US3193199A - Apparatus and method of combustion control - Google Patents

Apparatus and method of combustion control Download PDF

Info

Publication number
US3193199A
US3193199A US799734A US79973459A US3193199A US 3193199 A US3193199 A US 3193199A US 799734 A US799734 A US 799734A US 79973459 A US79973459 A US 79973459A US 3193199 A US3193199 A US 3193199A
Authority
US
United States
Prior art keywords
combustion
control
flame
nozzle
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US799734A
Inventor
Allen E Fuhs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US799734A priority Critical patent/US3193199A/en
Application granted granted Critical
Publication of US3193199A publication Critical patent/US3193199A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • FIGURE 1 is a diagrammatical view illustrating one apparatus and method of combustion control.
  • FIGURE 2 is a similar diagrammatical view showing a modified form of the apparatus.
  • a combustion unit suitable to control my apparatus and method includes a nozzle 1 which may be a simple nozzle capable of discharging all components of a combustible mixture or may be an elaborate nozzle assembly involving many jets arranged to discharge the pre-mixed fuel components or separated fuel components. It is to be understood that the combustion unit or assembly is conventional.
  • the nozzle or nozzle structure as the case may be discharges combustion components in such a manner that they will be ignited to produce a flame 2.
  • the flame is all or partially contained within a chamber which includes a wall 3.
  • a small window 4 exposing to view a portion of the flame 2.
  • two or more filters shown as 5 and 6 formed of glass or other material capable of passing radiation of preselected wave-length.
  • the Wave-lengths passed by filters 5 and 6 differ from each other and are selected for the purpose of passing a pre-determined wave length emitted by a particular product of combustion present in the flame; for example, one filter may be selected to pass wave lengths in the region of 4,280 angstrom units and for the purpose of detecting CH radiation and the other filter may be selected to pass wavelengths in the region of 5,080 angstrom units for the detection of C A band width of 100 angstrom units is permissible.
  • the radiations passed by the filters 5 and 6 are detected, such as by the use of a standard photomultiplier tube 7, which might be an RCA type 93l-A.
  • the energy outputs (from the two photomultiplier tubes) are fed into a suitable amplifier arranged to determine the ratio of radiation intensities passed by the filters.
  • a resulting signal proportionate to the radiation intensities is passed from ice the amplifier 8 to a control unit 9 having a mechanical power output capable of operating a valve it! connected with a fuel line 11 which supplies the nozzle 1.
  • control of the flame 2 is effected by control of the fuel supply, air or oxidant being introduced by other means such as by an air intake duct not shown. If desired, both the fuel and the oxidant may be controlled as represented diagrammatically in FIGURE 2.
  • the apparatus here shown involves a pair of nozzles 12 and 13 intended to supply the fuel and oxidant respectively and as in the first described structure the nozzles may be simple jets or elaborate multiple jet structures depending upon the nature of the combustion unit to be controlled.
  • the discharge from the nozzles 17. and 13 impinge in a manner to permit the establishment of a flame 14- within a suitable chamber having Wall 15 provided with a window 16 as in the first described apparatus.
  • the radiations from the flame passing through the window 16 are interrupted by a chopper 17 involving a rotating element carrying a pair or several pairs of filters l8 and 1% selected to pass particular wavelengths.
  • the chopper 17 is rotated by a motor 2% so that the filters 13 and 1) pass successively across the window 16.
  • a mechanism such as a single photomultiplier tube 21 detects alternately the energies of the wavelengths passed by the filters 13 and 19 and the resulting signal is fed into an amplifier 22 having circuitry arranged to determine a ratio of intensities of two selected wavelengths as in the first described apparatus.
  • the signal representing the ratio of radiation intensities is fed into a control unit 23 having two output arranged to control valves 2d and 25 disposed in a fuel line 26 and oxidant line 27 leading to the nozzles 12 and 13.
  • the method of combustion control comprising heating a furnace with a flame burning from a nozzle, regulating by separate intake valves at least two selected combustion constituents being fed to the nozzle, sighting separately from the flame by radiation the wave lengths of the two constituents selected for control, filtering separately the constituent wave lengths for purpose of emitting only the desired wave length, boosting separately with a photomultiplier tube the wave length of each constituent to be controlled, amplifying the signal of each controlled constituent to determine the ratio of radiation intensities passed by the filters, changing the electric signal from the amplifier to mechanical energy in the control unit and said control unit operating the valves to maintain the desired ratio of selected combustion constituents.
  • An apparatus for combustion control by regulation of carbon and carbon hydride in fuel comprising a nozzle for a combustion flame, control valves for individually regulating the feed of these combustion constituents to said nozzle, a filter sighted on the combustion flame and designed toemit only the wave length by radiation attributed to carbon, a second filter similarly sighted and designed to emit only the Wave length of carbon hydride, a photomultiplier tube for each filter operative for detecting the radiations of each constituent, an amplifier for receiving the output of both tubes and designed to hold a preselected ratio within a prescribed range of said combustion constituents and a control unit adapted to convert the electrical signal of the amplifier to mechanical operation of each valve to maintain the desired ratio of said combustion constituents as detected emitted from the nozzle.

