be made therein without departing from the essential spirit of the invention. It is intended, therefore, in the annexed claims to cover all such changes and modifications as fall within the true scope of the invention.
What is claimed is:
1. A display device for the visual presentation of information signals comprising an electroluminescent layer, at least one electrode disposed on either side of said layer, oneof said electrodes engaging one side of said layer, the other of said electrodes being spaced from the other side of said layer so as to define a fluid gap, and means responsive to information signals to impress a voltage of suflicient strength between said electrodes to effect a field discharge in said gap, whereby said layer is rendered luminescent.
2. Apparatus according to claim 1 in which the fluid gap is an air gap.
3. Apparatus as set forth in claim 1 further including means to shift the electroluminescent layer and its engaging electrode with respect to the electrode on the fluid gap side of said layer while maintaining the separation between them constant.
4. A display device for the visual presentation of information signals comprising a dielectric plate having electroluminescent material embedded therein, a first electrode formed of translucent material disposed on one side of said plate in electrical contact therewith, a second electrode having a predetermined shape representative of a character and spaced from the opposite side of said dielectric plate from said first electrode and means to apply a voltage to said second electrode relative to said first electrode having an intensity sufficient to effect a field discharge across said space so as to excite said plate to luminescence in the image of said character shape.
5. Apparatus according to claim 1 in which the electroluminescent layer comprises a dielectric plate having electroluminescent material embedded therein.
6. A device for the visual presentation of information represented by signals comprising a dielectric layer having an electroluminescent material embedded therein, at least one electrode disposed on one side of said layer, a plurality of electrodes disposed on the opposite side of said layer from said first mentioned electrode and spaced from said layer so as to define an air gap and means responsive to information signals to impress a voltage between one or more of the plurality of electrodes and the electrode on the opposite side of the electroluminescent layer of sufficient strength to effect a gaseous discharge in said air gap.
7. Apparatus according to claim 6 including switching means to actuate selected electrodes from said plurality of electrodes in accordance with characteristics of incoming information signals.
8. Apparatus as set forth in claim 7 further including means to shift the position of said plurality of electrodes with respect to said electroluminescent layer while maintaining the separation between them constant.
9. Apparatus according to claim 1 including means to maintain the electrodes on opposing sides of the electroluminescent layer at a base voltage difference just below that required to initiate a field discharge between them, and in which said means responsive to said information signals impresses an additional voltage on said electrodes suflicient to effect a field discharge between them when added to the base voltage.
aaoaeee 10. Apparatus for visually displaying intelligence comprising an electroluminescent plate, a first set of electrodes comprising a plurality of conductors spaced from each other lying on one side of and spaced from said plate, a second set of conductors spaced from each other lying on the opposite side of said plate from said first set of conductors, said conductors of said second set being arrayed so that the conductors of the two sets would intersect if they were in the same plane, and means responsive to incoming intelligence to selectively apply potentials of sufiicient strength between the conductors of said first set and the conductors of said second set to initiate a field discharge between selected points of virtual conductor intersection.
11. Apparatus for electrostatically impressing and visually displaying intelligence comprising, an electroluminescent plate, a first set of electrodes constituted by a plurality of conductors lying in a plane above said plate, a second set of conductors lying in a plane below said plate, said conductors of said second set being arrayed virtually to intersect the conductors of said first set and means responsive to incoming intelligence to selectively apply potentials between the conductors of the first set and conductors of the second set to establish an electric field of suflicient strength to initiate conduction between selected points of intersection.
12. Apparatus for electrostatically impressing and visually displaying video intelligence comprising a screen formed by an insulating plate having electroluminescent phosphor embedded therein, first and second insulating plates, said screen being interposed therebetween and spaced by an air gap from at least one of said plates; a
first set of electrodes embedded in said first plate and comprising :a plurality of substantially parallel conductors extending in a given direction, a second set of electrodes embedded in said second plate and comprising a plurality of substantially parallel conductors extending in a direction substantially perpendicular to that of said first conductors and being in a plane substantially parallel to the plane of said first set of electrodes, one of said first and second plates and its associated conductors being of transparent material, a source of video intelligence comprising a pulsatory signal, horizontal dot sequential scanning means to apply said pulsatory signal to respective conductors of said first set and vertical scanning means to apply a high voltage to respective conductors of said second set so as to effect field discharge at points of intersection between said first conductors from which the signal was applied and second conductors on which the voltage is applied.
References (Iited by the Examiner UNITED STATES PATENTS 2,834,903 5/58 Roberts 3l3-lO8.1 2,855,531 10/58 Nicoll 313108.1 2,858,632 11/58 Caserio et al. 3l3--108.1 2,892,968 6/59 Kallmann et al. 315-169 2,928,993 3/60 Liebson 3l5-169 2,933,648 4/60 Bentley 315-469 3,043,988 7/62 Hurvitz 315-l69 JAMES D. KALLAM, Examiner.
DAVID J. GALVIN, Primary Examiner.

