US3196305A - Magnetically scanned cathode ray tube with raster altering means - Google Patents

Magnetically scanned cathode ray tube with raster altering means Download PDF

Info

Publication number
US3196305A
US3196305A US157645A US15764561A US3196305A US 3196305 A US3196305 A US 3196305A US 157645 A US157645 A US 157645A US 15764561 A US15764561 A US 15764561A US 3196305 A US3196305 A US 3196305A
Authority
US
United States
Prior art keywords
raster
shield
enhancers
guns
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US157645A
Inventor
Barkow William Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL286376D priority Critical patent/NL286376A/xx
Priority to BE625864D priority patent/BE625864A/xx
Priority to US157645A priority patent/US3196305A/en
Application filed by RCA Corp filed Critical RCA Corp
Priority to DK529162AA priority patent/DK119121B/en
Priority to GB46?63/62A priority patent/GB1003167A/en
Priority to CH1440162A priority patent/CH428951A/en
Priority to FR917909A priority patent/FR1384581A/en
Priority to DER34023A priority patent/DE1170454B/en
Application granted granted Critical
Publication of US3196305A publication Critical patent/US3196305A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/20Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes for displaying images or patterns in two or more colours
    • H01J31/208Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes for displaying images or patterns in two or more colours using variable penetration depth of the electron beam in the luminescent layer, e.g. penetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • H01J29/702Convergence correction arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/56Correction of beam optics
    • H01J2229/568Correction of beam optics using supplementary correction devices
    • H01J2229/5681Correction of beam optics using supplementary correction devices magnetic
    • H01J2229/5684Magnetic materials, e.g. soft iron

