US3195093A - Sheathed electric heating units - Google Patents

Sheathed electric heating units Download PDF

Info

Publication number
US3195093A
US3195093A US149381A US14938161A US3195093A US 3195093 A US3195093 A US 3195093A US 149381 A US149381 A US 149381A US 14938161 A US14938161 A US 14938161A US 3195093 A US3195093 A US 3195093A
Authority
US
United States
Prior art keywords
sheath
ferrule
outer end
terminal
heating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US149381A
Inventor
Eugene F Dillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US149381A priority Critical patent/US3195093A/en
Priority to US413228A priority patent/US3311969A/en
Application granted granted Critical
Publication of US3195093A publication Critical patent/US3195093A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material

Definitions

  • the present invention relates to sheathed electric heating units; and more particularly, to such heating units of the hermetically sealed type.
  • a conventional sheathed electric heating unit of the hermetically sealed type comprises an elongated resistance conductor embedded in a mass of highly compacted electrical-insulating and heat-conducting material, such as granular magnesium oxide, and arranged in an elongated enclosing metal sheath, as well as a pair of metal terminals disposed at the opposite ends of the sheath and electrically connected to the opposite ends of the resistance conductor.
  • the terminals project from the opposite ends of the sheath, and the inner ends thereof are embedded in the compacted granular material, whereby both the resistance conductor and the pair of terminals are securely retained in place and electrically insulated from the sheath.
  • the opposite ends of the sheath are closed by a pair of glass seals respectively surrounding the pair of terminals; and a charge of air is hermetically sealed within the sheath in permeating relation with the compacted granular material.
  • the objectionable vacuum described above can be prevented by providing the sheath with an initial gas-filling that includes a substantial amount of an inert gas selected from the class consisting of helium and argon, whereby the inert gas is not depleted during the operation of the heating unit, so that the thermal conductivity through the compacted granular material is maintained at a relatively high value during prolonged operation of the heating unit, with the result that the temperature difference between the resistance conductor and the sheath is minimized, whereby the heating unit has a long useful life.
  • an inert gas selected from the class consisting of helium and argon
  • Another object of the invention is to provide a sheathed electric heating unit of the hermetically sealed type, Wherein the sheath thereof contains a charge of inert gas, so as to prevent the objectionable depletion of the gas within the sheath during operation of the heating unit.
  • the present invention is predicated upon the aforesaid discovery that a conventional sheathed electric heating unit of the hermetically sealed type has undesirable short life expectancy by virtue of the depletion of the charge of air contained in the sheath thereof and the resulting formation 'ice of a substantial vacuum in the sheath during the operation of the heating unit, coupled with the further discovery that the undesirable substantial vacuum mentioned may be prevented by the initial charging of the sheath with an inert gas selected from the class consisting of helium and argon.
  • FIGURE 1 is an enlarged fragmentary longitudinal sectional view, partly broken away, of the upper end of a sheathed electric heating unit in an initial stage of manufacture thereof, and embodying the present invention
  • FIG. 2 is an enlarged fragmentary longitudinal sectional view, partly broken away, of the lower end of the heating unit shown in FIG. 1;
  • FIG. 3 is an enlarged fragmentary longitudinal sectional view, partly broken away, of the upper end of the heating unit in a subsequent stage of manufacture thereof;
  • FIG. 4- is an enlarged fragmentary longitudinal sectional view, partly broken away, of the lower end of the heating unit shown in FIG. 3;
  • FIG. 5 is a further enlarged fragmentary longitudinal exploded sectional view, partly broken away, of the upper end of the heating unit in a still subsequent stage of manufacture thereof;
  • FIG. 6 is a still further enlarged fragmentary longitudinal sectional view, partly broken away, of the upper end of the heating unit after the final step of manufacture thereof.
  • heating unit 10 embodying the features of the present invention; which heating unit 10 comprises an elongated tubular metal sheath 11, an elongated helical resistance conductor 12 located substantially centrally within the sheath 11, and a highly compacted mass of heat-conducting and electrical-insulating material 13 arranged in filling relation with respect to the sheath 11 and in embedding relation with respect to the resistance conductor 12. Also the heating unit 10 comprises an upper metal terminal 14 and a lower metal terminal 15, each of substantially rod-like form.
  • the upper terminal 14 is arranged at the upper end of the sheath 11 and projects from the exterior thereinto and in spaced relation therewith, whereby the inner end of the upper terminal 14 is also embedded in the adjacent highly compacted mass of material 13.
  • the lower terminal 15 is arranged in the lower end of the sheath 11 and projects from the exterior thereinto and in spaced relation therewith, whereby the inner end of the lower terminal 15 is also embedded in the adjacent highly compacted mass of material 13.
  • the extreme inner end of the upper terminal 14 is shouldered to provide an inwardly projecting pin 16 of reduced cross-sectional area that is rigidly secured within the adjacent upper end of the resistance conductor 12, as by welding.
  • the extreme inner end of the lower terminal 15 is shouldered to provide an inwardly projecting pin 17 of reduced cross-sectional area that is rigidly secured within the adjacent lower end of the resistance conductor 12, as by welding.
  • the opposite ends of the resistance conductor 12 may be respectively secured to the pinlike structures 16 and 17 of the terminals 14 and 15 in accordance with the welding method disclosed in US. Patent No. 2,546,351, granted on March 27, 1951 to Sterling A. Oakley.
  • the sheath 11 may be formed of lncoloy, a nickel-chromium steel comprising by weight about 30% nickel and chromium and the balance principally iron.
  • the sheath 11 may be formed of 3095 Stainless Steel, a chromium-nickel steel comprising by weight about chromium and about 12% nickel and the balance principally iron.
  • the resistance conductor 12 may be formed of a suitable nickel-chromium alloy comprising by weight about 80% nickel and about 20% chromium.
  • Each of the terminals 14 and 15 may be formed of a suitable low carbon steel, such, for example, as 1008 cold rolled steel.
  • the highly compacted mass of material 13 may consist essentially of granular magnesium oxide.
  • an upper plug 13 of ceramic material is arranged in the upper end of the sheath 11 in surrounding relation with respect to the intermediate portion of the upper terminal 14 and respectively bonded thereto, and a lower plug 19 of ceramic material is arranged in the lower end of the sheath 11 in surrounding relation with respect to the intermediate portion of the lower terminal 15' and respectively bonded thereto.
  • Each of the plugs 18 and 19 is of substantially homogeneous,
  • each of the plugs 18 and 19 may consist essentially of kaolin and silica and metal silicates and may be of the composition as disclosed in US. Patent No. 2,962,684, granted on November 29, 1960 to Gunder Lien, Jr. More specifically, this ceramic material has the approximate composition as follows:
  • This ceramic material in finely divided form is characterized by sintering into a unitary vitreous mass upon heating thereof to a. predetermined elevated temperature in the approximate range 1900 F. to 2100 F; and the material of the composition set forth has a softening point at approximately 2050 F.
  • This material is further characterized by congealing of the sintered mass upon cooling thereof below the temperature range mentioned into a substantially homogeneous, cellular and porous body of ceramic material.
  • the heating unit 10 comprises a pair of hermetic seals respectively arranged at the opposite ends of the sheath 11; and referring to FIGS. 5 and 6, the seal 2t there illustrated, that is arranged at the upper end of the sheath 11, essentially comprises a metal ferrule 21, a metal tube 22, and a body of gas-impervious and electricalinsulating material 23 arranged within the outer end of the ferrule 21 and surrounding the inner end of the tube -22 and providing an hermetic seal therebetween. As best shown in FIG. 6, the inner end of the ferrule 21 is disposed in closely surrounding relation with the upper end of the sheath 11 and is hermetically sealed thereto.
  • the extreme inner end of the ferrule 21 is shouldered to provide a tubular projection 24 thereon; and the extreme inner end of the tubular projection 24 is welded to the adjacent annular portion of the sheath 11, as indicated at 25, thereby to produce the previously mentioned hermetic seal between the upper end of the sheath 11 and the ferrule 21.
  • the inner end of the tube 22 is disposed interiorly of the outer end of the ferrule 21 and spaced therefrom, and the outer end of the tube 22 is disposed exteriorly of the outer end of the ferrule 21, and the body of gas-impervious and electrical-insulating material 23 is arranged within the outer end of the ferrule 21 and in surrounding relation with the inner end of the tube 22 and providing the previously mentioned hermetic seal therebetween.
  • the body of material 23 comprises a substantially annular mass of fused glass that is arranged in compression between the outer end of the ferrule 21 and the inner end of the tube 22 and intimately bond-ed thereto.
  • the metal tube 22 is also arranged in closely surrounding relation with the outer end of the upper terminal 14; and theextreme outer end of the tube 22 is hermetically sealed to the adjacent annular portion of the upper terminal 14, as by welding, as indicated at 26.
  • the ferrule 21 is hermetically sealed by the annular welding bead 25 to the adjacent annular portion of the upper end of the sheath 11, and the tube 22 is hermetically sealed by the annular welding bead 26 to the adjacent annular portion of the outer end of the upper terminal 14, and the outer end of the ferrule 21 is hermetically sealed to the inner "end of the tube 22 by the interposed annular body of fused glass 23.