Claims (1)

1. A DISPLAY DEVICE FOR THE VISUAL PRESENTATION OF INFORMATION SIGNALS COMPRISING AN ELECTROLUMINESCENT LAYER, AT LEAST ONE ELECTRODE DISPOSED ON EITHER SIDE OF SAID LAYER, ONE OF SAID ELECTRODES ENGAGING ONE SIDE OF SAID LAYER, THE OTHER OF SAID ELECTRODES BEING SPACED FROM THE OTHER SIDE OF SAID LAYER SO AS TO DEFINE A FLUID GAP, AND MEANS RESPONSIVE TO INFORMATION SIGNALS TO IMPRESS A VOLTAGE OF SUFFICIENT STRENGTH BETWEEN SAID ELECTRODES TO EFFECT A FIELD DISCHARGE IN SAID GAP, WHEREBY SAID LAYER IS RENDERED LUMINESCENT.
US167672A 1957-02-04 1962-01-22 Electroluminescent display systems Expired - Lifetime US3205403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US167672A US3205403A (en) 1957-02-04 1962-01-22 Electroluminescent display systems

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US638008A US3221335A (en) 1957-02-04 1957-02-04 Electro-optical recording and visual display systems
US167672A US3205403A (en) 1957-02-04 1962-01-22 Electroluminescent display systems
US192233A US3220012A (en) 1957-02-04 1962-05-03 Simultaneous recording and display system

Publications (1)

Publication Number Publication Date
US3205403A true US3205403A (en) 1965-09-07

Family

ID=27389430

Family Applications (1)

Application Number Title Priority Date Filing Date
US167672A Expired - Lifetime US3205403A (en) 1957-02-04 1962-01-22 Electroluminescent display systems

Country Status (1)