Definitions

  • the invention is particularly useful in cathode ray tubes of the type utilizing differential penetration of a luminescent screen by a plurality of different velocity electron beams to obtain plural color image re-creation and to the obtaining of coincidence of the plurality of rasters produced by the plurality of electron beams.
  • One type ot' cathode ray tube referred to above which is particularly suited for home television use, includes a luminescent screen having three diiierent phosphors which are disposed in superimposed layers, each of which is capable of emitting, for example, a different one of the three primary colors, red, green, and blue.
  • the tube further includes three electron guns, each adapted to project a diterent velocity electron beam through a common deiiection iield and onto the luminescent screen.
  • Electrons of the lowest velocity beam excite the rst phosphor layer to produce light of a iirst color; electrons of the medium velocity beam penetrate the first layer and excite the second layer to produce light of a second color; and electrons of the highest velocity beam penetrate both the first and second layers and excite the third layer to produce light of a third color.
  • Proper current intensity modulation of the three beams enables production of any desired mixture of these three colors.
  • the three rasters produced by the three electron beams are of different size. This is because the three beams, being of different velocity, are deiiected different amounts by the common deflection field.
  • Substantially equal size and coincident red, green, and blue rasters can be obtained by differentially shielding the beams from portions of the common deilection lield.
  • Individual magnetic tubular shields are disposed around the two lower velocity beams and extend different distances into the common deilection lield.
  • the two lower velocity beams which in the absence of the magnetic tubular shields would be deflected the greater amounts by the common field, are subjected to different selected fractions of the ield and thereby receive substantially the same amount of deflection as does the highest velocity, Unshielded beam.
  • magnetic tubular shields prevent creation of greatly different-size rasters and thus contribute greatly to raster coincidence, but the quality of register of the three rasters is still further improved by the present invention.
  • an object of this invention to provide a new and improved cathode ray tube structure which includes means for altering the shape of the raster produced thereby.
  • magnetic held enhancer elements are disposed within a cathode ray tube on opn posite sides of the beam path in the deflection iield to change the aspect ratio of the raster produced by the beam.
  • the enhancer means enhance the strength of the ice deilection field in one direction to expand the raster in the perpendicular direction. In some cases the enhancer means may also weaken the eld in the perpendicular direction and thus contract the raster in the one direction.
  • FIG. l is a side elevation view partly in section and with parts broken away of a cathode ray tube incorporating the invention
  • FIG. 2 is an end elevation view of the tube of FIG. l;
  • FIGS. 3, 4, and 5 are transverse sections of the cathode ray tube of FIG. 1 taken, respectively, along lines 3 3, i-d, and 5-5;
  • FIG. 6 is a perspective of a portion of the cathode ray tube of FiG. l;
  • FIGS. 7 and 8 are schematic illustrations of various magnetic beam shield embodiments used for the purpose of explaining the electron gun structure of FIG. l;
  • FIG. 9 is a graph of a typical deflection iield used in explaining FIGS. 7 and 8;
  • FIGS. 10 and l1 are schematic illustrations of the distortion effects of the shield embodiments of FIGS. 7 and 8, respectively, on a deiiection eld;
  • FIG. i is a schematic illustration of raster misregister caused by an improper electron gun orientation
  • FIGS. 12b and 12C are schematic illustrations of the deflection elds which produce the raster misregister of FIG. 12a;
  • FIG. 13a illustrates raster register provided by the electron gun orientation of FIGS. 1-6;
  • FIGS. 13b and 13C are schematic illustrations of the deiiection elds distortions provided by the electron gun orientation of FIGS. l-6;
  • FIGS. 14 and 15 are schematic illustrations of the effects of elements of the electron gun structure of FIG. 1 on the vertical deflection and horizontal deflection elds, respectively.
  • FIGS. l, 2, 3, 4, 5, and 6 illustrate a cathode ray tube 8 comprising an evacuated envelope including a neck section 10, a faceplate 12, and an interconnecting funnel section 14.
  • an electron gun assembly 15 comprising, for example, three electron guns 16, 17, and 18 positioned side by side in a delta triangular arrangement symmetrically about the longitudinal axis of the gun assembly 15.
  • gun 17 is hidden behind gun 16.
  • the electron guns 15, 17, and 18 are respectively adapted to project lower, medium and higher velocity electron beams through a common deflection zone 19 and toward the faceplate 12.
  • L beam, M beam, and H beam will be hereinafter used to refer respectively to the lowest velocity beam (and its gun 16), the medium velocity beam (and its gun 17), and the highest velocity beam (and its gun 18).
  • a luminescent screen 2h on the faceplate 12 includes three layers 22, 2d, and 26 of different phosphors, each of which luminesceses in a different one of the three primary colors, red, green, and blue.
  • the tube 8 is operated so that electrons of the L beam will excite the irst phosphor layer Z5 to produce light of a iirst primary color; electrons of the M beam will penetrate the iirst phosphor layer 26 and excite the second phosphor layer 2d to produce light of a second primary color; and electrons of the H beam will penetrate both the first and second phosphor layers 26 and 2d and excite the third phosphor layer 22 to produce light of a third primary color.
  • a magnetic defiection yoke 2S is provided which closely encircles the envelope of the tube.
  • the yoke 2S when suitably energized, is adapted to create two de'liection fields capable of scanning the electron beams together over the luminescent screen 2G in mutually transverse, eg., perpendicular, directions at different scan frequencies.
  • horizontal and vertical magnetic deflection fields are established in the defiection Zone 19 to cause the three separate beams of the electron guns 16, 17, and 18 to scan an orthogonal raster or pattern on the luminescent screen 20.
  • the faceplate 12 and luminescent screen Zt? include-de a rectangular viewing area 29 and may themselves be circular or substantially rectangular which together with the viewing larea preferably have a major axis X-X and a minor axis Y-Y perpendicular to each other. These axes are oriented for normal viewing with the axis X-X horizontal and the axis Y-Y vertical. ln FIGS. 3, 4, and the axes X-Y and Y-Y have been projected axially back along the tube 8 to the plane of these figures.
  • the yoke 28 is so angularly oriented about the tube S and is of a type so adapted when excited with appropriate currents, that the electron beams scan on the screen a rectangular raster having perpendicular major and minor axes which coincide with the axes X-X and Y-Y.
  • Each of the electron guns 16, 17, and 18 comprises a plurality of coaxial tubular electrodes.
  • Each gun includes a tubular cathode 3f? having an end wall which is coated with a suitable electron emissive material.
  • Each cathode 36 is insulatingly mounted within a centrally lapertured control grid cup 32. Disposed coaxially beyond the control grid cups 32, in the order named, are for each gun, a centrally apertured screen grid cup 34, a tubular focusing electrode 36, and a tubular anode 38.
  • the anodes 3S are mounted on a cylindrical convergence cage 40 which is electrically common to all three of the electron guns 16, 17, and 18.
  • the convergence cage ttl comprises a cup which has an end wall 4Z and which is closed at its open end with an end plate 43. Both the end Wall 42 and the end plate 43 are provided with apertures 44, 45, and 46 which are coaxial respectively with the three electron guns, 16, 17, and 1S.
  • each of these electrodes can be energized independently of the others to provide electron beams yof" different velocities which are independently focused in the region of the screen 20.
  • the convergence cage d6 is provided with a plurality of spring snubbers 54 which bear outwardly against the neck 10 of the envelope.
  • An electrically conductive coating 56 disposed on the internal surface of the envelope extends over the funnel 14 and into the neck 16 a distance sufficient to make contact with the snubbers 54.
  • the coating 56 also extends into electrical contact with the metal backing layer 27 of the luminescent screen 20.
  • Terminal means,k such as is illustrated schematically by the arrow 58, is provided for applying a suitable electrical potential to the coating electrode 56, the anodes 33, and the luminescent screen Ztl.
  • each of the electron guns 16, 17, and 18 are maintained in fixed spaced coaxial relationship in a well-known manner such as by mounting them on three glass rods 59 which extend along the guns.
  • Each of the electrodes 32, 34, 36, and 38 of each of the three guns is fixed to the glass rods in a manner similar to that illustrated for the focusing electrodes 36 in FIG. 3.
  • the electrode .'56 of gun 1S is attached to a central arcuate section of a strap 60 whose ends are embedded into two of the glass rods 59.
  • electrodes of guns 16 and 17 are mounted by similar straps 61 and 62 respectively to different pairs of the glass rods 59.
  • the strap 60 on the electrode 36 of the H gun 18 may be made of magnetic material for a purpose hereinafter described. Further details of the mounting of the electron guns 16, 17, and 13 have been omitted from the drawing for purposes of clarity.
  • Approximate convergence may be provided by mounting each gun at a small angle with respect to the longitudinal axis of the tube 3 so that the three electron beams, when undefiected, are caused to converge approximately at a common point near the center of the center of the luminescent screen Z6;
  • the angle which each gun makes with the tube axis is determined by the dimensions of the tube. ln cathode ray tubes of the type described having a tube length of about 19 to 25 inches, this angle is in the order of 1 l.
  • Dynamic convergence may be provided as shown in FlG. 4.
  • a separate pair of pole pieces 64 are disposed on opposite sides of each beam within the convergence cage 4t).
  • a separate 'electromagnet 66 disposed externally of the tube envelope adjacent to the ends of the pole pieces. More refined arrangements, such as those incorporating a pair of electromagnetic windings in place of the single winding 66, are known in the art but for the sake of brevity and clarity are not herein detailed.
  • a if-shaped magnetic shield 63 is disposed within thc convergence cage for shielding each beam from the convergence fields of the other beams.