  • the extreme outer end of the upper plug 18. is disposed adjacent to the extreme inner end of the tube 22, and preferably in abutting relation therewith.
  • the body of fused glass 23 that is arranged in the outer end of the ferrule 21 is positioned somewhat outwardly with respect to the extreme upper end of the sheath 11 to define a small chamber 27 therebetween that constitutes a gas reservoir, within the ferrule 21 that is employed for the purpose of holding a small quantity of the inert gases that are used to fill the sheath 11, as explained subsequently.
  • the ferrule 21 is formed of a suitable low carbon steel, such, for example, as 1015 cold rolled steel that is free of sulphur, lead and phosphorus.
  • the tube 22 is formed of a suitable nickel-iron alloy comprising by weight about 52% nickeland the balance principally iron.
  • the composition of the body of glass 23 is suitably selected so that it has a thermal coefficient of expansion that falls between that of the ferrule 21 and that of the tube 22, the thermal coefficient of expansion of the tube 22 being somewhat lower than that of the ferrule 21; which arrangement insures that the-body of glass 23 is maintained under compression between the ferrule 21 and the tube 22, so that the seal 20 is characterized by high thermal and mechanical shock resistances.
  • the heating unit 10 comprises a charge of inert gas hermeticallysealed within the'sheath 11 and permeating the compacted mass of granular material 13; which inert gas is selected from the class consisting of helium and argon.
  • inert gas is selected from the class consisting of helium and argon.
  • the inert gas comprises by weight about 96% to 99% argon and about 1% to 4% helium, the helium inclusion facilitating ready testing for leakage of the finished heating unit 14 as ex plained more fully hereinafter.
  • the preformed terminals 14 and 15 are Welded to the adjacent opposite ends of the preformed helical resistance'conductor 12; and a preformed bushing 19x formed of the ceramic material previously described is placed over the outer end of the lower terminal 15 and retained in place by a combustible Washer 31 fitted over the lower terminal 15.
  • the location of the ceramic bushing 1%: and the washer 31 is insured by a ring-lilre depression 11a that is formed in the lower end of the sheath 11 and by a groove 15a that is formed in the intermediate portion of the lower terminal 15.
  • the preformed tubular sheath 11 is then placed in surrounding relation with the subassembly described, the subassembly being threaded through the sheath 11, so that the ceramic bushing 19x is located in the lower end of the sheath 11 in engagement with the associated annular shoulder 11a, and with the annular washer 31 arranged in the extreme lower end of the sheath 11, as
  • the upper terminal 14 projects from the upper end of the sheath 11; and in passing, it is noted that the upper terminal 14 comprises a knob-like part 14a disposed at the extreme upper end thereof, as shown in FIG. 1, that is adapted to cooperate with a loading machine, as explained more fully below.
  • This combustible washer 31 is preferably formed of a suitable synthetic organic resin, such, for example, as polyethylene or polystyrene.
  • the assembly described is transferred to a suitable loading machine, such, for example, as that disclosed in U.S. Patent No. 2,316,659, granted on April 13, 1943 to John L. Andrews.
  • a suitable loading machine such as that disclosed in U.S. Patent No. 2,316,659, granted on April 13, 1943 to John L. Andrews.
  • the loading machine is retained in a substantially vertical position with the enlarged knob-like part 14a carried by the upper end of the upper terminal 14 cooperating with the hook incorporated in the loading machine and arranged substantially centrally with respect to the upper end of the sheath 11 and projecting outwardly therefrom.
  • the loading machine is operated so that the magnesia in finely divided or granular form is charged into the upper end of the sheath flowing therethrough onto the ceramic bushing 19x and first embedding the inner end of the lower terminal 15.
  • the sheath 11 is filled so that the resistance conductor 12 is embedded in the granular material 13 and ultimately the inner end of the upper terminal 14 is embedded in this granular material.
  • the sheath 11 may be vibrated or jarred slightly in order to insure tamping or packing of the finely divided material 13 in the space between the terminals 15 and 14 and the sheath 11 and between the convolutions of the helical resistance conductor 12 and the sheath 11 and into the core or" the helical resistance conductor 12.
  • a hollow void is defined in the upper end of the sheath 11; which hollow void is filled by placing a preformed hollow bushing 18x (identical to the bushing 19x) thereinto. More particularly, the bushing 18x is placed over the outer end of the upper terminal 14 in engagement with the upper end of the mass of insulating material 13 that has been charged into the sheath 11; and at this time, an upper combustible washer 32 (identical to the washer 31) is placed over the extreme upper end of the upper terminal 14 and retained in place by frictional engagement therewith and brought into contact with the upper end of the bushing 18x, within the extreme upper end of the sheath 11.
  • a preformed hollow bushing 18x identical to the bushing 19x
  • the bushing 19x serves as a stopper at the lower end of the sheath 11, while the adjacent washer 31 serves to prevent the loss of the ceramic material of the bushing 19x from the adjacent lower end of the sheath 11 in the succeeding step of the method of manufacture.
  • the bushing 18x serves as a stopper at the upper end of the sheath 11, while the adjacent washer 32 serves to prevent the loss of the ceramic material of the bushing 18x from the adjacent upper end of the sheath 11 in the succeeding step of the method of manufacture.
  • the completed assembly of FIGS. 1 and 2 is then transferred to a rolling machine, such, for example, as that disclosed in US. Patent No. 2,677,172, granted on May 4, 1954 to Sterling A. Oakley; wherein the assembly is subjected to cold working in a plurality of successive cold rolling passes so as substantially to reduce the crosssectional area of the sheath 11 for the purpose of compacting the finely divided magnesia so as to produce the highly compacted mass 13 in the finished heating unit 10.
  • the rolling machine may comprise a number of substantially elliptical rolling stages, arranged in angularly rotated relation between a first cylindrical rolling stage and a last cylindrical rolling stage, so that the sheath is materially reduced in the rolling machine, for the purpose explained.
  • the sheath 11 may be initially substantially cylindrical having an outside diameter of approximately 0.263, and the sheath 11 in the finished heating unit 10 may be substantially cylindrical and smooth having an outside diameter of approximately O.238".
  • the outside diameter of the sheath 11 is reduced from 0.263" to 0.238" in the several cold rolling passes effecting a corresponding reduction in the cross-sectional area thereof, the reduction in the initial cross-sectional area of the sheath 11 being about 10% in the present example.
  • the assembly is transferred to an electric annealing furnace provided with a reducing atmosphere, and arranged in a substantially horizontal position therein; whereby the temperature of the assembly is quickly raised from the ambient temperature to a predetermined elevated temperature in the temperature range 1900 F. to 2100 F. More particularly, in the present example, the temperature of the assembly is raised from the ambient temperature to an elevated temperature of about 2050 F. in about 8 minutes in the electric furnace ⁇ and this elevated temperature of the assembly is held for a short time interval of about 8 minutes; whereupon the assembly is removed from the electric furnace back to the air.
  • the electric furnace contains a suitable reducing atmosphere, which, in the present example, has the approximate composition as follows:
  • the washers 31 and 32 are quickly destroyed by combustion leaving no carbon deposits upon the respective terminals 15 and 14, and also the two masses of crushed ceramic material of the two bushings 19x and 18x are sintered into two respective unitary vitreous masses disposed in the respective opposite end of the sheath 11.
  • the mass of vitreous material in one end of the sheath 11 expands outwardly producing the meniscus in the plug 18 of the finished heating unit 10; and similarly, the mass of vitreous material in the other end of the sheath 11 expands outwardly producing the meniscus in the plug 19 of the finished heating unit 10. Also, the two masses of vitreous material flow into wetting and bonding relation with the adjacent interior portions of the sheath 11 and with respect to the adjacent portions of the respective terminals 14 and 15, without flowing from the opposite ends of the sheath 11 suflficiently to produce voids therein.
  • the assembly as shown in FIGS. 3 and 4, comprises a first assembly and each of the seals 20, as shown in the upper portion of FIG. 5, comprises a second assembly.
  • the first assembly is produced in the manner described above, while each of the second assemblies is produced in any conventional manner.
  • a group of the first assemblies are, in fact, heat-treated simultaneously in the annealing furnace described; and after these first assemblies are removed from the annealing furnace, they are placed as a group in an enclosure, while they are still at an elevated temperature.
  • the enclosure is then closed-up or sealed and a substantial Vacuum is drawn therein, whereby the reduced pressure in the enclosure effects the extraction of air from the sheath 11 of each of the first assemblies through the associated porous plugs 18 and 19 sealed in the opposite ends thereof.
  • the interior of the enclosure may be subjected to a relatively'low pressure, below about 20 mm.
  • the charge of inert gas that is thus held in the enclosure essentially comprises argon that contains a small amount of helium that is employed for a subsequent test purpose, as more fully explained hereinafter.
  • the inert gas that is held under pressure within the enclosure penetrates the porous plugs 13 and 19 provided in the opposite ends of the sheath 11 of each of the first assemblies, thereby effecting charging of the sheath 11 with the inert gas, the inert gas permeating the highly compacted granular ma terial 13 contained in the sheath 11 and embedding the resistance conduct-or 12 of the heating unit 11).
