US3183187A - Production of monocarboxylic acids from large ring alicyclic alcohols - Google Patents

Production of monocarboxylic acids from large ring alicyclic alcohols Download PDF

Info

Publication number
US3183187A
US3183187A US302740A US30274063A US3183187A US 3183187 A US3183187 A US 3183187A US 302740 A US302740 A US 302740A US 30274063 A US30274063 A US 30274063A US 3183187 A US3183187 A US 3183187A
Authority
US
United States
Prior art keywords
acid
acids
alcohol
grease
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US302740A
Inventor
Jeffrey H Bartlett
Samuel B Lippincott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US30453A external-priority patent/US3121728A/en
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US302740A priority Critical patent/US3183187A/en
Application granted granted Critical
Publication of US3183187A publication Critical patent/US3183187A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/295Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with inorganic bases, e.g. by alkali fusion

Definitions

  • the present invention relates to an improved process for preparing straight chain monocarboxylic acids and salts of these acids. More particularly this invention relates to reacting cyclic secondary alcohols with caustic alkali at high temperatures to obtain high yields of the alkali metal salt of the corresponding straight chain monocarboxylic acid. This salt may of course then be hydrolyzed to the acid if desired. Yet more particularly this invention relates to incorporating .said saltinto a lubricating oil in grease making proportions. Most particularly this invention relates to an improved method of preparing lubricating greases wherein caustic fusion of a cyclic secondary alcohol is carried out in the presence of a lubricating oil.
  • cyclic secondary alcohols may be fused with caustic to obtain high yields of the corresponding straight chain monocarboxylic acid salts.
  • This discovery is surprising since prior to the present it was believed that only primary aliphatic alcohols (including those wherein one of the carbon atoms in the aliphatic chain is part of a ring compound) could be fused with caustic to obtain a monocarboxylic acid salt having the same number of carbon atoms as the starting material.
  • primary aliphatic alcohols including those wherein one of the carbon atoms in the aliphatic chain is part of a ring compound
  • the present invention is of particular importance in that itprovides an additional method for preparing cheap raw J alyst such as a titanium comprising catalyst.
  • the alcohols used in this invention are cyclic secondary alcohols. Thus, in general they have the formula given below.
  • n is a number from 2 to' 30 and each R and R is a radical selected from the group consisting of C to C alkyl groups and a hydrogen atom. In general the total number of carbon atoms in the alcohol will be in the range of 4 to 60.
  • examples of these alicyclic secondary alcohols which may be reacted are the unsubstituted cyclic secondary alcohols such as cyclopentanol, cycloheptanol, cyclohexanol, cyclooctanoL cyclodecanol, cyclododecanol, cyclopentadecanol, cycloeicosanol, cyclotriacontanol, etc.
  • Examples of the substituted mono cyclic secondary alcohols are nonylcyclohexanol, 2,3- or 4-methylcyclohexanol, or mixed methyl cyclohexanols obtained for example by hydrogenation of mixed cresols, dodecylcyclohexanol, methylcyclododecanol, dimethylcyclododecanol, decylcyclododecanol, methylcyclohexadecanol, 3,5,5 trimethylcyclohexanol, etc.
  • Nonylcyclohexanol for example may be prepared from the commercially Widely available nonylphenol by hydrogenation.
  • the alkyl group may of course be attached to any of the carbon atoms of the ring.
  • the present process is carried out at temperatures in the range of 250 to 375 0., preferably 300 to 360 C., specifically 320 to 350 C.
  • the pressures which may be used are from atmospheric to atmospheres, in general atmospheric pressure being satisfactory.
  • the caustic alkali materials which may be used are the alkali metal hydroxides and the free alkali metals themselves. If free metals are used then water or steam must-be injected at high temperatures to form the caustic in situ. In general NaOH and KOH and'mixtures of these materials are preferred. Amounts of caustic alkali utilized should be in the range of 0.8 to 4 moles based on alcohol, preferably 1 to 3 moles, specifically 1.5 moles. Although it is preferred to carry out the reaction under generally anhydrous conditions in the presence of solid caustic alkali it is also of course contemplated that aqueous alkali solutions may be used.
  • Certain metals notably carbon steel, have a detrimental effect on the reactions, and appear to affect adversely the yield of desired products.