  • Energizaticn of the coils of the electromagnets 66 will impart to the respective electron beams a small radial directional component of deflection toward or away from the longitudinal axis of the tube 8.
  • a varying current synchronized with, and related to, the amount of scanning deflection of the three beams is applied to each electromagnet 66 to provide the desired dynamic convergence of the three beams.
  • all three beams are brought to a precise static convergence at the ⁇ center of the luminescent screen 2@ by means provided for adjusting the lateral position of one of the electron beams.
  • This is accomplished by a magnetic field established in the path of the H beam by a permanent magnet assembly .69.
  • the mounting strap 6i may in some instances be made of magnetic material.
  • the field produced by the magnet assembly 69 is transverse to the direction of the magnetic field established between the pole pieces 64 for the H beam. This permits a lateral adjustment of the position of one of the three electron beams (viz, the beam produced by the electron gun 1S in the illustrated embodiment) in a direction which .is normal to the radial adjustment of this same beam as provided by the convergence pole pieces 64.
  • poles of the magnet assembly 69 may be dynamically energized to provide an additional means contributing to the shaping of the H beam raster for the purpose of registering this raster with the rasters of the L and M beams.
  • the L beam gun 16 and M beam gun 17 are provided withor have associated therewith-tubular magnetic shield members (i.e., magnetic shunts) 76 and 78, respectively, which are of different axial lengths and which extend coaxially with their respective guns. They may be mounted on the end plate 43.
  • the tubular shields 76 and 78 extend from and are so positioned with respect to the annesse electron gun apparatus that they are disposed within the detiection zone 19.
  • the M beam shield 78 is of shorter length and preferably of larger diameter than the L beam shield 76.
  • the M beam shield is disposed alongside the L beam shield and is axially positioned between and spaced from the two planes perpendicular to the axis of the L beam shield at the ends thereof. For the sake of brevity, this condition will hereinafter be described simply as the M beam shield being between the ends of the L beam shield.
  • the L beam shield 76 is attached directly to the end plate 43.
  • the M beam shield 78 is spaced from the end plate 43 by tandemly mounting it to the end of a iirst tubular nonmagnetic support member St) which is in turn mounted to a smaller diameter tubular support 81 attached to the end plate d3.
  • the nonmagnetic supportati may, for example, be attached to the end of the smaller support 81 by a plurality of interconnecting straps 82 (FIGS. 5 and 6).
  • the purpose and advantage of the particular size relationship and relative dispositions of the L beam shield 76 and the M beam shield 78 will be hereinafter described in detail with reference to FIGS. 7, 8, 9, 10, and 1l.
  • the electron gun apparatus is angularly oriented about the longitudinal axis of the tube 8 relative to the luminescent screen and t-o the deflection yoke 28 so that the electron gun 18 producing the unshielded H beam is disposed in the central plane which is perpendicular to the scan produced by the higher frequency one of the two orthogonal deection iields.
  • the unshielded H beam would be disposed in the central vertical plane of the tube S, i.e., the plane which contains the axis Y-Y of the screen and which is perpendicular to the axis K X.
  • the orientation of the electron gun apparatus is such that the H beam gun 18 is preferably disposed above the ⁇ other two guns 16 and 17 as is illustrated in FIGS. 1 6.
  • the purpose and advantage of such an orientation of the electron gun apparatus are hereinafter described in detail with reference to FIGS. 12a, 12b, 12e, 13a, 13b, and 13e.
  • Deflection iield enhancer elements 84, S5 and 86, 87 of magnetic material are disposed on opposite sides of the H beam and M beam paths, respectively.
  • the enhancer elements 811-87 are attached to the end plate 43 and extend, respectively, along the H and M beam paths into the deiiection zone 19.
  • the enhancer elements are preferably tubular members having a rectangular cross section as illustrated and are disposed with their sides parallel to the axes X-X and Y-Y, with one side of each pair of enhancers facing the 4other member of the same pair.
  • other cross sectional shapes, such as U-shaped rectangular channel members can be used.
  • the purpose and advantages of the field enhancers Sel-87 are hereinafter described in detail with reference to FIGS. 14 and l5.
  • the L beam and the M beam are shielded from the deflection eld over different portions of their travel therethrough.
  • the L and M beams are thus subjected to the deection field for a shorter period of time than they would be in the absence of the shields 76 and 7S.
  • the L and M beams are subjected to the deflection field for specific time durations which will result in their being deflected substantially the same amount as the unshielded H beam.
  • FIGS. 7-11 illustrate the factors to be considered in selecting a proper relationship of shield dimensions and dispositions.
  • FIG. 7 illustrates part of an electron gun assembly similar to that of FIG. 1 except it has a shorter M beam shield '73 disposed alongside the L beam shield 76 at the distal end thereof.
  • FIG. 8 illustrates part of an electron gun assembly similar to that of FIG. l except that it has a longer M beam shield 78 disposed alongside the L beam shield 76 at the proximal end thereof.
  • FIG. 9 illustrates the variation with axial distance of the intensity of the transverse iield such as provided by the yoke 2.8.
  • the field whose strength increases from some amount at thes plane of the end plate 43 to a peak value and then decreases, is defined by a bell-shaped curve.
  • the M beam shield must be made shorter as it is moved away from the end plate 43. This is illustrated by the fact that the M beam shield 78' of FIG. 7 is shorter than the M beam shield 78" of FIG. 8.
  • the M beam shield 78 is made larger in diameter than the L beam shield 76 in the electron gun apparatus 15 of FIG. l.
  • FIG. l() illustrates the distorted shape of the deilection field lines in planes which intersect both the L beam shield and the M beam shield, such as plane B-B of FIG. 7 and plane C-C of FIG. 8. This type of distortion tends to produce an H beam raster 91 whose right side vertical dimension is greater than its left side.
  • FIG. l1 illustrates the distorted shape of the deflection field lines 92 in planes which intersect only the L beam shield, such as plane A-A of FIG. 7 and plane D D of FIG. 8. This type of distortion tends to produce an H beam raster 93 whose left side vertical dimension is greater than its right side.
  • FIGS. 10 and ll it should be noted that these illustrations depict only the shape of the field and not the strength of the held. Field strength is illustrated by FIG. 9.
  • the ux lines are distorted toward, and concentrated adjacent to, the shield so as to follow the path of least reluctance.
  • the greater distortion, or iiux concentration is produced by the M beam shield because of its larger diameter.
  • the distortion, or flux concentration is produced only by the L beam shield because of the absence of the M beam shield.
  • the iield distortion as illustrated by FIG. 10 is the same shape at the plane B-B as it is at the plane C-C, the distortion has a greater eiiect at the plane B-B because the field intensity at that plane is much greater. Therefore, the net resultant distortion of the H beam raster can be symmetrized, or made less objectionable, by axially moving the M beam shield until the FIG. l0 type distortion is of a strength which balances the FIG. ll type distortion. This is achieved by axially positioning the M beam shield between the ends of the L snr-)ases beam shield as illustrated in FiGS. l and 6.
  • the L beam shield '76 is Mi inch in diameter and 1% inches long, the M beam shield78 is 3/8 inch in diameter and 3A; inch long, and the M beam shield is axially positioned 1A inch back from the distal end of the L beam shield (the L beam shield '76 extends 1A: inch closer to the luminescent screen Ztl than does the M beam shield 78).
  • the M beam shield is disposed between the ends of the L beam shield and various parameters are then adjusted to obtain the least asymmetry of the H beam raster.
  • the length of the M beam shield is selected to produce the proper overall size M beam raster; -the diameter of the M beam shield is then selected so as to just avoid the M beam from striking the shield when fully deflected; and the axial position of the M beam shield is then selected to obtain the least asymmetry of the H beam raster.
  • a change of any one of these parameters may call for a slight re-adjustment of the others in order to obtain the optimum relationships producing minimum asymmetry of the H beam raster.
  • FIG. 12a is representative of the type of raster distortion and misregister that is caused by an electron gun orientation other than that of the unshielded H beam gun in the central vertical plane of the tube.
  • an H beam raster Miti an M beam raster lill and an L beam raster 162 are illustrated.
  • the misregistry of the rasters lllil, lill, and 102 is characterized by a crossover 103 of the lower boundaries of the H beam raster ltitl and the M beam raster lill.
  • Such a crossover is due to extreme asymmetry of distortions caused by the L beam and M beam shields when the electron gun orientation is other than that taught with reference to FIGS. 1-6.
  • FIGS. 12b and 12C illustrate the asymmetry of the detiection eld distortion in a plane cutting both shields produced by the L beam shield 76 and the M beam shield 7S when the gun orientation is with the L beam gun lo in the central vertical plane of the tube. Such an orientation results in the crossover misregistry of FIG. 12a.
  • FIG. 12b shows the distortion of ux lines 108 of the horizontal deiiection field
  • FIG. 12e shows the distortion of the flux lines lili) of the vertical deflection field.
  • FIG. 13a illustrates the improved results obtained by the electron gun Orientation as taught with reference to FlGS. 1-6.
  • an H beam raster H2 an M beam raster 114, and an L beam raster 116 are illustrated.
  • These rasters are characterized by a nesting thereotC wherein they are either registered with each other or the corresponding boundaries of the rasters are substantially parallel.
  • the spacing between rasters is exaggerated for the purpose of more clearly illustrating the nesting relationship.
  • the rasters have substantially the same shape and differ slightly from each other only in their overall size.
  • FIGS. 13b and 13C illustrate the symmetrized distortion in a plane cutting both shields of the horizontal and vertical deflection fields, respectively, which is obtained by orienting the H beam gun 18 in the vertical central plane of the tube.