  • the group of first assemblies are removed from the enclosure.
  • each of the first assemblies is worked into the finished heating unit it as shown in FIG. 6, by the incorporation thereinto of two of the second assemblies, as shown in FIG. 5. More particularly, one of the second assemblies is placed upon the upper end of the sheath 11 of the first assembly so that the inner end of the ferrule 21 is disposed in closely surrounding relation with the upper end of the sheath 11 and so that the outer end of the ferrule 21 is disposed outwardly of the upper end of the sheath 11 and so that the tube 22 is arrangedin closely surrounding relation with the outer end of the upper terminal 14.
  • the extreme inner end of the ferrule 21 is welded to the adjacent annular portion of the sheath 11 to produce the annular welding bead 25 and consequently the hermetic seal between the ferrule 21 and the sheath 11.
  • the extreme outer end of the tube 22 is welded to the adjacent annular portion of the upper terminal 14 to produce the annular welding head 26 and consequently the hermetic seal between the tube 22 and the upper terminal 14.
  • another of the second assemblies is placed upon the lower end of the sheath 11 of the first assembly so that the inner end of the ferrule 21 is disposed in closely surrounding relation with the lower end of the sheath 11 and so that the outer end of the ferrule 21 is disposed outwardly of the lower end of the sheath 11 and so that the tube 22 is arranged in closely surrounding relation with the outer end of the lower terminal 15.
  • the extreme inner end of the ferrule 21 is welded to the adjacent annular portion of the sheath 11 to produce the associated annular welding bead and consequently the hermetic seal between theferrule 21 and the sheath 11; and the extreme outer end of the tube 22 is welded to the adjacent annular portion of the lower terminal 15 to produce the adjacent annular welding bead and consequently the hermetic seal between the tube 22 and the lower terminal 15.
  • the heating unit 10 is in finished condition, the opposite ends of the sheath 11 being hermetically sealed by the two corresponding seals 20, each of the construction described above.
  • the total charge of gas trapped in the sheath 11 of each of the first assemblies comprises both some air as well as the mixture of inert gases mentioned; whereby the total gas pressure within the sheath 11 of each of the first assemblies is somewhat above atmospheric pressure.
  • the gas trapped in the sheath 11 of each of the first assemblies gradually leaks therefrom by virtue of the porous character of the ceramic plugs 18 and 19 sealed in the opposite ends of the sheath 11.
  • each of the finished heating units 10 is subjected to the usual and conventional testing procedure; which testing procedure in the present instance includes subjecting the finished heating unit to testingv in a spectrometer for the purpose of establishing that the two hermeic seals 20 are entirely gas-tight.
  • testing procedure in the present instance includes subjecting the finished heating unit to testingv in a spectrometer for the purpose of establishing that the two hermeic seals 20 are entirely gas-tight.
  • the spectrometer is exceedingly sensitive to the helium line, whereby the small amount of helium contained in the charge of gas trapped in the sheath 11 may be readily detected in the event of a leakage of one of the seals 20.
  • the resistance conductor 12 is energized, with the result that after a short time interval of operation of the heating unit 11), the small amount of air that is trapped in the sheath 11 is depleted. More particularly,'the air mentioned is depleted since the contained oxygen oxidizes the interior of the sheath 11 and since the contained nitrogen nitrifies the interior of the sheath 11; and also there is some oxidizing and nitrifying of the resistance conductor 12 and of the terminals 14 and 15.
  • the depletion of the small amount of air contained in the sheath 11 is of no consequence, since the inert gases contained therein (helium and argon) are not depleted, so that there is still substantial pressure within the sheath 11, notwithstanding the total depletion of the air initially trapped therein. More particularly, the partial pressure of the inert gases hermetically sealed within the sheath 11 is 9 within the range 150 to 1000 mm. of Hg when the sheath 11 is at an ambient temperature of about 70 F., and this partial pressure of the inert gases hermetically sealed within the sheath 11 is within the range 600 to 4 000 mm. of Hg when the sheath 11 is at an operated temperature of about 1650 F.
  • the fairly wide band of partial pressures mentioned of the inert gases hermetically sealed within the sheath 11 flows from the circumstance that the individual heating units are produced sequentially from the group of first assemblies following the removal thereof from the enclosure; whereby the first of the heating units 10 that is finished contains a higher partial pressure of the inert gases than does the last of the heating units 16 that is finished.
  • the first heating unit that is finished contains the higher partial pressure of the inert gases for the simple reason that the leakage time interval of the inert gases through the porous plugs 18 and 19 disposed in the opposite ends of the sheath 11 thereof is minimized.
  • the pressure range of the inert gases hermetically sealed in the sheath 11 may extend over a substantial band without materially effecting the thermal conductivity of the mass of granular material 13 so long as the pressure is above about 600 mm. of Hg at the operating temperature of about 1650 F. of the sheath 11 of the finished heating unit 10. On the other hand, should the pressure of the inert gases hermetically sealed in the sheath 11 fall materially below about 600 mm. of Hg at the operating temperature of about 1650 F.
  • hermetically sealed sheathed electric heating units 10 embodying the present invention In order to demonstrate the superiority of the hermetically sealed sheathed electric heating units 10 embodying the present invention with respect to conventional sheathed unsealed electric heating units, comparative life tests have been conducted. More particularly, a first group of the hermetically sealed sheathed electric heating units were constructed embodying the present invention and a second group of unsealed sheathed electric heating units were constructed in accordance with the previously mentioned Lien Patent No. 2,962,684; all of the electric heating units being of 1600 watts capacity and being cycled during the life test for 1 hour with the sheath temperature at approximately 1650 F. followed by 20 minutes off.
  • each of the hermetically sealed heating units maintained an insulation resistance between 0.6 and 0.7 megohm, while each of the unsealed heating units maintained an insulation resistance between 0.04 and 0.05 megohm.
  • an electric heating unit of the sheathed resistance conductor type it is highly desirable to have a high insulation resistance, because with the high insulation resistance, it is impossible to have a high leakage current between the resistance conductor and the enclosing sheath.
  • With a low insulation resistance it is possible to have a high leakage current between the resistance conductor and the enclosing sheath.
  • the hermetically sealed heating units embodying the present in vention are vastly superior to the unsealed heating units; and in passing, it is mentioned that these unsealed heating units comprise what may be termed the standard of the electric heating industry.
  • An electric heating unit comprising an elongated tubular metal sheath, an elongated electrical resistance conductor arranged Within said sheath and spaced therefrom, an elongated metal terminal arranged at one end of said sheath, the inner end of said terminal being disposed interiorly of said one end of said sheath and spaced therefromand electrically connected to the adjacent end of said resistance conductor and the outer end of said terminal being disposed exteriorly of said one end of said sheath, a compacted mass of granular heat-conducting and electrical-insulating material arranged within said sheath and embedding both said resistance conductor and the inner end of said terminal and retaining the same in place in spaced relation with said sheath, a metal ferrule arranged at said one end of said sheath, the inner end of said ferrule being disposed in closely surrounding relation with said one end of said sheath and welded thereto to provide an hermetic seal therebetween and the outer end of said ferrule being disposed outwardly of said one end
  • An electric heating unit comprising an elongated tubular metal sheath, an elongated electrical resistance conductor arranged within said sheath and spaced therefrom, an elongated metal terminal arranged at one end of said sheath, the inner end of said terminal being disposed interiorly of said one end of said sheath and spaced therefrom and electrically connected to the adjacent end of said said resistance conductor and the outer end of said terminal being disposed exteriorly of said one end of said sheath, a compacted mass of granular heat-conducting and electrical-insulating material arranged within said sheath and embedding both said resistance conductor and the inner end of said terminal and retaining the same in place in spaced relation with said sheath, a porous plug of ceramic material arranged in the outer end of said sheath and surrounding the adjacent portion of said terminal and respectively bonded thereto, a metal ferrule arranged at said one end of said sheath, the inner end of said ferrule being disposed in closely surrounding relation with said one end of said she
  • porous plug of ceramic material essentially comprises kaoliniand silica and zirconium silicate.
  • said sheath is formed of a chromium-nickel steel comprising by weight about 25% chromium and about 12% nickel and the balance principally iron, and said ferrule is formed essentially of a low carbon steel 'that is substantially free of sulfur and lead and phosphorus.
  • terminal is formed essentially of a low carbon steel, and said tube is formed of a nickel-iron alloy.
  • terminal is formed essentially of a low car- References Cited by the Examiner UNITED STATES PATENTS 1,359,400 11/20 Lightfoot 338-238 2,003,175 5/35 Daly 338 238 2,480,903 9/49 Charbon-neau 338-238 2,513,421 7/50 Meoni 29l55.6-9 2,880,298 3/59 Yohe 338239 2,897,467 7/59 Bremer 3382-39 3,036,368 5/62 Felts 2 9l55.69