  • Chromium alloys of iron and the nickel-containing so-called stainless steels are relatively free from this defect. Accordingly, while it is desirable to avoid the contact of unalloyed iron and ordinary steel with the'reaction mixtures some types of stainless steel may be used. However, it is better to use reactors made of nickel or nickel alloys such as Hastelloy or Inconel. Vessels formed or lined with copper or copper alloys or with cadmium are most advantageous for use in the conduct of the reaction, and arepreferredv When a copper or copper-lined vessel is used with cadmium catalysts, its surface soon becomes plated with cadmium.
  • Catalysts which may be used are cadmium, copper, silver, nickel, lead and zinc, cadmium being preferred.
  • the amount of the catalyst used may vary widely and even traces of catalyst exert a discernible effect. It may be advantageous to add fresh portions of catalyst to the mixture during the course of the reaction to maintain a desired rate of reaction and to insure its completion.
  • the range of catalyst proportions are in the range of 1 atom of catalyst metal for each to 1000 hydroxyl groups. These catalysts may be supplied either as free metals or as their salts.
  • Suitable solvents are high boiling saturated petroleum hydrocarbons (those boiling above 320 C.), e.g., white oils.
  • the salt of the acid may be recovered from the reaction a zone directly or may be purified of unreacted materials by,
  • the salt of the acid is dissolved in the aqueous solution and the salt is then recovered by evaporation or distillation. Further purification may be obtained if desired by contacting the water layer with a light hydrocarbon such as a petroleum ether to remove unreacted alicyclic alcohols or other oil soluble products.
  • a light hydrocarbon such as a petroleum ether to remove unreacted alicyclic alcohols or other oil soluble products.
  • the water-alcohol solution or the caustic fusion product itself may be acidified with a mineral acid, e.g., H 80 HCl, thus springing the monocarboxylic acid which is then separated, e.g., by distillation.
  • Lubricating greases normally consist of lubricating oils thickened by alkali and alkaline earth metal soaps or other thickeners to a solid or semi-solid consistency.
  • the soaps are generally prepared by the neutralization of high molecular weight fatty acids acids or by the saponification of fats which is usually carried out in a portionof the oil to be thickened.
  • cyclic secondary alcohols as a grease-making material introduces no complication into the grease-making procedure. While alkali fusion of the alcohol may be carried out in a separate preliminary acid-forming stage, the greases are preferably produced essentially in a single process step in which the cyclic secondary alcohol is fused with alkali in the lubricating oil base in grease-making proportions and at grease-making conditions, although at somewhat higher temperatures. At the conclusion of the fusion process a finished grease is obtained.
  • the alcohols which will be used in these preparations of greases will in general be higher molecular weight materials such as cyclododecanol, cyclohexadecanol, cyclooctadecanol, etc., preferably cyclododecanol due to its ease of preparation and cheapness.
  • C -C cyclic alcohols are preferred.
  • suspending agents are those which serve simultaneously as grease 'thickeners, such as soaps of high molecular weight fatty acids, silica gel, carbon black, bentones, Attapulgus clay modifications, etc.
  • Soaps particularly sodium soaps of high molecular Weight fatty acids are preferred for this purpose.
  • the melting points of most of these soaps in lubricating oil is rather low, usually below 400 F.
  • these soaps are liquid when used as such and do not entirely counteract the settling tendency of the alkali.
  • This difficulty may be overcome by using the salt, preferably the alkali metal salt, of a low molecular weight acid in addition to the high molecular weight fatty acid soap. In this manner, soap-salt complexes are formed which melt well above 500 F. and thus form an excellent suspending agent.
  • soaps or soap-salt complexes are preferably formed in situ by neutralization of the corresponding acids in the alcohol-oil mixture with alkali added in amounts sulficient for this neutralization and the subsequent fusion which takes place at considerably higher temperatures.
  • High molecular weight acids useful for this purpose include hydrogenated fish oil acids, C C naturally occurring acids of animal or vegetable origin, etc. These acids may be used in amounts ranging from about 2-30 wt. percent based on the finished product.
  • Suitable low molecular weight acids include acetic, furoic, acrylic and similar acids to be used in proportions of about 1-10 wt. percent based on the finished product.
  • Esters of the high and/or .low molecular weight acids may be used in place of the free acids in corresponding proportions. In this case, the alcohol portions of the esters are converted into acids and the corresponding soaps by alkali fusion. If esters of low molecular weight alcohols are used, elevated pressures may be employed to prevent volatilization of the alcohols.