  • the flux lines of the horizontal deflection eld are indicated at 118; in FIG. 13C the iiux lines of the vertical deflection field are indicated at 120.
  • FIG. 12b By comparing FIG. 12b with 13b, and 12C with 13C, the improved ,symmetry about the vertical central plane of the tube which results from positioning the l-l beam gun in that plane is apparent. Whereas only one undesirable electron gun orientation is herein illustrated (FIGS. 12a, l2b and 12C) other orientations (other than the H earn in the vertical central plane of the tube) produce distortions similar to those illustrated in FlGS. l2 and 12C.
  • FIGS. 14 and l5 illustrate the effect oi magnetic enhancers such as the enhancers S4 and S5 on the vertical detilcction and horizontal deiiection fields, respectively, of the H beam. If a pair of enhancers are disposed in both the horizontal and vertical fields, they will enhance the strength of the deflection field in one direction, eg., horizontal, and decrease the strength of the field in the perpendicular direction, eg., vertical, in the space between the enhancers which is the region of the electron beam path with which they are associated. If the horizontal and vertical deflection .fields are not coextensive and the enhancers are disposed in only one of the fields, they will atleet only thatv field.
  • enhancers S4 and S5 on the vertical detilcction and horizontal deiiection fields, respectively, of the H beam.
  • enhancers are placed adjacent a particular beam path and primarily associated therewith (e.g., enhancers b4- and 85 for the H beam), they primarily atect the deliection field only locally for the particular beam associated therewith. Enhancers act as magnetic conductors which are placed in the gap between a pair of deflection coils and thus decrease the reluctance of the deilection field flux path in the localized area occupied by the enhancers.
  • the pair of H beam enhancers 3ft and 35 being aligned in a horizontal plane, conduct'the horizontally directed flux lines producing the vertical H beam deflection and thus enhance the vertical deflection of the H beam and thereby expand the H beam raster vertically.
  • FIG. 14 the effect of the enhancers S4 and S5 are shown on the flux lines i222 of the vertical deflection field of the H beam.
  • the liux lines 122 are bent toward and pass through the enhancers 84 and 85.
  • the enhancers may be thought of as gathering the flux lines from surrounding areas and concentrating them. Since the enhancers are arranged serially in the direction of the liux lines, the flux in tl e area between the enhancers 8d and 55 is concentrated and provides a stronger vertical deflection field of the H beam than would otherwise exist without the enhancers. This serves to expand the height of the H beam raster.
  • FIG. 14 the effect of the enhancers S4 and S5 are shown on the flux lines i222 of the vertical deflection field of the H beam.
  • the liux lines 122 are bent toward and pass through the enhancers 84 and 85.
  • the enhancers may be thought of as gathering the flux lines from surrounding areas and concentrating them. Since the enhancers
  • the flux lines l2- of the horizontal H beam deiiection field are bent toward and pass through the enhancers S4 and 8S. Since the enhancers are arranged in parallel in the direction of the horizontal deflection flux lines, they gather linx which would otherwise pass between the enhancers, and therebythe enhancers lower the flux concentration in that area and provide a weaker horizontal deiiection field for the H beam. This results in a horizontal contration of the H beam raster. The vertical expansion and horizontal contraction of the resulting H beam raster are additive in efiecting a change of the aspect ratio of the raster.
  • enhancers are provided to not only vertically expand the H beam raster but to also horizontally expand the M beam raster. This can be done with a separate pair of enhancer members for each of the two beams, one pair horizontally aligned and the other pair vertically aligned.
  • the H and M beams are so closely spaced that room is not available for separate pairs of enhancers for each of the beams without an enhancer of one pair interfering with an enhancer of the other pair.
  • This problem is overcome by making the' enhancer 35 common to both a first pair of enhancers (84 and 85) for the H beam and a second pair of enhancers (85 and 37) for the M beam.
  • both the horizontal and vertical cross-sectional dimensions of the enhancer 85 is made of suflicient magnitude to provide the desired lield enhancements.
  • enhancer 85 pairs with enhancer 87 to provide the primary horizontal deilection field enhancement for the M beam available space in the neck of the tube 8 does not permit the enhancer 85 to be centered over the M beam. Therefore, a fourth enhancer 86 is providede between the enhncer S5 and the M beam (centrally thereover) to shape the horizontal deflection field in the region of the M -beam by more nearly vertically orienting the linx lines thereof.
  • the enhancers 85 and 86 can be provided as a single integral member, as two separate members attached to each others, or as two separate slightly spaced members as shown.
  • the enhancers 85, 86, and 87 function with respect to the M beam in a manner somewhat similar to the manner described with reference to FIGS. 14 and 15 in which the enhancers 84 and 8S function with respect to the H beam.
  • these enhancers provide a means for raster shaping.
  • the relative percentage of expansion and contraction of a raster to affect its aspect ratio is dependent upon the horizontal and vertical cross-sectional dimensions of the enhancers and the spacing between them.
  • An increase of the horizontal cross-sectional dimension of the enhancers 84 and 85 further enhances the field illustrated in FIG. 14 and causes greater expansion of the H beam raster in vertical direction.
  • An increase of the vertical cross-sectional dimension of the enhancers 84 further reduces the intensity of the field illustrated in FIG. 15 and causes greater contraction of the H beam raster in the horizontal direction.
  • the closer together a pair of enhancers are positioned the greater their effect. If the enhancers S4 and 85 are positioned closer together, the bowing out of the flux lines of the vertical H beam deflection eld (FIG.
  • the raster size is a function of the length of the enhancers along the beam path.
  • An increase of the length of the enhancers serves to increase the raster size without materially changing the aspect ratio.
  • the shield tube is axially staggered with, and adequately spaced from, the enhancers as is shown in FIG. 6. This permits both the shield tube and the enhancers to separately exert their own actions on a different portion of the deection field without interference by the other. If the shield tube 7S were positioned too close to, or in Contact with, the enhancers 85, 36, and 87, the flux lines between the enhancers would be shunted through the shield, thus reducing the effect of the enhancers.
  • the nonmagnetic support 81 may be such as to permit the enhancers 86 and 87 to be disposed closer together and thus closer to the beam path.
  • the support 31 may be of smaller diameter than the shield tube 78.
  • the support 81, as well as the support Sti could, for example, consist of one or more nonmagnetic support wires, straps, or the like. Support S1 may even be omitted altogether and the nonmagnetic support 80 mounted directly on the ends of the enhancers 86 and 87.
  • a cathode ray tube comprising a luminescent screen
  • a plurality of electron guns spaced from said screen for projecting a plurality of electron beams toward said screen through a deliection zone for having magnetic deection elds established therein for deecting said beams in two different directions, and means comprising magnetic conductors disposed on opposite sides of the path of one of said beams and extending at least partially through said deflection zone for enhancing the delection of said one beam in one of said two directions and reducing the deliection in the other of said two directions.
  • a cathode ray tube comprising a luminescent screen, an electron gun spaced from said screen for projecting an electron beam toward said screen through a deliection zone for having magnetic deflection elds established therein for deliecting said beam in two different directions and means comprising a pair of magnetic conductors mounted on opposite sides of the path of said beam and extending along said beam path in said zone and having a dimension of substantial magnitude along a line parallel to a line passing transversely through said path for enhancing the deection of said beam in one of said two directions and reducing the deflection in the other of said two directions.
  • each of said magnetic conductors comprise a relatively short, open-ended tubular member of rectangular cross-section.
  • a cathode ray tube comprising a luminescent screen, a plurality of electron guns for projecting a corresponding plurality of electron beams toward said screen through a common deflection zone for establishing detiection fields therein for deflecting said beams in mutually perpendicular directions, and means comprising deection eld enhancer elements of magnetic material disposed on opposite sides of the path of one of said beams in said zone and for enhancing the deflection of Isaid one beam in only one of said directions for affecting the aspect ratio of a raster produced on said screen by the dellection of said one beam.
  • a cathode ray tube comprising a luminescent screen, a plurality of electron guns for projecting a corresponding plurality of electron beams toward said screen through a common deflection zone for having dellection fields established therein for deflecting said beams in mutually perpendicular directions, and means comprising a pair of magnetic members disposed on opposite sides of the path of one of said beams in said zone for enhancing the deflection of only said one beam in only one of said directions for changing the aspect ratio of a raster produced on lsaid screen by the deflection of said one beam, each of said magnetic members comprising a structure which includes a U-shaped channel-like portion.
  • a cathode ray tube comprising a luminescent screen including a plurality of layers of diierent phosphors, a plurality of electron guns for projecting different velocity electron beams towards said screen, a common dellection zone disposed between said screen and said guns for having magnetic deliection l'ields established therein for deflecting said beams in mutually perpendicular directions two of .said guns having magnetic tubular shields surrounding portions of their beam paths in said zone, one of said guns having a pair of elongated iield enhancers of magnetic material on opposite sides of the beam path thereof in said zone, each of said eld enhancers having a substantial dimension in the direction transverse to said beam path of said one of said guns.