Landscapes

  • Resistance Heating (AREA)

Description

y 3, 1965 E. F. DILLON 3,195,093
SHEATHED ELECTRIC HEATING UNITS Filed Nov. 1. 1961 2 Sheets-Sheet 1 FIG. I
INVENTOR.
EUGENE F. DILLON g 7 ATTORNEYS July 13, 1965 E. F. DILLON SHEATHED ELECTRIC HEATING UNITS 2 Sheets-Sheet 2 Filed Nov. 1, 1961 INVENTOR.
EUGENE F. D/LLO N 26E Fl6.6
v ATTORNEYS United States Patent 3,195,093 SHEATHED ELECTRIC HEATING UNITS Eugene F. Dillon, Chicago, Ill., assignor to General Electric (Iornpany, a corporation of New York Filed Nov. 1, 1961, Ser. No. 149,381 13 Claims. (ill. 338-273) The present invention relates to sheathed electric heating units; and more particularly, to such heating units of the hermetically sealed type.
A conventional sheathed electric heating unit of the hermetically sealed type comprises an elongated resistance conductor embedded in a mass of highly compacted electrical-insulating and heat-conducting material, such as granular magnesium oxide, and arranged in an elongated enclosing metal sheath, as well as a pair of metal terminals disposed at the opposite ends of the sheath and electrically connected to the opposite ends of the resistance conductor. The terminals project from the opposite ends of the sheath, and the inner ends thereof are embedded in the compacted granular material, whereby both the resistance conductor and the pair of terminals are securely retained in place and electrically insulated from the sheath. The opposite ends of the sheath are closed by a pair of glass seals respectively surrounding the pair of terminals; and a charge of air is hermetically sealed within the sheath in permeating relation with the compacted granular material.
It has now been discovered that when a conventional electric heating unit (Sf-this type is placed in service, the charge of air that is trapped or hermetically sealed in the sheath is gradually depleted, so that ultimately a substantial vacuum is formed in the sheath. Specifically, the oxygen in the air is depleted by oxidizing of the interior of the sheath, and the nitrogen in the air is depleted by nitrifying of the interior of the sheath. Also, there is some oxidizing and nitrifying of the resistance conductor. When such substantial vacuum is thus formed in the sheath, the thermal conductivity of the unit between the resistance conductor and the sheath through the compacted granular material is drastically reduced, with the result that the temperature of the resistance conductor is greatly increased; whereby the resistance conductor is subject to vaporization and ultimately fails by open-circuit after a relatively short time interval, so that the heating unit has a life expectancy that is shorter than is desirable.
It has also been discovered that the objectionable vacuum described above can be prevented by providing the sheath with an initial gas-filling that includes a substantial amount of an inert gas selected from the class consisting of helium and argon, whereby the inert gas is not depleted during the operation of the heating unit, so that the thermal conductivity through the compacted granular material is maintained at a relatively high value during prolonged operation of the heating unit, with the result that the temperature difference between the resistance conductor and the sheath is minimized, whereby the heating unit has a long useful life.
Accordingly, it is a general object of the present invention to provide a sheathed electric heating unit of the hermetically sealed type that has a long useful life.
Another object of the invention is to provide a sheathed electric heating unit of the hermetically sealed type, Wherein the sheath thereof contains a charge of inert gas, so as to prevent the objectionable depletion of the gas within the sheath during operation of the heating unit.
The present invention is predicated upon the aforesaid discovery that a conventional sheathed electric heating unit of the hermetically sealed type has undesirable short life expectancy by virtue of the depletion of the charge of air contained in the sheath thereof and the resulting formation 'ice of a substantial vacuum in the sheath during the operation of the heating unit, coupled with the further discovery that the undesirable substantial vacuum mentioned may be prevented by the initial charging of the sheath with an inert gas selected from the class consisting of helium and argon.
Further features of the invention pertain to the particular arrangement of the elements of the sheathed electric heating unit, whereby the above outlined and additional operating features thereof are attained.
The invention, both as to its organization and method of operation, together with further objects and advantages thereof, will best be understood by reference to the following specification taken in connection with the accompanying drawings, in which:
FIGURE 1 is an enlarged fragmentary longitudinal sectional view, partly broken away, of the upper end of a sheathed electric heating unit in an initial stage of manufacture thereof, and embodying the present invention;
FIG. 2 is an enlarged fragmentary longitudinal sectional view, partly broken away, of the lower end of the heating unit shown in FIG. 1;
FIG. 3 is an enlarged fragmentary longitudinal sectional view, partly broken away, of the upper end of the heating unit in a subsequent stage of manufacture thereof;
FIG. 4- is an enlarged fragmentary longitudinal sectional view, partly broken away, of the lower end of the heating unit shown in FIG. 3;
FIG. 5 is a further enlarged fragmentary longitudinal exploded sectional view, partly broken away, of the upper end of the heating unit in a still subsequent stage of manufacture thereof; and
FIG. 6 is a still further enlarged fragmentary longitudinal sectional view, partly broken away, of the upper end of the heating unit after the final step of manufacture thereof.
Referring now to the drawings, there is illustrated a sheathed electric heating unit 10 embodying the features of the present invention; which heating unit 10 comprises an elongated tubular metal sheath 11, an elongated helical resistance conductor 12 located substantially centrally within the sheath 11, and a highly compacted mass of heat-conducting and electrical-insulating material 13 arranged in filling relation with respect to the sheath 11 and in embedding relation with respect to the resistance conductor 12. Also the heating unit 10 comprises an upper metal terminal 14 and a lower metal terminal 15, each of substantially rod-like form. The upper terminal 14 is arranged at the upper end of the sheath 11 and projects from the exterior thereinto and in spaced relation therewith, whereby the inner end of the upper terminal 14 is also embedded in the adjacent highly compacted mass of material 13. The lower terminal 15 is arranged in the lower end of the sheath 11 and projects from the exterior thereinto and in spaced relation therewith, whereby the inner end of the lower terminal 15 is also embedded in the adjacent highly compacted mass of material 13. The extreme inner end of the upper terminal 14 is shouldered to provide an inwardly projecting pin 16 of reduced cross-sectional area that is rigidly secured within the adjacent upper end of the resistance conductor 12, as by welding. Likewise, the extreme inner end of the lower terminal 15 is shouldered to provide an inwardly projecting pin 17 of reduced cross-sectional area that is rigidly secured within the adjacent lower end of the resistance conductor 12, as by welding. Specifically, the opposite ends of the resistance conductor 12 may be respectively secured to the pinlike structures 16 and 17 of the terminals 14 and 15 in accordance with the welding method disclosed in US. Patent No. 2,546,351, granted on March 27, 1951 to Sterling A. Oakley.
In a constructional example of the heating unit lit), the sheath 11 may be formed of lncoloy, a nickel-chromium steel comprising by weight about 30% nickel and chromium and the balance principally iron. Alternatively, the sheath 11 may be formed of 3095 Stainless Steel, a chromium-nickel steel comprising by weight about chromium and about 12% nickel and the balance principally iron. The resistance conductor 12 may be formed of a suitable nickel-chromium alloy comprising by weight about 80% nickel and about 20% chromium. Each of the terminals 14 and 15 may be formed of a suitable low carbon steel, such, for example, as 1008 cold rolled steel. The highly compacted mass of material 13 may consist essentially of granular magnesium oxide.
Referring now to FIGS. 3 and 4, an upper plug 13 of ceramic material is arranged in the upper end of the sheath 11 in surrounding relation with respect to the intermediate portion of the upper terminal 14 and respectively bonded thereto, and a lower plug 19 of ceramic material is arranged in the lower end of the sheath 11 in surrounding relation with respect to the intermediate portion of the lower terminal 15' and respectively bonded thereto. Each of the plugs 18 and 19 is of substantially homogeneous,
cellular and porous construction, so as to allow breathing of gas therethrough, for a purpose more fully explained hereinafter; and each of the plugs 18 and 19 may consist essentially of kaolin and silica and metal silicates and may be of the composition as disclosed in US. Patent No. 2,962,684, granted on November 29, 1960 to Gunder Lien, Jr. More specifically, this ceramic material has the approximate composition as follows:
This ceramic material in finely divided form is characterized by sintering into a unitary vitreous mass upon heating thereof to a. predetermined elevated temperature in the approximate range 1900 F. to 2100 F; and the material of the composition set forth has a softening point at approximately 2050 F. This material is further characterized by congealing of the sintered mass upon cooling thereof below the temperature range mentioned into a substantially homogeneous, cellular and porous body of ceramic material.
Further, the heating unit 10 comprises a pair of hermetic seals respectively arranged at the opposite ends of the sheath 11; and referring to FIGS. 5 and 6, the seal 2t there illustrated, that is arranged at the upper end of the sheath 11, essentially comprises a metal ferrule 21, a metal tube 22, and a body of gas-impervious and electricalinsulating material 23 arranged within the outer end of the ferrule 21 and surrounding the inner end of the tube -22 and providing an hermetic seal therebetween. As best shown in FIG. 6, the inner end of the ferrule 21 is disposed in closely surrounding relation with the upper end of the sheath 11 and is hermetically sealed thereto. More particularly, the extreme inner end of the ferrule 21 is shouldered to provide a tubular projection 24 thereon; and the extreme inner end of the tubular projection 24 is welded to the adjacent annular portion of the sheath 11, as indicated at 25, thereby to produce the previously mentioned hermetic seal between the upper end of the sheath 11 and the ferrule 21.