Country Link
US (1) US3205403A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353050A (en) * 1964-06-25 1967-11-14 Panerai Maria Electroluminescent filament-indicator device, particularly suitable for digital and/or alphabetical dials
US3409800A (en) * 1965-11-30 1968-11-05 Monsanto Co Field effect transistor control circuitry for multi-axis display systems
US3573542A (en) * 1968-03-28 1971-04-06 Control Data Corp Gaseous display control
US3703630A (en) * 1969-09-15 1972-11-21 Franz Gelder Arrangement for planning and monitoring a production process
US3725650A (en) * 1969-09-15 1973-04-03 F Gelder Method and arrangement for optically representing industrial management data
DE2246047A1 (en) * 1971-09-27 1974-04-04 Litton Industries Inc DISPLAY ARRANGEMENTS
US3879634A (en) * 1967-11-24 1975-04-22 Owens Illinois Inc Manufacture and operation of gas discharge panel
DE2830872A1 (en) * 1977-07-13 1979-05-31 Sharp Kk ELECTROLUMINESCENT DISPLAY BOARD WITH A DISPLAY ARRANGEMENT
EP0011108A1 (en) * 1978-11-06 1980-05-28 International Business Machines Corporation Electro-optically matrix-addressed electroluminescence display with memory and method for operating such a display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2834903A (en) * 1952-10-30 1958-05-13 Gen Electric Electroluminescent lighting device
US2855531A (en) * 1957-01-04 1958-10-07 Rca Corp Electroluminescent devices and systems
US2858632A (en) * 1955-06-27 1958-11-04 Gen Motors Corp Panel illumination
US2892968A (en) * 1956-10-23 1959-06-30 Research Corp Voltage responsive screen control methods and systems
US2928993A (en) * 1955-03-21 1960-03-15 Rauland Corp Flat picture screen and methods and means for operating the same
US2933648A (en) * 1956-08-14 1960-04-19 Gen Electric Information display apparatus
US3043988A (en) * 1955-04-27 1962-07-10 Hurvitz Hyman Two-dimensional displays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2834903A (en) * 1952-10-30 1958-05-13 Gen Electric Electroluminescent lighting device
US2928993A (en) * 1955-03-21 1960-03-15 Rauland Corp Flat picture screen and methods and means for operating the same
US3043988A (en) * 1955-04-27 1962-07-10 Hurvitz Hyman Two-dimensional displays
US2858632A (en) * 1955-06-27 1958-11-04 Gen Motors Corp Panel illumination
US2933648A (en) * 1956-08-14 1960-04-19 Gen Electric Information display apparatus
US2892968A (en) * 1956-10-23 1959-06-30 Research Corp Voltage responsive screen control methods and systems
US2855531A (en) * 1957-01-04 1958-10-07 Rca Corp Electroluminescent devices and systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353050A (en) * 1964-06-25 1967-11-14 Panerai Maria Electroluminescent filament-indicator device, particularly suitable for digital and/or alphabetical dials
US3409800A (en) * 1965-11-30 1968-11-05 Monsanto Co Field effect transistor control circuitry for multi-axis display systems
US3879634A (en) * 1967-11-24 1975-04-22 Owens Illinois Inc Manufacture and operation of gas discharge panel
US3573542A (en) * 1968-03-28 1971-04-06 Control Data Corp Gaseous display control
US3703630A (en) * 1969-09-15 1972-11-21 Franz Gelder Arrangement for planning and monitoring a production process
US3725650A (en) * 1969-09-15 1973-04-03 F Gelder Method and arrangement for optically representing industrial management data
DE2246047A1 (en) * 1971-09-27 1974-04-04 Litton Industries Inc DISPLAY ARRANGEMENTS
DE2830872A1 (en) * 1977-07-13 1979-05-31 Sharp Kk ELECTROLUMINESCENT DISPLAY BOARD WITH A DISPLAY ARRANGEMENT
EP0011108A1 (en) * 1978-11-06 1980-05-28 International Business Machines Corporation Electro-optically matrix-addressed electroluminescence display with memory and method for operating such a display

Similar Documents

Publication Publication Date Title
US2777745A (en) Electrostatic recording apparatus
US3050580A (en) Electrostatic techniques
US3205403A (en) Electroluminescent display systems
GB1001546A (en) Improvements in the production of electrostatic charge patterns
JPH09504618A (en) Electrophoretic display device with short writing time
US3068479A (en) Electrographic recording apparatus
US3839713A (en) Display system for plasma display panels
US3090828A (en) System for large-area display of information
US3348229A (en) Recording of analog data on photographic film
US2955231A (en) Electronic selector device
US2900574A (en) Electroluminescent device
US3220012A (en) Simultaneous recording and display system
US3371243A (en) Electroluminescent voltage device
US3249804A (en) System for effecting selective energization of a display device with coincident waves
US3064259A (en) Electrostatic recording of information
US3350506A (en) Image forming screen utilizing electroluminescent, ferroelectric and photcconductive materials
US3989974A (en) Gas discharge display panel
US3221335A (en) Electro-optical recording and visual display systems
US3624633A (en) Display system utilizing multifunction storage tube
US2770061A (en) Display apparatus
Loewe et al. Computer generated displays
US3131256A (en) Electrostatic-writing system
GB839003A (en) An electrical display device
US3263120A (en) Solid state display panel having delay line control of panel elements
EP0607145A1 (en) Electrode structure for an electrophoretic display apparatus