Description

5 Sheets-Sheet l July 20, 1965 w. H. BARKow MAGNETICALLY SCANNED CATHODE RAY TUBE WITH EASTER ALTERING MEANS Filed Dec. 7, 1961 July 20, 1965 w. H. BARKow MGNETICALLY SCANNED CATHODE RAY TUBE WITH RASTER ALTERING MEANS Filed Dec. '7, 1961 3 Sheets-Sheet 2 LL/7a w. H. BARKow 3,196,305 MAGNETICALLY SGANNED CATHODE RAY TUBE July 20,V 1965 WITH EASTER ALTERING MEANS 3 Sheets-Sheet 3 Filed Dec. 7, 1961 ffl l INVENTOR. //z//i/v #f n/afa United States Patent O 3,196,355 MAGNETICALLY SCANNED CATHDFJ RAY TUBE WHH EASTER ALTERING MEANS William Henry Barirow, Pennsauiren, NJ., assigner to Radio Corporation of America, a corporation ot' Delaware Filed Bec. 7, 1961, Ser. No. 157,645' 6 Claims. i621. 313-69) This invention relates to cathode ray tubes and to the shaping of the scanned rasters thereof. The invention is particularly useful in cathode ray tubes of the type utilizing differential penetration of a luminescent screen by a plurality of different velocity electron beams to obtain plural color image re-creation and to the obtaining of coincidence of the plurality of rasters produced by the plurality of electron beams.
One type ot' cathode ray tube referred to above, which is particularly suited for home television use, includes a luminescent screen having three diiierent phosphors which are disposed in superimposed layers, each of which is capable of emitting, for example, a different one of the three primary colors, red, green, and blue. The tube further includes three electron guns, each adapted to project a diterent velocity electron beam through a common deiiection iield and onto the luminescent screen. Electrons of the lowest velocity beam excite the rst phosphor layer to produce light of a iirst color; electrons of the medium velocity beam penetrate the first layer and excite the second layer to produce light of a second color; and electrons of the highest velocity beam penetrate both the first and second layers and excite the third layer to produce light of a third color. Proper current intensity modulation of the three beams enables production of any desired mixture of these three colors.
In tubes of the type described above, unless preventive or corrective means are provided, the three rasters produced by the three electron beams are of different size. This is because the three beams, being of different velocity, are deiiected different amounts by the common deflection field.
Substantially equal size and coincident red, green, and blue rasters can be obtained by differentially shielding the beams from portions of the common deilection lield. Individual magnetic tubular shields are disposed around the two lower velocity beams and extend different distances into the common deilection lield. Thus, the two lower velocity beams, which in the absence of the magnetic tubular shields would be deflected the greater amounts by the common field, are subjected to different selected fractions of the ield and thereby receive substantially the same amount of deflection as does the highest velocity, Unshielded beam.
In such tubes, magnetic tubular shields prevent creation of greatly different-size rasters and thus contribute greatly to raster coincidence, but the quality of register of the three rasters is still further improved by the present invention.
It is, therefore, an object of this invention to provide a new and improved cathode ray tube structure which includes means for altering the shape of the raster produced thereby.
It is another object of this invention to provide a new and improved plural beam cathode ray tube structure which contributes to the obtaining of high quality register of the plurality of rasters thereof.
According to this invention, magnetic held enhancer elements are disposed within a cathode ray tube on opn posite sides of the beam path in the deflection iield to change the aspect ratio of the raster produced by the beam. The enhancer means enhance the strength of the ice deilection field in one direction to expand the raster in the perpendicular direction. In some cases the enhancer means may also weaken the eld in the perpendicular direction and thus contract the raster in the one direction.
In the drawings:
FIG. l is a side elevation view partly in section and with parts broken away of a cathode ray tube incorporating the invention;
FIG. 2 is an end elevation view of the tube of FIG. l;
FIGS. 3, 4, and 5 are transverse sections of the cathode ray tube of FIG. 1 taken, respectively, along lines 3 3, i-d, and 5-5;
FIG. 6 is a perspective of a portion of the cathode ray tube of FiG. l;
FIGS. 7 and 8 are schematic illustrations of various magnetic beam shield embodiments used for the purpose of explaining the electron gun structure of FIG. l;
FIG. 9 is a graph of a typical deflection iield used in explaining FIGS. 7 and 8;
FIGS. 10 and l1 are schematic illustrations of the distortion effects of the shield embodiments of FIGS. 7 and 8, respectively, on a deiiection eld;
FIG. i is a schematic illustration of raster misregister caused by an improper electron gun orientation;
FIGS. 12b and 12C are schematic illustrations of the deflection elds which produce the raster misregister of FIG. 12a;
FIG. 13a illustrates raster register provided by the electron gun orientation of FIGS. 1-6;
FIGS. 13b and 13C are schematic illustrations of the deiiection elds distortions provided by the electron gun orientation of FIGS. l-6; and
FIGS. 14 and 15 are schematic illustrations of the effects of elements of the electron gun structure of FIG. 1 on the vertical deflection and horizontal deflection elds, respectively.
FIGS. l, 2, 3, 4, 5, and 6 illustrate a cathode ray tube 8 comprising an evacuated envelope including a neck section 10, a faceplate 12, and an interconnecting funnel section 14. Disposed within the neck 1t) is an electron gun assembly 15 comprising, for example, three electron guns 16, 17, and 18 positioned side by side in a delta triangular arrangement symmetrically about the longitudinal axis of the gun assembly 15. In FIG. 1 gun 17 is hidden behind gun 16. The electron guns 15, 17, and 18 are respectively adapted to project lower, medium and higher velocity electron beams through a common deflection zone 19 and toward the faceplate 12. For the purpose of brevity and clarity, the terms L beam, M beam, and H beam will be hereinafter used to refer respectively to the lowest velocity beam (and its gun 16), the medium velocity beam (and its gun 17), and the highest velocity beam (and its gun 18).
A luminescent screen 2h on the faceplate 12 includes three layers 22, 2d, and 26 of different phosphors, each of which luminesceses in a different one of the three primary colors, red, green, and blue. The tube 8 is operated so that electrons of the L beam will excite the irst phosphor layer Z5 to produce light of a iirst primary color; electrons of the M beam will penetrate the iirst phosphor layer 26 and excite the second phosphor layer 2d to produce light of a second primary color; and electrons of the H beam will penetrate both the first and second phosphor layers 26 and 2d and excite the third phosphor layer 22 to produce light of a third primary color. A metal backing layer 27 of, e.g., aluminum, is disposed on the phosphor layer 26 as is known in the art. It desired, the screen 21@ may include nonluminescent separator layers between the phosphor layers to i1nprove the operational characteristics of the screen.
As an adjunct to the electron tube d, a magnetic defiection yoke 2S is provided which closely encircles the envelope of the tube. The yoke 2S, when suitably energized, is adapted to create two de'liection fields capable of scanning the electron beams together over the luminescent screen 2G in mutually transverse, eg., perpendicular, directions at different scan frequencies. In the preferred arrangement, horizontal and vertical magnetic deflection fields are established in the defiection Zone 19 to cause the three separate beams of the electron guns 16, 17, and 18 to scan an orthogonal raster or pattern on the luminescent screen 20.
As shown in FIG. 2, the faceplate 12 and luminescent screen Zt? inclu-de a rectangular viewing area 29 and may themselves be circular or substantially rectangular which together with the viewing larea preferably have a major axis X-X and a minor axis Y-Y perpendicular to each other. These axes are oriented for normal viewing with the axis X-X horizontal and the axis Y-Y vertical. ln FIGS. 3, 4, and the axes X-Y and Y-Y have been projected axially back along the tube 8 to the plane of these figures. The yoke 28 is so angularly oriented about the tube S and is of a type so adapted when excited with appropriate currents, that the electron beams scan on the screen a rectangular raster having perpendicular major and minor axes which coincide with the axes X-X and Y-Y.
Each of the electron guns 16, 17, and 18 comprises a plurality of coaxial tubular electrodes. Each gun includes a tubular cathode 3f? having an end wall which is coated with a suitable electron emissive material. Each cathode 36 is insulatingly mounted within a centrally lapertured control grid cup 32. Disposed coaxially beyond the control grid cups 32, in the order named, are for each gun, a centrally apertured screen grid cup 34, a tubular focusing electrode 36, and a tubular anode 38.
The anodes 3S are mounted on a cylindrical convergence cage 40 which is electrically common to all three of the electron guns 16, 17, and 18. The convergence cage ttl comprises a cup which has an end wall 4Z and which is closed at its open end with an end plate 43. Both the end Wall 42 and the end plate 43 are provided with apertures 44, 45, and 46 which are coaxial respectively with the three electron guns, 16, 17, and 1S.
The cathodes 30, control grids 32, screen grids 34, and -focusing electrodes 36 of the electron guns 16,
17, and 18 are individually connected to different ones of a plurality of lead-in conductors Sii which are sealed through the vaccuum envelope in a stem base 52. Thus, each of these electrodes can be energized independently of the others to provide electron beams yof" different velocities which are independently focused in the region of the screen 20.
The convergence cage d6 is provided with a plurality of spring snubbers 54 which bear outwardly against the neck 10 of the envelope. An electrically conductive coating 56 disposed on the internal surface of the envelope extends over the funnel 14 and into the neck 16 a distance sufficient to make contact with the snubbers 54. The coating 56 also extends into electrical contact with the metal backing layer 27 of the luminescent screen 20. Terminal means,k such as is illustrated schematically by the arrow 58, is provided for applying a suitable electrical potential to the coating electrode 56, the anodes 33, and the luminescent screen Ztl.
The electrodes of each of the electron guns 16, 17, and 18 are maintained in fixed spaced coaxial relationship in a well-known manner such as by mounting them on three glass rods 59 which extend along the guns. Each of the electrodes 32, 34, 36, and 38 of each of the three guns is fixed to the glass rods in a manner similar to that illustrated for the focusing electrodes 36 in FIG. 3. As shown in FIG. 3, the electrode .'56 of gun 1S is attached to a central arcuate section of a strap 60 whose ends are embedded into two of the glass rods 59. The
electrodes of guns 16 and 17 are mounted by similar straps 61 and 62 respectively to different pairs of the glass rods 59. The strap 60 on the electrode 36 of the H gun 18 may be made of magnetic material for a purpose hereinafter described. Further details of the mounting of the electron guns 16, 17, and 13 have been omitted from the drawing for purposes of clarity.
Because the three electron guns 16, 17, and 18 are noncoaxial with respect to the tube 8, each gun being mounted slightly off the longitudinal axis of the tube, both static and dynamic convergence of the three beams is provided to compensate for this off axis mounting. Such convergence is in accordance with known color television receiver techniques.
Approximate convergence may be provided by mounting each gun at a small angle with respect to the longitudinal axis of the tube 3 so that the three electron beams, when undefiected, are caused to converge approximately at a common point near the center of the center of the luminescent screen Z6; The angle which each gun makes with the tube axis is determined by the dimensions of the tube. ln cathode ray tubes of the type described having a tube length of about 19 to 25 inches, this angle is in the order of 1 l.
Dynamic convergence may be provided as shown in FlG. 4. A separate pair of pole pieces 64 are disposed on opposite sides of each beam within the convergence cage 4t). Associated with each pair of pole pieces 6d is a separate 'electromagnet 66 disposed externally of the tube envelope adjacent to the ends of the pole pieces. More refined arrangements, such as those incorporating a pair of electromagnetic windings in place of the single winding 66, are known in the art but for the sake of brevity and clarity are not herein detailed. A if-shaped magnetic shield 63 is disposed within thc convergence cage for shielding each beam from the convergence fields of the other beams.