Description

July 6, 1965 A, E. FUHS 3,193199 APPARATUS AND METHOD OF COMBUSTION CONTROL Filed March 16, 1959 8 CONTROL AMPLIFIER 7 CONTROL AMPLIFIER JNVENTOR. 19! A EN .5: FI/HS HTTOP/VE/"IS United States Patent 3,193,199 APPARATUS AND METHOD OF COMBUSTION CONTROL Allen E. Fuhs, Evanston, Ill., assignor, by mesne assignments, to the United States of America as represented by the Secretary of the Army Filed Mar. 16, 1959, Ser. No. 799,734 2 Claims. (Cl. 236-15) This invention relates to apparatus and method of combustion control and included in the objects of this invention are:
First, to provide apparatus and method of combustion control which utilizes the ratio of intensities of two or more selected radiations of diiferent wave length occurring in a flame to operate means for controlling the combustion which produces the flame so as to maintain the flame in a preselected condition.
Second, to provide apparatus and method of combustion control of this class which is particularly sensitive to change in the selected radiations, and capable of such quick response as to anticipate and compensate for impending unfavorable change in the combustion apparatus subject to control.
Third, to provide apparatus and method of combustion control which directly monitors a flame to maintain peak economy and/ or stability of operation even under varied demands.
Fourth, to provide apparatus and method of combustion control which may be utilized to control, one, several or all components to be supplied to a fuel mixture.
With the above and other objects in view which may appear hereinafter, reference is directed to the accompanying drawings in which:
FIGURE 1 is a diagrammatical view illustrating one apparatus and method of combustion control.
FIGURE 2 is a similar diagrammatical view showing a modified form of the apparatus.
A combustion unit suitable to control my apparatus and method includes a nozzle 1 which may be a simple nozzle capable of discharging all components of a combustible mixture or may be an elaborate nozzle assembly involving many jets arranged to discharge the pre-mixed fuel components or separated fuel components. It is to be understood that the combustion unit or assembly is conventional.
The nozzle or nozzle structure as the case may be discharges combustion components in such a manner that they will be ignited to produce a flame 2. The flame is all or partially contained within a chamber which includes a wall 3. Provided in the wall is a small window 4 exposing to view a portion of the flame 2. Disposed outside the wall are two or more filters shown as 5 and 6 formed of glass or other material capable of passing radiation of preselected wave-length. The Wave-lengths passed by filters 5 and 6 differ from each other and are selected for the purpose of passing a pre-determined wave length emitted by a particular product of combustion present in the flame; for example, one filter may be selected to pass wave lengths in the region of 4,280 angstrom units and for the purpose of detecting CH radiation and the other filter may be selected to pass wavelengths in the region of 5,080 angstrom units for the detection of C A band width of 100 angstrom units is permissible. The radiations passed by the filters 5 and 6 are detected, such as by the use of a standard photomultiplier tube 7, which might be an RCA type 93l-A. The energy outputs (from the two photomultiplier tubes) are fed into a suitable amplifier arranged to determine the ratio of radiation intensities passed by the filters. A resulting signal proportionate to the radiation intensities is passed from ice the amplifier 8 to a control unit 9 having a mechanical power output capable of operating a valve it! connected with a fuel line 11 which supplies the nozzle 1. In the arrangement shown in FIGURE 1, control of the flame 2 is effected by control of the fuel supply, air or oxidant being introduced by other means such as by an air intake duct not shown. If desired, both the fuel and the oxidant may be controlled as represented diagrammatically in FIGURE 2.
With reference to FIGURE 2, the apparatus here shown involves a pair of nozzles 12 and 13 intended to supply the fuel and oxidant respectively and as in the first described structure the nozzles may be simple jets or elaborate multiple jet structures depending upon the nature of the combustion unit to be controlled. The discharge from the nozzles 17. and 13 impinge in a manner to permit the establishment of a flame 14- within a suitable chamber having Wall 15 provided with a window 16 as in the first described apparatus.