The inner end of the tube 22 is disposed interiorly of the outer end of the ferrule 21 and spaced therefrom, and the outer end of the tube 22 is disposed exteriorly of the outer end of the ferrule 21, and the body of gas-impervious and electrical-insulating material 23 is arranged within the outer end of the ferrule 21 and in surrounding relation with the inner end of the tube 22 and providing the previously mentioned hermetic seal therebetween. Preferably, the body of material 23 comprises a substantially annular mass of fused glass that is arranged in compression between the outer end of the ferrule 21 and the inner end of the tube 22 and intimately bond-ed thereto. The metal tube 22 is also arranged in closely surrounding relation with the outer end of the upper terminal 14; and theextreme outer end of the tube 22 is hermetically sealed to the adjacent annular portion of the upper terminal 14, as by welding, as indicated at 26.
Accordingly, in the upper seal 20, the ferrule 21 is hermetically sealed by the annular welding bead 25 to the adjacent annular portion of the upper end of the sheath 11, and the tube 22 is hermetically sealed by the annular welding bead 26 to the adjacent annular portion of the outer end of the upper terminal 14, and the outer end of the ferrule 21 is hermetically sealed to the inner "end of the tube 22 by the interposed annular body of fused glass 23. Also, in the seal Ztl, the extreme outer end of the upper plug 18.is disposed adjacent to the extreme inner end of the tube 22, and preferably in abutting relation therewith. Furthermore, the body of fused glass 23 that is arranged in the outer end of the ferrule 21 is positioned somewhat outwardly with respect to the extreme upper end of the sheath 11 to define a small chamber 27 therebetween that constitutes a gas reservoir, within the ferrule 21 that is employed for the purpose of holding a small quantity of the inert gases that are used to fill the sheath 11, as explained subsequently.
In a constructional. example of the seal 26, the ferrule 21 is formed of a suitable low carbon steel, such, for example, as 1015 cold rolled steel that is free of sulphur, lead and phosphorus. The tube 22 is formed of a suitable nickel-iron alloy comprising by weight about 52% nickeland the balance principally iron. Also, the composition of the body of glass 23 is suitably selected so that it has a thermal coefficient of expansion that falls between that of the ferrule 21 and that of the tube 22, the thermal coefficient of expansion of the tube 22 being somewhat lower than that of the ferrule 21; which arrangement insures that the-body of glass 23 is maintained under compression between the ferrule 21 and the tube 22, so that the seal 20 is characterized by high thermal and mechanical shock resistances.
Finally, it is noted that the heating unit 10 comprises a charge of inert gas hermeticallysealed within the'sheath 11 and permeating the compacted mass of granular material 13; which inert gas is selected from the class consisting of helium and argon. Preferably,.the inert gas comprises by weight about 96% to 99% argon and about 1% to 4% helium, the helium inclusion facilitating ready testing for leakage of the finished heating unit 14 as ex plained more fully hereinafter.
Considering now the method of manufacture of the heating unit It and referring particularly to FIGS. 1 and 2, the preformed terminals 14 and 15 are Welded to the adjacent opposite ends of the preformed helical resistance'conductor 12; and a preformed bushing 19x formed of the ceramic material previously described is placed over the outer end of the lower terminal 15 and retained in place by a combustible Washer 31 fitted over the lower terminal 15. The location of the ceramic bushing 1%: and the washer 31 is insured by a ring-lilre depression 11a that is formed in the lower end of the sheath 11 and by a groove 15a that is formed in the intermediate portion of the lower terminal 15. The preformed tubular sheath 11 is then placed in surrounding relation with the subassembly described, the subassembly being threaded through the sheath 11, so that the ceramic bushing 19x is located in the lower end of the sheath 11 in engagement with the associated annular shoulder 11a, and with the annular washer 31 arranged in the extreme lower end of the sheath 11, as
indicated in FIG. 2. At this time, the upper terminal 14 projects from the upper end of the sheath 11; and in passing, it is noted that the upper terminal 14 comprises a knob-like part 14a disposed at the extreme upper end thereof, as shown in FIG. 1, that is adapted to cooperate with a loading machine, as explained more fully below. This combustible washer 31 is preferably formed of a suitable synthetic organic resin, such, for example, as polyethylene or polystyrene.
At this time, the assembly described is transferred to a suitable loading machine, such, for example, as that disclosed in U.S. Patent No. 2,316,659, granted on April 13, 1943 to John L. Andrews. In the loading machine, the assembly is retained in a substantially vertical position with the enlarged knob-like part 14a carried by the upper end of the upper terminal 14 cooperating with the hook incorporated in the loading machine and arranged substantially centrally with respect to the upper end of the sheath 11 and projecting outwardly therefrom. At this time, the loading machine is operated so that the magnesia in finely divided or granular form is charged into the upper end of the sheath flowing therethrough onto the ceramic bushing 19x and first embedding the inner end of the lower terminal 15. As the loading machine is operated, the sheath 11 is filled so that the resistance conductor 12 is embedded in the granular material 13 and ultimately the inner end of the upper terminal 14 is embedded in this granular material. During charging of the insulating material 13 into the sheath 11, the sheath 11 may be vibrated or jarred slightly in order to insure tamping or packing of the finely divided material 13 in the space between the terminals 15 and 14 and the sheath 11 and between the convolutions of the helical resistance conductor 12 and the sheath 11 and into the core or" the helical resistance conductor 12. After the insulating material has been charged into the sheath 11 and tamped in place, filling the spaces mentioned within the sheath 11, the assembly is removed from the loading machine. At this time, a hollow void is defined in the upper end of the sheath 11; which hollow void is filled by placing a preformed hollow bushing 18x (identical to the bushing 19x) thereinto. More particularly, the bushing 18x is placed over the outer end of the upper terminal 14 in engagement with the upper end of the mass of insulating material 13 that has been charged into the sheath 11; and at this time, an upper combustible washer 32 (identical to the washer 31) is placed over the extreme upper end of the upper terminal 14 and retained in place by frictional engagement therewith and brought into contact with the upper end of the bushing 18x, within the extreme upper end of the sheath 11. In the completed assembly thus produced, as shown in FIGS. 1 and 2, the bushing 19x serves as a stopper at the lower end of the sheath 11, while the adjacent washer 31 serves to prevent the loss of the ceramic material of the bushing 19x from the adjacent lower end of the sheath 11 in the succeeding step of the method of manufacture. Similarly, the bushing 18x serves as a stopper at the upper end of the sheath 11, while the adjacent washer 32 serves to prevent the loss of the ceramic material of the bushing 18x from the adjacent upper end of the sheath 11 in the succeeding step of the method of manufacture.
The completed assembly of FIGS. 1 and 2 is then transferred to a rolling machine, such, for example, as that disclosed in US. Patent No. 2,677,172, granted on May 4, 1954 to Sterling A. Oakley; wherein the assembly is subjected to cold working in a plurality of successive cold rolling passes so as substantially to reduce the crosssectional area of the sheath 11 for the purpose of compacting the finely divided magnesia so as to produce the highly compacted mass 13 in the finished heating unit 10. More particularly, the rolling machine may comprise a number of substantially elliptical rolling stages, arranged in angularly rotated relation between a first cylindrical rolling stage and a last cylindrical rolling stage, so that the sheath is materially reduced in the rolling machine, for the purpose explained. As an example, the sheath 11 may be initially substantially cylindrical having an outside diameter of approximately 0.263, and the sheath 11 in the finished heating unit 10 may be substantially cylindrical and smooth having an outside diameter of approximately O.238". Thus in the rolling machine, the outside diameter of the sheath 11 is reduced from 0.263" to 0.238" in the several cold rolling passes effecting a corresponding reduction in the cross-sectional area thereof, the reduction in the initial cross-sectional area of the sheath 11 being about 10% in the present example.
In passing, it is noted that in the operation of the rolling machine disclosed in the Oakley patent mentioned, the assembly is moved vertically through the successive rolling passes effecting the progressive reduction in the cross-sectional area of the sheath 11 as described.
From the rolling machine, the assembly is transferred to an electric annealing furnace provided with a reducing atmosphere, and arranged in a substantially horizontal position therein; whereby the temperature of the assembly is quickly raised from the ambient temperature to a predetermined elevated temperature in the temperature range 1900 F. to 2100 F. More particularly, in the present example, the temperature of the assembly is raised from the ambient temperature to an elevated temperature of about 2050 F. in about 8 minutes in the electric furnace{ and this elevated temperature of the assembly is held for a short time interval of about 8 minutes; whereupon the assembly is removed from the electric furnace back to the air. As noted, the electric furnace contains a suitable reducing atmosphere, which, in the present example, has the approximate composition as follows:
In the operation of the rolling machine, the bushings 18x and 19x ofier no resistance to the rolls and are crushed and reduced to finely divided form; however, the respectively associated washers 32 and 31 prevent any substantial escape of the finely divided ceramic material from the respectively associated upper and lower ends of the sheath 11. When the assembly is transferred to the electric annealing furnace, the washers 31 and 32 are quickly destroyed by combustion leaving no carbon deposits upon the respective terminals 15 and 14, and also the two masses of crushed ceramic material of the two bushings 19x and 18x are sintered into two respective unitary vitreous masses disposed in the respective opposite end of the sheath 11. More particularly, the mass of vitreous material in one end of the sheath 11 expands outwardly producing the meniscus in the plug 18 of the finished heating unit 10; and similarly, the mass of vitreous material in the other end of the sheath 11 expands outwardly producing the meniscus in the plug 19 of the finished heating unit 10. Also, the two masses of vitreous material flow into wetting and bonding relation with the adjacent interior portions of the sheath 11 and with respect to the adjacent portions of the respective terminals 14 and 15, without flowing from the opposite ends of the sheath 11 suflficiently to produce voids therein. Thereafter, following removal of the assembly from the electric annealing furnace, the two masses of vitreous material congeal into the two respective self-supporting cellular and porous plugs 18 and 19 intimately bonded to the respective ends of the sheath 11 and intimately bonded to the respective terminals 14 and 15, as previously explained.
Of course, it will be understood that the heat-treatment described not only brings about the formation of the cellular and porous ceramic plugs 18 and 19 in the opposite ends of the sheath 11, as shown in FIGS. 3 and 4, but also elfects annealing of the sheath 11 for the purpose of relieving stresses induced therein in the cold working thereof in the preceding rolling operation.
. In the manufacturing method, the assembly, as shown in FIGS. 3 and 4, comprises a first assembly and each of the seals 20, as shown in the upper portion of FIG. 5, comprises a second assembly. Of course, the first assembly is produced in the manner described above, while each of the second assemblies is produced in any conventional manner.
In the manufacturing method, a group of the first assemblies are, in fact, heat-treated simultaneously in the annealing furnace described; and after these first assemblies are removed from the annealing furnace, they are placed as a group in an enclosure, while they are still at an elevated temperature. The enclosure is then closed-up or sealed and a substantial Vacuum is drawn therein, whereby the reduced pressure in the enclosure effects the extraction of air from the sheath 11 of each of the first assemblies through the associated porous plugs 18 and 19 sealed in the opposite ends thereof. More particularly, the interior of the enclosure may be subjected to a relatively'low pressure, below about 20 mm. of Hg; which relatively low pressure is held for a time interval of about 30 to 45 minutes, so as to allow a high degree of extraction of air from the sheath 11 of each of the first assemblies described. During this holding time interval, there is substantial cooling of the first assemblies contained in the enclosure; and at the expiration of the time interval mentioned, a charge of inert gas at a gauge pressure of about l# per square inch is forced into the enclosure; which pressure of the inert gas is heldin the enclosure throughout a time interval of about 30 minutes. As previously mentioned, the charge of inert gas that is thus held in the enclosure essentially comprises argon that contains a small amount of helium that is employed for a subsequent test purpose, as more fully explained hereinafter. Accordingly, the inert gas that is held under pressure within the enclosure penetrates the porous plugs 13 and 19 provided in the opposite ends of the sheath 11 of each of the first assemblies, thereby effecting charging of the sheath 11 with the inert gas, the inert gas permeating the highly compacted granular ma terial 13 contained in the sheath 11 and embedding the resistance conduct-or 12 of the heating unit 11). At the conclusion of the second mentioned holding period, wherein the inert gas is maintained under pressure within the enclosure, the group of first assemblies are removed from the enclosure.
At this time, each of the first assemblies is worked into the finished heating unit it as shown in FIG. 6, by the incorporation thereinto of two of the second assemblies, as shown in FIG. 5. More particularly, one of the second assemblies is placed upon the upper end of the sheath 11 of the first assembly so that the inner end of the ferrule 21 is disposed in closely surrounding relation with the upper end of the sheath 11 and so that the outer end of the ferrule 21 is disposed outwardly of the upper end of the sheath 11 and so that the tube 22 is arrangedin closely surrounding relation with the outer end of the upper terminal 14. At this time, the extreme inner end of the ferrule 21 is welded to the adjacent annular portion of the sheath 11 to produce the annular welding bead 25 and consequently the hermetic seal between the ferrule 21 and the sheath 11. Also, the extreme outer end of the tube 22 is welded to the adjacent annular portion of the upper terminal 14 to produce the annular welding head 26 and consequently the hermetic seal between the tube 22 and the upper terminal 14.
In a similar manner, another of the second assemblies is placed upon the lower end of the sheath 11 of the first assembly so that the inner end of the ferrule 21 is disposed in closely surrounding relation with the lower end of the sheath 11 and so that the outer end of the ferrule 21 is disposed outwardly of the lower end of the sheath 11 and so that the tube 22 is arranged in closely surrounding relation with the outer end of the lower terminal 15. At this time, the extreme inner end of the ferrule 21 is welded to the adjacent annular portion of the sheath 11 to produce the associated annular welding bead and consequently the hermetic seal between theferrule 21 and the sheath 11; and the extreme outer end of the tube 22 is welded to the adjacent annular portion of the lower terminal 15 to produce the adjacent annular welding bead and consequently the hermetic seal between the tube 22 and the lower terminal 15.
These welding steps may be readily carried out in a convenient manner utilizing a heliarc welding machine employing argon as the inert atmosphere and a feed wire formed essentially of Incoweld No. 82 or 92 that essentially comprises a nickel-chromium alloy.
At this time, the heating unit 10 is in finished condition, the opposite ends of the sheath 11 being hermetically sealed by the two corresponding seals 20, each of the construction described above.
Reverting to the manufacturing method, when the first assemblies are removed from the enclosure after being subjected to the pressure of inert gas of about 10# per square inch gauge in the enclosure, it will be appreciated that the total charge of gas trapped in the sheath 11 of each of the first assemblies comprises both some air as well as the mixture of inert gases mentioned; whereby the total gas pressure within the sheath 11 of each of the first assemblies is somewhat above atmospheric pressure. Moreover, after removal of the first assemblies from the enclosure, the gas trapped in the sheath 11 of each of the first assemblies gradually leaks therefrom by virtue of the porous character of the ceramic plugs 18 and 19 sealed in the opposite ends of the sheath 11. However, this leakage of gas from the sheath 11 is at a very slow rate, whereby there is ample time for the placement and welding in place of the second assemblies in the manner described above, without the leakage of more than a part of the trapped charge of gas from each of the first assemblies. In other words, when each of the heating units it) in the group mentioned is finished, there is still a slight pressure above atmospheric pressure within the sheath 11 thereof.
At this time, each of the finished heating units 10 is subjected to the usual and conventional testing procedure; which testing procedure in the present instance includes subjecting the finished heating unit to testingv in a spectrometer for the purpose of establishing that the two hermeic seals 20 are entirely gas-tight. At this'point, it is mentioned that the spectrometer is exceedingly sensitive to the helium line, whereby the small amount of helium contained in the charge of gas trapped in the sheath 11 may be readily detected in the event of a leakage of one of the seals 20.
In the subsequent testing of the finished heating unit 10, the resistance conductor 12 is energized, with the result that after a short time interval of operation of the heating unit 11), the small amount of air that is trapped in the sheath 11 is depleted. More particularly,'the air mentioned is depleted since the contained oxygen oxidizes the interior of the sheath 11 and since the contained nitrogen nitrifies the interior of the sheath 11; and also there is some oxidizing and nitrifying of the resistance conductor 12 and of the terminals 14 and 15. However, the depletion of the small amount of air contained in the sheath 11 is of no consequence, since the inert gases contained therein (helium and argon) are not depleted, so that there is still substantial pressure within the sheath 11, notwithstanding the total depletion of the air initially trapped therein. More particularly, the partial pressure of the inert gases hermetically sealed within the sheath 11 is 9 within the range 150 to 1000 mm. of Hg when the sheath 11 is at an ambient temperature of about 70 F., and this partial pressure of the inert gases hermetically sealed within the sheath 11 is within the range 600 to 4 000 mm. of Hg when the sheath 11 is at an operated temperature of about 1650 F.
At this point, it is noted that the fairly wide band of partial pressures mentioned of the inert gases hermetically sealed within the sheath 11 flows from the circumstance that the individual heating units are produced sequentially from the group of first assemblies following the removal thereof from the enclosure; whereby the first of the heating units 10 that is finished contains a higher partial pressure of the inert gases than does the last of the heating units 16 that is finished. Of course, the first heating unit that is finished contains the higher partial pressure of the inert gases for the simple reason that the leakage time interval of the inert gases through the porous plugs 18 and 19 disposed in the opposite ends of the sheath 11 thereof is minimized.
The pressure range of the inert gases hermetically sealed in the sheath 11 may extend over a substantial band without materially effecting the thermal conductivity of the mass of granular material 13 so long as the pressure is above about 600 mm. of Hg at the operating temperature of about 1650 F. of the sheath 11 of the finished heating unit 10. On the other hand, should the pressure of the inert gases hermetically sealed in the sheath 11 fall materially below about 600 mm. of Hg at the operating temperature of about 1650 F. of the sheath 11, there is a material reduction in the thermal conductivity of the granular material 13, with the result that the temperature of the resistance conductor 12 is substantially increased with respect to the operating temperature of the sheath 11; which objectionable operating condition causes the resistance conductor 12 to be subject to evaporation and consequent early failure by opencircuit.