Energizaticn of the coils of the electromagnets 66 will impart to the respective electron beams a small radial directional component of deflection toward or away from the longitudinal axis of the tube 8. A varying current synchronized with, and related to, the amount of scanning deflection of the three beams is applied to each electromagnet 66 to provide the desired dynamic convergence of the three beams.
Also, in accordance with known techniques, all three beams are brought to a precise static convergence at the `center of the luminescent screen 2@ by means provided for adjusting the lateral position of one of the electron beams. This is accomplished by a magnetic field established in the path of the H beam by a permanent magnet assembly .69. In order to held shape the eld yof the magnet assembly 69 in the path of the H beam, the mounting strap 6i) may in some instances be made of magnetic material. The field produced by the magnet assembly 69 is transverse to the direction of the magnetic field established between the pole pieces 64 for the H beam. This permits a lateral adjustment of the position of one of the three electron beams (viz, the beam produced by the electron gun 1S in the illustrated embodiment) in a direction which .is normal to the radial adjustment of this same beam as provided by the convergence pole pieces 64.
If desired, the poles of the magnet assembly 69 may be dynamically energized to provide an additional means contributing to the shaping of the H beam raster for the purpose of registering this raster with the rasters of the L and M beams.
The L beam gun 16 and M beam gun 17 are provided withor have associated therewith-tubular magnetic shield members (i.e., magnetic shunts) 76 and 78, respectively, which are of different axial lengths and which extend coaxially with their respective guns. They may be mounted on the end plate 43. The tubular shields 76 and 78 extend from and are so positioned with respect to the annesse electron gun apparatus that they are disposed within the detiection zone 19.
The M beam shield 78 is of shorter length and preferably of larger diameter than the L beam shield 76. The M beam shield is disposed alongside the L beam shield and is axially positioned between and spaced from the two planes perpendicular to the axis of the L beam shield at the ends thereof. For the sake of brevity, this condition will hereinafter be described simply as the M beam shield being between the ends of the L beam shield. The L beam shield 76 is attached directly to the end plate 43. The M beam shield 78 is spaced from the end plate 43 by tandemly mounting it to the end of a iirst tubular nonmagnetic support member St) which is in turn mounted to a smaller diameter tubular support 81 attached to the end plate d3. The nonmagnetic supportati may, for example, be attached to the end of the smaller support 81 by a plurality of interconnecting straps 82 (FIGS. 5 and 6). The purpose and advantage of the particular size relationship and relative dispositions of the L beam shield 76 and the M beam shield 78 will be hereinafter described in detail with reference to FIGS. 7, 8, 9, 10, and 1l.
The electron gun apparatus is angularly oriented about the longitudinal axis of the tube 8 relative to the luminescent screen and t-o the deflection yoke 28 so that the electron gun 18 producing the unshielded H beam is disposed in the central plane which is perpendicular to the scan produced by the higher frequency one of the two orthogonal deection iields. According to presentday practices in home television receivers the unshielded H beam would be disposed in the central vertical plane of the tube S, i.e., the plane which contains the axis Y-Y of the screen and which is perpendicular to the axis K X. The orientation of the electron gun apparatus is such that the H beam gun 18 is preferably disposed above the `other two guns 16 and 17 as is illustrated in FIGS. 1 6. The purpose and advantage of such an orientation of the electron gun apparatus are hereinafter described in detail with reference to FIGS. 12a, 12b, 12e, 13a, 13b, and 13e.
Deflection iield enhancer elements 84, S5 and 86, 87 of magnetic material are disposed on opposite sides of the H beam and M beam paths, respectively. The enhancer elements 811-87 are attached to the end plate 43 and extend, respectively, along the H and M beam paths into the deiiection zone 19. The enhancer elements are preferably tubular members having a rectangular cross section as illustrated and are disposed with their sides parallel to the axes X-X and Y-Y, with one side of each pair of enhancers facing the 4other member of the same pair. However, other cross sectional shapes, such as U-shaped rectangular channel members can be used. The purpose and advantages of the field enhancers Sel-87 are hereinafter described in detail with reference to FIGS. 14 and l5.
By virtue of the different length o'f the shields 76 and 7S and their disposition in the deflection zone 19, the L beam and the M beam are shielded from the deflection eld over different portions of their travel therethrough. The L and M beams are thus subjected to the deection field for a shorter period of time than they would be in the absence of the shields 76 and 7S. By properly relating the lengths of the shields 76 and 78 to the relative beam velocities and to the shape and length of the magnetic deiiection iield, the L and M beams are subjected to the deflection field for specific time durations which will result in their being deflected substantially the same amount as the unshielded H beam. FIGS. 7-11 illustrate the factors to be considered in selecting a proper relationship of shield dimensions and dispositions.
FIG. 7 illustrates part of an electron gun assembly similar to that of FIG. 1 except it has a shorter M beam shield '73 disposed alongside the L beam shield 76 at the distal end thereof. FIG. 8 illustrates part of an electron gun assembly similar to that of FIG. l except that it has a longer M beam shield 78 disposed alongside the L beam shield 76 at the proximal end thereof. FIG. 9 illustrates the variation with axial distance of the intensity of the transverse iield such as provided by the yoke 2.8. The field, whose strength increases from some amount at thes plane of the end plate 43 to a peak value and then decreases, is defined by a bell-shaped curve.
Since the deiiection iield increases in strength with increasing distance from the end plate 43, the percentage of the total iield which a given length M beam shield will shield from the M beam increases as the shield is moved away from the end plate 43. Therefore, to provide a given amount of shielding, the M beam shield must be made shorter as it is moved away from the end plate 43. This is illustrated by the fact that the M beam shield 78' of FIG. 7 is shorter than the M beam shield 78" of FIG. 8.
If the M beam shield is spaced from the end plate 43, the M beam is deflected before reaching the M beam shield and will continue in a straight line along this detiected path as the beam passes through the M beam shield. If this shield is of insufficient internal diameter, the beam will impinge upon the internal wall of the shield before it emerges therefrom. Thus, when the M beam shield is spaced from the end plate 43, it must be of sufiicient diameter to prevent interference with the beam. Accordingly, the M beam shield 78 is made larger in diameter than the L beam shield 76 in the electron gun apparatus 15 of FIG. l.
FIG. l() illustrates the distorted shape of the deilection field lines in planes which intersect both the L beam shield and the M beam shield, such as plane B-B of FIG. 7 and plane C-C of FIG. 8. This type of distortion tends to produce an H beam raster 91 whose right side vertical dimension is greater than its left side. FIG. l1 illustrates the distorted shape of the deflection field lines 92 in planes which intersect only the L beam shield, such as plane A-A of FIG. 7 and plane D D of FIG. 8. This type of distortion tends to produce an H beam raster 93 whose left side vertical dimension is greater than its right side. In referring to the iield distortions of FIGS. 10 and ll, it should be noted that these illustrations depict only the shape of the field and not the strength of the held. Field strength is illustrated by FIG. 9.
Where a magnetic shield is positioned in a magnetic iield, the ux lines are distorted toward, and concentrated adjacent to, the shield so as to follow the path of least reluctance. In the case of the field distortion in a plane cutting both shields (FIG. 10), the greater distortion, or iiux concentration, is produced by the M beam shield because of its larger diameter. In the case of the field distortion in a plane cutting only the L beam shield (FIG. ll), the distortion, or flux concentration, is produced only by the L beam shield because of the absence of the M beam shield. Thus, in one case (FIG. 10) more iiux lines are distorted or bent to the left in the region of the incipient H beam raster and in the other case (FIG. 1l) to the right. Since the lower boundary of the incipient H beam raster tends to be contoured perpendicularly to the flux lines, the vertical dimension of the raster is greater on its right side in one case (FIG. l0) and on its left in the other case (FIG. ll). That is, the distortions of FIGS. 10 and ll produce opposite effects on the incipient H beam raster.
Although the iield distortion as illustrated by FIG. 10 is the same shape at the plane B-B as it is at the plane C-C, the distortion has a greater eiiect at the plane B-B because the field intensity at that plane is much greater. Therefore, the net resultant distortion of the H beam raster can be symmetrized, or made less objectionable, by axially moving the M beam shield until the FIG. l0 type distortion is of a strength which balances the FIG. ll type distortion. This is achieved by axially positioning the M beam shield between the ends of the L snr-)ases beam shield as illustrated in FiGS. l and 6. For a given field strength and shape (which depends upon the yoke used) and for every ratio of diameters of the two shields there is one axial position of the` shorter M beam shield between vthe end planesof the longer L beam shield 'which provides the least asymmetry of the raster scanned by the unshielded H beam. As an example of one actual embodiment of this teaching, wherein the tube 8 of FIG. ll is operated with a standard deflection yoke 28 and with the L beam at kv. velocity, the M beam at 16 kv., and the H beam at 22 kv.; the L beam shield '76 is Mi inch in diameter and 1% inches long, the M beam shield78 is 3/8 inch in diameter and 3A; inch long, and the M beam shield is axially positioned 1A inch back from the distal end of the L beam shield (the L beam shield '76 extends 1A: inch closer to the luminescent screen Ztl than does the M beam shield 78).
In establishing the optimum relationships of diameters, lengths, and axial positions of the two shields, the M beam shield is disposed between the ends of the L beam shield and various parameters are then adjusted to obtain the least asymmetry of the H beam raster. The length of the M beam shield is selected to produce the proper overall size M beam raster; -the diameter of the M beam shield is then selected so as to just avoid the M beam from striking the shield when fully deflected; and the axial position of the M beam shield is then selected to obtain the least asymmetry of the H beam raster. A change of any one of these parameters may call for a slight re-adjustment of the others in order to obtain the optimum relationships producing minimum asymmetry of the H beam raster.
FIG. 12a is representative of the type of raster distortion and misregister that is caused by an electron gun orientation other than that of the unshielded H beam gun in the central vertical plane of the tube. In FIG. 12a an H beam raster Miti, an M beam raster lill and an L beam raster 162 are illustrated. The misregistry of the rasters lllil, lill, and 102 is characterized by a crossover 103 of the lower boundaries of the H beam raster ltitl and the M beam raster lill. Such a crossover is due to extreme asymmetry of distortions caused by the L beam and M beam shields when the electron gun orientation is other than that taught with reference to FIGS. 1-6.
FIGS. 12b and 12C illustrate the asymmetry of the detiection eld distortion in a plane cutting both shields produced by the L beam shield 76 and the M beam shield 7S when the gun orientation is with the L beam gun lo in the central vertical plane of the tube. Such an orientation results in the crossover misregistry of FIG. 12a. FIG. 12b shows the distortion of ux lines 108 of the horizontal deiiection field, and FIG. 12e shows the distortion of the flux lines lili) of the vertical deflection field.