In the arrangement shown in FIGURE 2 the radiations from the flame passing through the window 16 are interrupted by a chopper 17 involving a rotating element carrying a pair or several pairs of filters l8 and 1% selected to pass particular wavelengths. The chopper 17 is rotated by a motor 2% so that the filters 13 and 1) pass successively across the window 16. A mechanism such as a single photomultiplier tube 21 detects alternately the energies of the wavelengths passed by the filters 13 and 19 and the resulting signal is fed into an amplifier 22 having circuitry arranged to determine a ratio of intensities of two selected wavelengths as in the first described apparatus. The signal representing the ratio of radiation intensities is fed into a control unit 23 having two output arranged to control valves 2d and 25 disposed in a fuel line 26 and oxidant line 27 leading to the nozzles 12 and 13.
When the combustion unit is operating properly there will be a corresponding ratio of intensity between two emitting combustion components such as CH and C Experimentation can determine the maximum and minimum ratios of the selected combustion products which are suitable to proper combustion. Detection of approach toward an unstable ratio is virtually instantaneous so that correspondingly quick compensation may be eifected; in fact, detection and correction may be sufficiently rapid that no appreciable change in output of the combustion unit will be noted. This will be true whether the change occurs in the fuel supply or in the oxidant or secondary air supply as change in either component will affect the ratio.
Having thus described certain embodiments and applications of my invention, I do not desire to be limited thereto, but intend to claim all novelty inherent in the appended claims.
I claim:
1. The method of combustion control comprising heating a furnace with a flame burning from a nozzle, regulating by separate intake valves at least two selected combustion constituents being fed to the nozzle, sighting separately from the flame by radiation the wave lengths of the two constituents selected for control, filtering separately the constituent wave lengths for purpose of emitting only the desired wave length, boosting separately with a photomultiplier tube the wave length of each constituent to be controlled, amplifying the signal of each controlled constituent to determine the ratio of radiation intensities passed by the filters, changing the electric signal from the amplifier to mechanical energy in the control unit and said control unit operating the valves to maintain the desired ratio of selected combustion constituents.
2. An apparatus for combustion control by regulation of carbon and carbon hydride in fuel, comprising a nozzle for a combustion flame, control valves for individually regulating the feed of these combustion constituents to said nozzle, a filter sighted on the combustion flame and designed toemit only the wave length by radiation attributed to carbon, a second filter similarly sighted and designed to emit only the Wave length of carbon hydride, a photomultiplier tube for each filter operative for detecting the radiations of each constituent, an amplifier for receiving the output of both tubes and designed to hold a preselected ratio within a prescribed range of said combustion constituents and a control unit adapted to convert the electrical signal of the amplifier to mechanical operation of each valve to maintain the desired ratio of said combustion constituents as detected emitted from the nozzle.
from the flame 7 References Cited by the Examiner UNITED STATES PATENTS Larsen 236-15 X EDWARD J. MICHAEL, Primary Examiner.
FREDERICK L. MATTESON, 3a., FREDERICK KET- TERER, ARTHUR M. HORTON, SAMUEL FEIN- BERG, Examiners.
US799734A 1959-03-16 1959-03-16 Apparatus and method of combustion control Expired - Lifetime US3193199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US799734A US3193199A (en) 1959-03-16 1959-03-16 Apparatus and method of combustion control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US799734A US3193199A (en) 1959-03-16 1959-03-16 Apparatus and method of combustion control

Publications (1)

Publication Number Publication Date
US3193199A true US3193199A (en) 1965-07-06

Family

ID=25176621

Family Applications (1)

Application Number Title Priority Date Filing Date
US799734A Expired - Lifetime US3193199A (en) 1959-03-16 1959-03-16 Apparatus and method of combustion control

Country Status (1)