In order positively to insure that the pressure of the inert gases that are hermetically sealed in the sheath 11 are well above the critical pressure of about 600' mm. of Hg, as explained above, it is only necessary that the partial pressure of the inert gases hermetically sealed in the sheath 11 fall within the approximate range 150 to 1000 mm. of Hg when the sheath 11 is at an ambient temperature of about 70 E; which objective is readily achieved by utilizing the manufacturing method described above. In other words, after the group of first assemblies have been subjected to the pressure of about l()# per square inch gauge in the enclosure throughout the time interval of about 30 minutes, as previously described, there is a sufiicient content of the inert gases in the sheath 11 of each of the first assemblies so that there is no danger of total leakage thereof from the sheaths 11 during the time interval that is consumed in afiixing and welding in place the second assemblies in v order to produce the hermetically sealed finished heating units 10, in the manner previously described.
The method of making the sheathed electric heating unit described above is disclosed and claimed in the copending divisional application of Eugene F. Dillon, Serial No. 413,228, filed November 23, 1964.
In order to demonstrate the superiority of the hermetically sealed sheathed electric heating units 10 embodying the present invention with respect to conventional sheathed unsealed electric heating units, comparative life tests have been conducted. More particularly, a first group of the hermetically sealed sheathed electric heating units were constructed embodying the present invention and a second group of unsealed sheathed electric heating units were constructed in accordance with the previously mentioned Lien Patent No. 2,962,684; all of the electric heating units being of 1600 watts capacity and being cycled during the life test for 1 hour with the sheath temperature at approximately 1650 F. followed by 20 minutes off. Following 1900 hours of the life test, the insulation resistance of each of the heating units was tested and it was discovered that each of the hermetically sealed heating units maintained an insulation resistance between 0.6 and 0.7 megohm, while each of the unsealed heating units maintained an insulation resistance between 0.04 and 0.05 megohm. Now it is well understood that in an electric heating unit of the sheathed resistance conductor type, it is highly desirable to have a high insulation resistance, because with the high insulation resistance, it is impossible to have a high leakage current between the resistance conductor and the enclosing sheath. On the other hand, with a low insulation resistance, it is possible to have a high leakage current between the resistance conductor and the enclosing sheath. Hence, it is clear that the hermetically sealed heating units embodying the present in vention are vastly superior to the unsealed heating units; and in passing, it is mentioned that these unsealed heating units comprise what may be termed the standard of the electric heating industry.
In view of the foregoing, it is apparent that there has been provided a sheathed electric heating unit of the hermetically sealed type that is of improved construction and arrangement.
While there has been described what is at present considered to be the preferred embodiment of the invention,
it will be understood that various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirit and scope of the invention.
What is claimed is:
1. An electric heating unit comprising an elongated tubular metal sheath, an elongated electrical resistance conductor arranged Within said sheath and spaced therefrom, an elongated metal terminal arranged at one end of said sheath, the inner end of said terminal being disposed interiorly of said one end of said sheath and spaced therefromand electrically connected to the adjacent end of said resistance conductor and the outer end of said terminal being disposed exteriorly of said one end of said sheath, a compacted mass of granular heat-conducting and electrical-insulating material arranged within said sheath and embedding both said resistance conductor and the inner end of said terminal and retaining the same in place in spaced relation with said sheath, a metal ferrule arranged at said one end of said sheath, the inner end of said ferrule being disposed in closely surrounding relation with said one end of said sheath and welded thereto to provide an hermetic seal therebetween and the outer end of said ferrule being disposed outwardly of said one end of said sheath, a metal tube arranged in closely surrounding relation with the outer end of said terminal and welded thereto to provide an hermetic seal therebetween, the inner end of said tube being disposed interiorly of the outer end of said ferrule and spaced therefrom and the outer end of said tube being disposed exteriorly of the outer end of said ferrule, a body of fused glass arranged within the outer end of said ferrule and surrounding the inner end of said tube and providing an hermetic seal therebetween, and a charge of inert gas hermetically sealed within said sheath and permeating said compacted mass of granular material.
2. An electric heating unit comprising an elongated tubular metal sheath, an elongated electrical resistance conductor arranged within said sheath and spaced therefrom, an elongated metal terminal arranged at one end of said sheath, the inner end of said terminal being disposed interiorly of said one end of said sheath and spaced therefrom and electrically connected to the adjacent end of said said resistance conductor and the outer end of said terminal being disposed exteriorly of said one end of said sheath, a compacted mass of granular heat-conducting and electrical-insulating material arranged within said sheath and embedding both said resistance conductor and the inner end of said terminal and retaining the same in place in spaced relation with said sheath, a porous plug of ceramic material arranged in the outer end of said sheath and surrounding the adjacent portion of said terminal and respectively bonded thereto, a metal ferrule arranged at said one end of said sheath, the inner end of said ferrule being disposed in closely surrounding relation with said one end of said sheath and hermetically sealed thereto and the outer end of said ferrule being disposed outwardly of the outer end of said plug, a metal tube arranged in closely surrounding relation with the outer end of said terminal and hermetically sealed thereto, the inner end of said tube being disposed interiorly of the outer end of said ferrule and spaced therefrom and positioned adjacent to the outer end of said plug and the outer end of said tube being disposed exteriorly of the outer end of said ferrule, a body of gas-impervious and electrical-insulting material arranged in the outer end of said ferrule and surrounding the inner end of said tube and providing an hermetic seal therebetween, said body of gas-impervious and electrical-insulting material being arranged adjacent to and outwardly of the outer end of said plug, and a charge of inert gas hermetically sealed within said sheath and permeating said compacted mass of granular material.
3. The electric heating unit set forth in claim 2, wherein said porous plug of ceramic material essentially comprises kaoliniand silica and zirconium silicate.
4. The electric heating unit set forth in claim 2, wherein said porous plug of ceramic material accommodates breathing of said inert gas therethrough between said one end of said sheath and the interior of said ferrule 5. The electric heating unit set forth in claim 1, wherein the thermal coeflicient of expansion of said body of fused glass is somewhat lower than that of said ferrule and somewhat higher than that of said tube, whereby said body of fused glass is maintained in compression between said ferrule and said tube.
' 6. The electric heating unit set forth in claim 1, wherein said inert gas is selected from the class consisting of helium and argon.
7 The electric heating unit set forth in claim 1, wherein said inert gas consists essentially of argon.
d. The electric heating unit set forth in claim 1, wherein said inert gas comprises by weight about 96% to 99% argon and 1% to 4% helium.
9. The electric heating unit set forth in claim 1, wherein the partial pressure of said inert gas hermetically sealed within said sheath is within the range 150 to 1000 mm. of Hg when said sheath is at an ambient temperature of about 70 F.
10. The electric heating unit set forth in claim 1, wherein the partial pressure of said inert gas hermetically sealed within said sheath is within the range 600 to 4000 mm. of Hg when said sheath is at an operating temperature of about 1650 F.
11. The electric heating unit set forth in claim 1, wherein said sheath is formed essentially of a nickel chromium steel, and said ferrule is formed essentially of a low carbon steel.
12. The electric heating unit set forth in claim 1, wherein said sheath is formed essentially of a nickel chromium steel comprising by weight about 30%nickel and about 20% chromium and the balance principally iron, and said ferrule is formed essentially of a low carbon steel that is substantially free of sulfur and load and phosphorus, I
13. The electric heating unit set forth in claim 1, wherein said sheath is formed essentially of chromiumnickel steel, and said ferrule is formed essentially of a low car-bon steel. 7
14. The electric heating unit set forth in claim 1, wherein said sheath is formed of a chromium-nickel steel comprising by weight about 25% chromium and about 12% nickel and the balance principally iron, and said ferrule is formed essentially of a low carbon steel 'that is substantially free of sulfur and lead and phosphorus. I
15. The electric heating unit set forth in claim 1,
wherein said terminal is formed essentially of a low carbon steel, and said tube is formed of a nickel-iron alloy.
16. The electric heating unit set forth in claim I,
wherein said terminal is formed essentially of a low car- References Cited by the Examiner UNITED STATES PATENTS 1,359,400 11/20 Lightfoot 338-238 2,003,175 5/35 Daly 338 238 2,480,903 9/49 Charbon-neau 338-238 2,513,421 7/50 Meoni 29l55.6-9 2,880,298 3/59 Yohe 338239 2,897,467 7/59 Bremer 3382-39 3,036,368 5/62 Felts 2 9l55.69
RICHARD M. WOOD, Primary Examiner.