FIG. 13a illustrates the improved results obtained by the electron gun Orientation as taught with reference to FlGS. 1-6. In FIG. 13a an H beam raster H2, an M beam raster 114, and an L beam raster 116 are illustrated. These rasters are characterized by a nesting thereotC wherein they are either registered with each other or the corresponding boundaries of the rasters are substantially parallel. In FlG. 13a the spacing between rasters is exaggerated for the purpose of more clearly illustrating the nesting relationship. The rasters have substantially the same shape and differ slightly from each other only in their overall size.
FIGS. 13b and 13C illustrate the symmetrized distortion in a plane cutting both shields of the horizontal and vertical deflection fields, respectively, which is obtained by orienting the H beam gun 18 in the vertical central plane of the tube. In FIG. 13b the flux lines of the horizontal deflection eld are indicated at 118; in FIG. 13C the iiux lines of the vertical deflection field are indicated at 120.
By comparing FIG. 12b with 13b, and 12C with 13C, the improved ,symmetry about the vertical central plane of the tube which results from positioning the l-l beam gun in that plane is apparent. Whereas only one undesirable electron gun orientation is herein illustrated (FIGS. 12a, l2b and 12C) other orientations (other than the H earn in the vertical central plane of the tube) produce distortions similar to those illustrated in FlGS. l2 and 12C.
FIGS. 14 and l5 illustrate the effect oi magnetic enhancers such as the enhancers S4 and S5 on the vertical detilcction and horizontal deiiection fields, respectively, of the H beam. If a pair of enhancers are disposed in both the horizontal and vertical fields, they will enhance the strength of the deflection field in one direction, eg., horizontal, and decrease the strength of the field in the perpendicular direction, eg., vertical, in the space between the enhancers which is the region of the electron beam path with which they are associated. If the horizontal and vertical deflection .fields are not coextensive and the enhancers are disposed in only one of the fields, they will atleet only thatv field.
Since enhancers are placed adjacent a particular beam path and primarily associated therewith (e.g., enhancers b4- and 85 for the H beam), they primarily atect the deliection field only locally for the particular beam associated therewith. Enhancers act as magnetic conductors which are placed in the gap between a pair of deflection coils and thus decrease the reluctance of the deilection field flux path in the localized area occupied by the enhancers.
The pair of H beam enhancers 3ft and 35, being aligned in a horizontal plane, conduct'the horizontally directed flux lines producing the vertical H beam deflection and thus enhance the vertical deflection of the H beam and thereby expand the H beam raster vertically.
In FIG. 14 the effect of the enhancers S4 and S5 are shown on the flux lines i222 of the vertical deflection field of the H beam. In the following the path at least reluctance, the liux lines 122 are bent toward and pass through the enhancers 84 and 85. The enhancers may be thought of as gathering the flux lines from surrounding areas and concentrating them. Since the enhancers are arranged serially in the direction of the liux lines, the flux in tl e area between the enhancers 8d and 55 is concentrated and provides a stronger vertical deflection field of the H beam than would otherwise exist without the enhancers. This serves to expand the height of the H beam raster. At the same time, as shown in FIG. l5, the flux lines l2- of the horizontal H beam deiiection field are bent toward and pass through the enhancers S4 and 8S. Since the enhancers are arranged in parallel in the direction of the horizontal deflection flux lines, they gather linx which would otherwise pass between the enhancers, and therebythe enhancers lower the flux concentration in that area and provide a weaker horizontal deiiection field for the H beam. This results in a horizontal contration of the H beam raster. The vertical expansion and horizontal contraction of the resulting H beam raster are additive in efiecting a change of the aspect ratio of the raster.
ln the delta arranged S-gun assembly of FIGS. 1-6, enhancers are provided to not only vertically expand the H beam raster but to also horizontally expand the M beam raster. This can be done with a separate pair of enhancer members for each of the two beams, one pair horizontally aligned and the other pair vertically aligned. However, in the specific embodiment shown, the H and M beams are so closely spaced that room is not available for separate pairs of enhancers for each of the beams without an enhancer of one pair interfering with an enhancer of the other pair. This problem is overcome by making the' enhancer 35 common to both a first pair of enhancers (84 and 85) for the H beam and a second pair of enhancers (85 and 37) for the M beam. For this purpose both the horizontal and vertical cross-sectional dimensions of the enhancer 85 is made of suflicient magnitude to provide the desired lield enhancements.
Although enhancer 85 pairs with enhancer 87 to provide the primary horizontal deilection field enhancement for the M beam, available space in the neck of the tube 8 does not permit the enhancer 85 to be centered over the M beam. Therefore, a fourth enhancer 86 is providede between the enhncer S5 and the M beam (centrally thereover) to shape the horizontal deflection field in the region of the M -beam by more nearly vertically orienting the linx lines thereof. The enhancers 85 and 86 can be provided as a single integral member, as two separate members attached to each others, or as two separate slightly spaced members as shown. The enhancers 85, 86, and 87 function with respect to the M beam in a manner somewhat similar to the manner described with reference to FIGS. 14 and 15 in which the enhancers 84 and 8S function with respect to the H beam.
By virtue of their ability to selectively affect only one raster and, moreover, to selectively expand and contract the selected raster so as to change its aspect ratio, these enhancers provide a means for raster shaping.
The relative percentage of expansion and contraction of a raster to affect its aspect ratio is dependent upon the horizontal and vertical cross-sectional dimensions of the enhancers and the spacing between them. An increase of the horizontal cross-sectional dimension of the enhancers 84 and 85 further enhances the field illustrated in FIG. 14 and causes greater expansion of the H beam raster in vertical direction. An increase of the vertical cross-sectional dimension of the enhancers 84 further reduces the intensity of the field illustrated in FIG. 15 and causes greater contraction of the H beam raster in the horizontal direction. Generally speaking, the closer together a pair of enhancers are positioned, the greater their effect. If the enhancers S4 and 85 are positioned closer together, the bowing out of the flux lines of the vertical H beam deflection eld (FIG. 14) between the enhancers will be decreased and the field thus strengthened. The resulting I-I beam raster will be further expanded vertically. At the same time the horizontal H beam deflection eld (FIG. 15) between the enhancers will be weakened and the resulting H beam raster further contracted horizontally.
The raster size is a function of the length of the enhancers along the beam path. An increase of the length of the enhancers serves to increase the raster size without materially changing the aspect ratio.
It may be desired to provide an electron beam with both a shield tube and enhancers, such as the M beam of tube S which has both the shield tube 78 and the enhancers 85, 86, and 87. In such case the shield tube is axially staggered with, and adequately spaced from, the enhancers as is shown in FIG. 6. This permits both the shield tube and the enhancers to separately exert their own actions on a different portion of the deection field without interference by the other. If the shield tube 7S were positioned too close to, or in Contact with, the enhancers 85, 36, and 87, the flux lines between the enhancers would be shunted through the shield, thus reducing the effect of the enhancers.
The nonmagnetic support 81 may be such as to permit the enhancers 86 and 87 to be disposed closer together and thus closer to the beam path. For example, if tubular, the support 31 may be of smaller diameter than the shield tube 78. Alternatively, the support 81, as well as the support Sti, could, for example, consist of one or more nonmagnetic support wires, straps, or the like. Support S1 may even be omitted altogether and the nonmagnetic support 80 mounted directly on the ends of the enhancers 86 and 87.
The invention has been described in terms of speciiic examples and embodiments. However, various changes and modifications may be made therein without departing from the spirit and scope of the invention as dened by the following claims.
What is claimed is:
1. A cathode ray tube comprising a luminescent screen,
a plurality of electron guns spaced from said screen for projecting a plurality of electron beams toward said screen through a deliection zone for having magnetic deection elds established therein for deecting said beams in two different directions, and means comprising magnetic conductors disposed on opposite sides of the path of one of said beams and extending at least partially through said deflection zone for enhancing the delection of said one beam in one of said two directions and reducing the deliection in the other of said two directions.
2. A cathode ray tube comprising a luminescent screen, an electron gun spaced from said screen for projecting an electron beam toward said screen through a deliection zone for having magnetic deflection elds established therein for deliecting said beam in two different directions and means comprising a pair of magnetic conductors mounted on opposite sides of the path of said beam and extending along said beam path in said zone and having a dimension of substantial magnitude along a line parallel to a line passing transversely through said path for enhancing the deection of said beam in one of said two directions and reducing the deflection in the other of said two directions.
3. A cathode ray tube as in claim 2, wherein each of said magnetic conductors comprise a relatively short, open-ended tubular member of rectangular cross-section.
4. A cathode ray tube comprising a luminescent screen, a plurality of electron guns for projecting a corresponding plurality of electron beams toward said screen through a common deflection zone for establishing detiection fields therein for deflecting said beams in mutually perpendicular directions, and means comprising deection eld enhancer elements of magnetic material disposed on opposite sides of the path of one of said beams in said zone and for enhancing the deflection of Isaid one beam in only one of said directions for affecting the aspect ratio of a raster produced on said screen by the dellection of said one beam.
5. A cathode ray tube comprising a luminescent screen, a plurality of electron guns for projecting a corresponding plurality of electron beams toward said screen through a common deflection zone for having dellection fields established therein for deflecting said beams in mutually perpendicular directions, and means comprising a pair of magnetic members disposed on opposite sides of the path of one of said beams in said zone for enhancing the deflection of only said one beam in only one of said directions for changing the aspect ratio of a raster produced on lsaid screen by the deflection of said one beam, each of said magnetic members comprising a structure which includes a U-shaped channel-like portion.
6i. A cathode ray tube comprising a luminescent screen including a plurality of layers of diierent phosphors, a plurality of electron guns for projecting different velocity electron beams towards said screen, a common dellection zone disposed between said screen and said guns for having magnetic deliection l'ields established therein for deflecting said beams in mutually perpendicular directions two of .said guns having magnetic tubular shields surrounding portions of their beam paths in said zone, one of said guns having a pair of elongated iield enhancers of magnetic material on opposite sides of the beam path thereof in said zone, each of said eld enhancers having a substantial dimension in the direction transverse to said beam path of said one of said guns.
References Cited by the Examiner UNITED STATES PATENTS 2,769,110 lO/56 Obert 313-70 2,898,491 8/59 Pearce S13-82.1 X 2,943,232 6/60 Roberts 313--70 X ROBERT SEGAL, Acting Primary Examiner.
JAMES D. KALLAM, Examiner.