  • esters of non-volatile low molecular weight alcohols such as poly-hydroxy alcohol esters, e.g., sorbitol acetate, glycol acetate, etc. may be used.
  • the high molecular weight type of acids or their esters used for this purpose may also be prepared by alkali fusion of Oxo products.
  • Other conventional thickeners, anti-oxidants, corrosion inhibitors, tackiness agents, load-carrying compounds, viscosity index improvers, olliness agents, and the like may be added prior, during and/or after the fusion process as will be apparent to those skilled in the art.
  • the base oil used as menstrnum during the fusion process should be a mineral lubricating oil.
  • synthetic lubricating oils such as a dibasic acid ester (e.g., di-2-ethyl hexyl sebacate, adipate,
  • polyglycol type synthetic oils such as polyglycol type synthetic oils, esters of di'basic acids and polyhydric alcohols, etc., as well as alkyl silicates, carbonates, formals, acetals, etc. may be used alone or in addition to mineral lubricating oil to bring the grease to V the desired consistency.
  • the oil base preferably comperatures until gas evolution'substantially ceases.
  • the acid formed may be recovered from the reaction mixture after cooling, by dilutionwith water followed by extraction of the oil and any unreacted alcohol with a light hydrocarbon solvent, suchas pentane, hexane, heptane' or the like, and acidification of the aqueous raifinate.
  • a light hydrocarbon solvent such as pentane, hexane, heptane' or the like
  • the. free acid may be purified by vacuum distillation.
  • the acid so prepared may then be introduced into a lubricating oil base stock, other high and/or low molecular weight fatty acids as well as other grease additives may be added and the, mixture may be converted into a grease by'the addition of at least sufficient caustic alkali, preferably in aqueous solution, to neutralize the acids present.
  • the salt derived from the alcohol by alkali fusion should form at least 20 wt. percent and preferably about -50 wt. percent of the grease thickener or about 2.0-20 wt. percent of the finished grease.
  • the remainder of the grease thickener is preferably made up by a suitable soap-salt complex of the type described above.
  • derived from other acids may be about 1:4 to 4:1 and preferably is about 1:1.
  • the grease-making procedure I may be quite generally as follows.
  • a mineral lubricat ing oil base is mixed with solid alkali, preferably in flake or pellet form.
  • the mixture is heated to about 230- 260 C. whereupon the alcohol is slowly added in increments or continuously over a period of about 1-20 hours I under vigorous stirring.
  • a reaction temperature of about 250-320 C., preferably about 260305 C., is main- After all the alcohol has been added, heating at these temperatures is continued until evolution of hydrogen ceases or until the desired conversion has been obtained.
  • the reaction mixture is quenched or allowed to cool and may then be lubricating oil to the desired grease consistency.
  • a similar procedure is employed when the alcohol is subjected to alkali fusion in situ in the presence of suspending agents, such as soaps of high molecular weight fatty acids .or complexes of such soaps with low molecular weight fatty acids salts in accordance with the preferred embodiment of the invention.
  • suspending agents such as soaps of high molecular weight fatty acids .or complexes of such soaps with low molecular weight fatty acids salts in accordance with the preferred embodiment of the invention.
  • Alkali fusion is then carried out substantially as described above, except that less violent stirring is required.
  • the above methyl ester had a sapon-ification number of 261.5' mg. KOH/gm. (theory 262). Its mass spectrogram showed it to be the methyl ester of a C acid. The nuclear magnetic resonance showed that there was only one methyl group in addition to the methyl ester grouping and that all the other hydrogen atoms are very similar. Thus the product is the methyl ester of n-dodecanoic acid.
  • Biol 55 is a base cut oil cm a hydrofined low cold gessttl coastal crude having a viscosity at 40 C. of about 500
  • the heat of reaction caused the temperature to rise to 60 C. whereupon heating was initiated and the temperature was raised to 370 C.
  • the time above 260 C. is
  • the cyclododecanol shows a conversion to the sodium salt of approximately 64.5%. This is desirable in that the remaining unconverted cyclododecanol remains as a plasticizer preventing the extremely hard product when all the alcohol is converted.