Claims (1)

1. AN ELECTRIC HEATING UNIT COMPRISING AN ELONGATED TUBULAR METAL SHEATH, AN ELONGATED ELECTRICAL RESISTANCE CONDUCTOR ARRANGED WITHIN SAID SHEATH AND SPACED THEREFROM, AN ELONGATED METAL TERMINAL ARRANGED AT ONE END OF SAID SHEATH, THE INNER END OF SAID TERMINAL BEING DISPOSED INTERIORLY OF SAID ONE END OF SAID SHEATH AND SPACED THEREFROM AND ELECTRICALLY CONNECTED TO THE ADJACENT END OF SAID RESISTANCE CONDUCTOR AND THE OUTER END OF SAID TERMINAL BEING DISPOSED EXTERIORLY OF SAID ONE END OF SAID SHEATH, A COMPACTED MASS OF GRANULAR HEAT-CONDUCTING SAID ELECTRICAL-INSULATING MATERIAL ARRANGED WITHIN SAID SHEATH AND EMBEDDING BOTH SAID RESISTANCE CONDUCTOR AND THE INNER END OF SAID TERMINAL AND RETAINING THE SAME IN PLACE IN SPACED RELATION WITH SAID SHEATH, A METAL FERRULE ARRANGED AT SAID ONE END OF SAID SHEATH, THE INNER END OF SAID FERRULE BEING DISPOSED IN CLOSELY SURROUNDING RELATION WITH SAID ONE END OF SAID SHEATH AND WELDED THERETO TO PROVIDE AN HERMETIC SEAL THEREBETWEEN AND THE OUTER END OF SAID FERRULE BEING DISPOSED OUTWARDLY OF SAID ONE END OF SAID SHEATH, A METAL TUBE ARRANGED IN CLOSELY SURROUNDING RELATION WITH THE OUTER END OF SAID TERMINAL AND WELDED THERETO TO PROVIDE AN HERMETIC SEAL THEREBETWEEN, THE INNER END OF SAID TUBE BEING DISPOSED INTERIORLY OF THE OUTER END OF SAID FERRULE AND SPACED THEREFROM AND THE OUTER END OF SAID TUBE BEING DISPOSED EXTERIORLY OF THE OUTER END OF SAID FERRULE, A BODY OF FUSED GLASS ARRANGED WITHIN THE OUTER END OF SAID FERRULE AND SURROUNDING THE INNER END OF SAID TUBE AND PROVIDING AN HERMETIC SEAL THEREBETWEEN, AND A CHARGE OF INERT GAS HERMETICALLY SEALED WITHIN SAID SHEATH AND PERMEATING SAID COMPACTED MASS OF GRANULAR MATERIAL.
US149381A 1961-11-01 1961-11-01 Sheathed electric heating units Expired - Lifetime US3195093A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US149381A US3195093A (en) 1961-11-01 1961-11-01 Sheathed electric heating units
US413228A US3311969A (en) 1961-11-01 1964-11-23 Methods of making sheathed electric heating units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US149381A US3195093A (en) 1961-11-01 1961-11-01 Sheathed electric heating units

Publications (1)

Publication Number Publication Date
US3195093A true US3195093A (en) 1965-07-13

Family

ID=22530033

Family Applications (1)

Application Number Title Priority Date Filing Date
US149381A Expired - Lifetime US3195093A (en) 1961-11-01 1961-11-01 Sheathed electric heating units

Country Status (1)

Country Link
US (1) US3195093A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571477A (en) * 1968-06-21 1971-03-16 Bert Phillips Protection of oxidizable electric furnace elements at high temperatures
US4129774A (en) * 1975-08-28 1978-12-12 Hitachi Heating Appliances Co., Ltd. Filling materials for heating elements
US4965436A (en) * 1973-07-25 1990-10-23 Southport Enterprises Heater unit
US5380987A (en) * 1993-11-12 1995-01-10 Uop Electric heater cold pin insulation
US5889460A (en) * 1996-05-30 1999-03-30 E.G.O. Elektro-Geratebau Gmbh Electric resistance temperature sensor
EP2056034B1 (en) * 2007-11-01 2017-01-04 Infinity Fluids Corporation Inter-axial inline fluid heater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1359400A (en) * 1920-06-22 1920-11-16 Cutler Hammer Mfg Co Electric heater
US2003175A (en) * 1933-08-12 1935-05-28 Gen Electric Electric heater
US2480903A (en) * 1947-06-25 1949-09-06 Cutler Hammer Inc Tubular heater terminal seal
US2513421A (en) * 1946-10-23 1950-07-04 A Responsabilite Societe Caste Process of manufacturing resistors
US2880298A (en) * 1958-06-02 1959-03-31 Gen Electric Electric heating units
US2897467A (en) * 1955-05-04 1959-07-28 Gen Motors Corp Sheathed tubular electrical heater
US3036368A (en) * 1959-07-28 1962-05-29 Gen Electric End terminal for sheathed tubular heater and method of manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1359400A (en) * 1920-06-22 1920-11-16 Cutler Hammer Mfg Co Electric heater
US2003175A (en) * 1933-08-12 1935-05-28 Gen Electric Electric heater
US2513421A (en) * 1946-10-23 1950-07-04 A Responsabilite Societe Caste Process of manufacturing resistors
US2480903A (en) * 1947-06-25 1949-09-06 Cutler Hammer Inc Tubular heater terminal seal
US2897467A (en) * 1955-05-04 1959-07-28 Gen Motors Corp Sheathed tubular electrical heater
US2880298A (en) * 1958-06-02 1959-03-31 Gen Electric Electric heating units
US3036368A (en) * 1959-07-28 1962-05-29 Gen Electric End terminal for sheathed tubular heater and method of manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571477A (en) * 1968-06-21 1971-03-16 Bert Phillips Protection of oxidizable electric furnace elements at high temperatures
US4965436A (en) * 1973-07-25 1990-10-23 Southport Enterprises Heater unit
US4129774A (en) * 1975-08-28 1978-12-12 Hitachi Heating Appliances Co., Ltd. Filling materials for heating elements
US5380987A (en) * 1993-11-12 1995-01-10 Uop Electric heater cold pin insulation
US5889460A (en) * 1996-05-30 1999-03-30 E.G.O. Elektro-Geratebau Gmbh Electric resistance temperature sensor
EP2056034B1 (en) * 2007-11-01 2017-01-04 Infinity Fluids Corporation Inter-axial inline fluid heater

Similar Documents

Publication Publication Date Title
US2107945A (en) Cathode structure
US3195093A (en) Sheathed electric heating units
US3252122A (en) Sheathed electric heating unit
US4230778A (en) Sodium-sulfur battery with glass electrolyte
US2898395A (en) Spark plug seal
US3311969A (en) Methods of making sheathed electric heating units
US2459282A (en) Resistor and spabk plug embodying
US2962684A (en) Sheathed electric heating units and methods of making the same
US2483839A (en) Method of making electric heaters
US1456110A (en) Seal for electric devices
US3117249A (en) Embedded heater cathode
US2903826A (en) Method of making an electrode structure
US2253577A (en) Resistance device
US3405328A (en) Incandescent lamp with a refractory metal carbide filament
US4721886A (en) High-pressure discharge lamp with precision end seal structure
US2899664A (en) Electric heating units and methods of making the same
US4048406A (en) Electrode for a rechargeable electrochemical current source, and method of making same
US2071571A (en) Two-piece center wire spark plug
US2079354A (en) Vacuum seal
US3088201A (en) Method of making a ceramic-to-metal seal
US2230207A (en) Fuse
US2296045A (en) Spark plug electrode
US3334407A (en) Method of making rupturable containers
US3234633A (en) Method of making a sheathed electric heating unit
US1735831A (en) Electric heater and method of making the same