Claims (1)

  1. 6. A CATHODE RAY TUBE COMPRISING A LIUMINESCENT SCREEN INCLUDING A PLURALITY OF LAYERS OF DIFFERENT PHOSPHORS, A PLURALITY OF ELECTRON GUNS FOR PROJECTIN DIFFERENT VELOCITY ELECTRON BEAMS TOWARDS SAID SCREEN, A COMMON DEFLECTION ZONE DISPOSED BETWEEN SAID SCREEEN AND SAID GUNS FOR HAVING MAGNETIC DEFLECTION FIELDS ESTABLISHED THEREIN FOR DEFECTING SAID BEAMS IN MUTUALLY PERPENDICULAR DIRECTIONS TWO OF SAID GUNS HAVING MAGNETIC TUBULAR SHIELDS SURROUNDING PORTIONS OF THEIR BEAM PATHS IN SAID ZONE ONE OF SAID GUNS HAVING A PAIR OF ELONGATED FIELD ENHANCERS OF MAGNETIC MATERIAL ON OPPOSITE SIDES OF THE BEAM PATH THEREOF IN SAID ZONE, EACH OF SAID FIELD ENHANCERS HAVING A SUBSTANTIAL DIMENSION IN THE DIRECTION TRANSVERSE TO SAID BEAM PATH OF SAID ONE OF SAID GUNS.
US157645A 1961-12-07 1961-12-07 Magnetically scanned cathode ray tube with raster altering means Expired - Lifetime US3196305A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NL286376D NL286376A (en) 1961-12-07
BE625864D BE625864A (en) 1961-12-07
US157645A US3196305A (en) 1961-12-07 1961-12-07 Magnetically scanned cathode ray tube with raster altering means
GB46?63/62A GB1003167A (en) 1961-12-07 1962-12-06 Cathode ray tube
DK529162AA DK119121B (en) 1961-12-07 1962-12-06 Device by a cathode ray tube with several electron beam sources for correcting the image size.
CH1440162A CH428951A (en) 1961-12-07 1962-12-07 cathode ray tube
FR917909A FR1384581A (en) 1961-12-07 1962-12-07 Advanced cathode ray tubes, especially for producing color images
DER34023A DE1170454B (en) 1961-12-07 1962-12-07 Cathode ray tubes for reproducing colorful pictures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US157645A US3196305A (en) 1961-12-07 1961-12-07 Magnetically scanned cathode ray tube with raster altering means

Publications (1)

Publication Number Publication Date
US3196305A true US3196305A (en) 1965-07-20

Family

ID=22564637

Family Applications (1)

Application Number Title Priority Date Filing Date
US157645A Expired - Lifetime US3196305A (en) 1961-12-07 1961-12-07 Magnetically scanned cathode ray tube with raster altering means

Country Status (7)

Country Link
US (1) US3196305A (en)
BE (1) BE625864A (en)
CH (1) CH428951A (en)
DE (1) DE1170454B (en)
DK (1) DK119121B (en)
GB (1) GB1003167A (en)
NL (1) NL286376A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265915A (en) * 1963-01-04 1966-08-09 Rca Corp Cathode ray tube
DE2223369A1 (en) * 1972-01-14 1973-07-19 Rca Corp MULTI-BEAM CATHODE TUBE
JPS5126208B1 (en) * 1971-05-18 1976-08-05
DE2907192A1 (en) * 1978-02-24 1979-08-30 Rca Corp COLOR TUBE WITH IMPROVED RAY GENERATION SYSTEM
DE2917268A1 (en) * 1978-05-01 1979-11-08 Rca Corp COLOR TELEVISION TUBE WITH INLINE RADIATION GENERATION SYSTEM
DE3043048A1 (en) * 1979-11-15 1981-09-03 RCA Corp., 10020 New York, N.Y. INLINE COLOR PIPES
US4370593A (en) * 1980-12-30 1983-01-25 Rca Corporation In-line electron gun and method for modifying the same
US4556819A (en) * 1983-12-13 1985-12-03 Rca Corporation Color picture tube having inline electron gun with coma correction members
US4700106A (en) * 1984-03-17 1987-10-13 Alcatel N.V. Color picture tube deflection unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769110A (en) * 1954-01-21 1956-10-30 Rca Corp Electron beam control means
US2898491A (en) * 1955-02-12 1959-08-04 Emi Ltd Cathode ray tubes
US2943232A (en) * 1959-02-16 1960-06-28 Gen Electric Color cathode ray image display system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769110A (en) * 1954-01-21 1956-10-30 Rca Corp Electron beam control means
US2898491A (en) * 1955-02-12 1959-08-04 Emi Ltd Cathode ray tubes
US2943232A (en) * 1959-02-16 1960-06-28 Gen Electric Color cathode ray image display system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265915A (en) * 1963-01-04 1966-08-09 Rca Corp Cathode ray tube
JPS5126208B1 (en) * 1971-05-18 1976-08-05
DE2223369A1 (en) * 1972-01-14 1973-07-19 Rca Corp MULTI-BEAM CATHODE TUBE
US3772554A (en) * 1972-01-14 1973-11-13 Rca Corp In-line electron gun
DE2907192A1 (en) * 1978-02-24 1979-08-30 Rca Corp COLOR TUBE WITH IMPROVED RAY GENERATION SYSTEM
DE2917268A1 (en) * 1978-05-01 1979-11-08 Rca Corp COLOR TELEVISION TUBE WITH INLINE RADIATION GENERATION SYSTEM
US4396862A (en) * 1978-05-01 1983-08-02 Rca Corporation Color picture tube with means for affecting magnetic deflection fields in electron gun area
DE3043048A1 (en) * 1979-11-15 1981-09-03 RCA Corp., 10020 New York, N.Y. INLINE COLOR PIPES
US4370593A (en) * 1980-12-30 1983-01-25 Rca Corporation In-line electron gun and method for modifying the same
US4556819A (en) * 1983-12-13 1985-12-03 Rca Corporation Color picture tube having inline electron gun with coma correction members
US4700106A (en) * 1984-03-17 1987-10-13 Alcatel N.V. Color picture tube deflection unit

Also Published As

Publication number Publication date
NL286376A (en)
BE625864A (en)
DK119121B (en) 1970-11-16
DE1170454B (en) 1964-05-21
CH428951A (en) 1967-01-31
GB1003167A (en) 1965-09-02

Similar Documents

Publication Publication Date Title
US2752520A (en) Tri-color kinescope
US4704565A (en) Dynamically converging electron gun system
US2887598A (en) Plural gun cathode ray tube
US3800176A (en) Self-converging color image display system
US2677779A (en) Tricolor kinescope magnetic shield
US3548249A (en) Color cathode ray tube of the pluralbeam,single electron gun type
US2769110A (en) Electron beam control means
US2690517A (en) Plural beam electron gun
US3196305A (en) Magnetically scanned cathode ray tube with raster altering means
US3164737A (en) Cathode ray tube
US2923844A (en) Cathode ray tube structure including convergence system
US3102212A (en) Cathode ray tube with low velocity deflection and post deflection beam acceleration
US3500114A (en) Convergence system for a color picture tube
US3011090A (en) Plural beam tube
US3294999A (en) Cathode ray tube
US3188508A (en) Beam penetration color cathode ray tube
US3188507A (en) Beam penetration color cathode ray tube
US2847598A (en) Electron gun structure for plural beam tubes
US3240972A (en) Cathode ray tube having improved deflection field forming means
US2726348A (en) Multiple beam gun
US2806163A (en) Triple gun for color television
US2790920A (en) Apparatus for control of electron beam cross section
Barbin et al. New color picture tube system for portable TV receivers
US3579008A (en) Color tube having asymetrical electrostatic convergence correction system
US3638064A (en) Convergence deflection system for a color picture tube