Country Link
US (1) US3193199A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368753A (en) * 1965-08-16 1968-02-13 Bailey Meter Co Measurement and control of burner excess air
US3404283A (en) * 1966-01-10 1968-10-01 Barnes Eng Co Differential spectral comparator
US3733166A (en) * 1970-05-06 1973-05-15 Land Pyrometers Ltd Control of burners
US3765820A (en) * 1972-02-03 1973-10-16 Mitsubishi Electric Corp Combustion apparatus
US4477245A (en) * 1982-09-03 1984-10-16 The Babcock & Wilcox Company Flame monitoring safety, energy and fuel conservation system
EP0152804A1 (en) * 1984-01-27 1985-08-28 Hitachi, Ltd. Furnace system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2162529A (en) * 1936-03-12 1939-06-13 Westinghouse Electric & Mfg Co Photosensitive apparatus
US2237713A (en) * 1938-09-20 1941-04-08 Battelle Memorial Institute Optical pyrometer
US2306073A (en) * 1939-12-08 1942-12-22 Photoswitch Inc Photoelectric control of heating equipment
US2538428A (en) * 1951-01-16 Combustion brilliancy control
US2652743A (en) * 1950-01-20 1953-09-22 William J Morrow Optical apparatus for measuring temperature
US2682801A (en) * 1952-01-25 1954-07-06 Gen Aniline & Film Corp Color mixture computing device
US2687611A (en) * 1950-03-23 1954-08-31 Honeywell Regulator Co Turbine blade temperature control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2538428A (en) * 1951-01-16 Combustion brilliancy control
US2162529A (en) * 1936-03-12 1939-06-13 Westinghouse Electric & Mfg Co Photosensitive apparatus
US2237713A (en) * 1938-09-20 1941-04-08 Battelle Memorial Institute Optical pyrometer
US2306073A (en) * 1939-12-08 1942-12-22 Photoswitch Inc Photoelectric control of heating equipment
US2652743A (en) * 1950-01-20 1953-09-22 William J Morrow Optical apparatus for measuring temperature
US2687611A (en) * 1950-03-23 1954-08-31 Honeywell Regulator Co Turbine blade temperature control apparatus
US2682801A (en) * 1952-01-25 1954-07-06 Gen Aniline & Film Corp Color mixture computing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368753A (en) * 1965-08-16 1968-02-13 Bailey Meter Co Measurement and control of burner excess air
US3404283A (en) * 1966-01-10 1968-10-01 Barnes Eng Co Differential spectral comparator
US3733166A (en) * 1970-05-06 1973-05-15 Land Pyrometers Ltd Control of burners
US3765820A (en) * 1972-02-03 1973-10-16 Mitsubishi Electric Corp Combustion apparatus
US4477245A (en) * 1982-09-03 1984-10-16 The Babcock & Wilcox Company Flame monitoring safety, energy and fuel conservation system
EP0152804A1 (en) * 1984-01-27 1985-08-28 Hitachi, Ltd. Furnace system

Similar Documents

Publication Publication Date Title
US3894834A (en) Ignition and flame stabilization system for coal-air furnace
US4595353A (en) Burner with ignition device
US4588372A (en) Flame ionization control of a partially premixed gas burner with regulated secondary air
US4043308A (en) Control of the initiation of combustion and control of combustion
US3787171A (en) Closed loop, inert atmosphere, paint line oven heat source
GB1459766A (en) Combustor
US3193199A (en) Apparatus and method of combustion control
US4035131A (en) Control of the initiation of combustion and control of combustion
ES366424A1 (en) Gas burning system arrangement
US5059117A (en) Radiant tube furnace and method of burning a fuel
US4218266A (en) Liquid hydrocarbon-fueled thermo-electric generator with counter-flow type regenerative heat exchanger
US3183864A (en) Method and system for operating a furnace
US2964102A (en) Ignition safety control for fluid fuel burners
Chintala et al. Nonthermal ignition of premixed hydrocarbon-air flows by nonequilibrium radio frequency plasma
ES347988A1 (en) System for stabilizing the supply of air to an ignitor
US3486827A (en) Burner for a flame photometer having a subatmospheric pressure combustion chamber
US2237237A (en) Ignition and combustion control
US3013388A (en) Gas generating apparatus
US2804131A (en) Flame responsive safety control system using prism and light chopper
US2360166A (en) Automatic fuel shutoff means for combustion apparatus
US3241595A (en) Flame detector cooling means
GB1151486A (en) Burner
GB952673A (en) Improvements in and relating to the gasification and subsequent burning of fuel oil
US4034557A (en) Control of the initiation of combustion and control of combustion
US3393967A (en) Light source