  • a process for preparing a lubricating grease which comprises: admixing a mineral lubricating oil with 2-30 weight percent, based on final composition, of a fatty acid having from 12 to 22 carbon atoms, 1 to 10 weight percent, based on final composition, of a low molecular weight carboxylic acid, and a cyclic secondary alcohol represented by the formula presented below wherein n is 2 to 20, wherein each R and R is a radical selected from the group consisting of C to C alkyl groups and a hydrogen atom, and wherein the total number of carbon atoms in the alcohol is 10 to 20, the amount of said cyclic secondary alcohol being sufficient for the salt derived therefrom by subsequent alkali fusion to amount to 2-20 weight percent of the final composition, and themole ratio of the salt derived from said cyclic secondary alcohol to the soap and salt derived from said fatty and carboxylic acids being in the range of 1:4 to 4:1; adding to the resulting admixture sufiicient sodium hydroxide to neutralize all
  • a process for preparing a lubricating grease which comprises admixing a mineral lubricating oil with solid alkali; heating said mixture to about 230 to 260 C., continuously adding for a period of 1 to 20 hours a cyclic secondary alcohol represented by the formula wherein n is 2 to 20, wherein each R and R is a radical composition; maintaining said mixture at a temperature of about 260 to 305 C. throughout said alcohol addition and for a time thereafter sufficient to complete said alkali fusion, quenching said mixture and recovering a grease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

PRODUCTION or United States Patent 3,183,187 MONOCARBOXYLIC ACiDS FROM LARGE RING ALICYCLIC ALCOHGLS .Ieiirey H. Bartlett, New Providence, and Samuel B. Lippiucott, Springfield, NJ assignors to Esso Research and Engineering Company, a corporation of Delaware No Drawing. Original application May 20, 1960, Ser. No. 30,453, now Patent No. 3,121,728, dated Feb. 18, 1964. Divided and this application Aug. 16, 1963, Ser. No. 302,740
'4 Claims. (Cl. 252-41) This application is a division of SN. 30,453, how Patent No. 3,121,728 filed May 20, 1960.
The present invention relates to an improved process for preparing straight chain monocarboxylic acids and salts of these acids. More particularly this invention relates to reacting cyclic secondary alcohols with caustic alkali at high temperatures to obtain high yields of the alkali metal salt of the corresponding straight chain monocarboxylic acid. This salt may of course then be hydrolyzed to the acid if desired. Yet more particularly this invention relates to incorporating .said saltinto a lubricating oil in grease making proportions. Most particularly this invention relates to an improved method of preparing lubricating greases wherein caustic fusion of a cyclic secondary alcohol is carried out in the presence of a lubricating oil.
According to the present invention it has now been discovered that cyclic secondary alcohols may be fused with caustic to obtain high yields of the corresponding straight chain monocarboxylic acid salts. This discovery is surprising since prior to the present it was believed that only primary aliphatic alcohols (including those wherein one of the carbon atoms in the aliphatic chain is part of a ring compound) could be fused with caustic to obtain a monocarboxylic acid salt having the same number of carbon atoms as the starting material. Thus, for example, in US. 2,384,817 it is stated at page 1, column 1, line-s 22 and 23 the reaction is applicable only to primary alcohols It has now been discovered that cyclic secondary alcohols can be reacted as described below to obtain both formation of the monocarboxylic acid salt and opening of the ring. Thus, for example, the
equation for reacting cyclododecanol with caustic is presented below:
Aside from the wide utility which the present invention will have for the preparation of any mono basic aliphatic acid from the corresponding cyclic secondary alcohol the present invention is of particular importance in that itprovides an additional method for preparing cheap raw J alyst such as a titanium comprising catalyst.
. 3,183,187 Patented May 11, 1965 ice Thus, the process for preparing cyclododecatriene or cyclooctadiene is described for example in Angewandte Chemie, vol.
69, Column 112397 (June 7, 1957). According to this process both extremely high conversions and selectivities are obtained to the desired products. These materials can then be converted to the saturated alcohols by well-known methods. Thus, for example, cyclododecatriene can be cheaply converted by selective hydrogenation as described in S.-N. 804,606, now Patent No. 3,022,359, to cyclododecene which may then be hydrated to cyclododecanol with a strong acid such as H Thus, a C cyclic secondary alcohol is cheaply prepared which can then be converted to the corresponding straight chain m'onocarboxylic acid in accordance with the process of this invention.
The alcohols used in this invention are cyclic secondary alcohols. Thus, in general they have the formula given below.
\c. llHOH In this formula n is a number from 2 to' 30 and each R and R is a radical selected from the group consisting of C to C alkyl groups and a hydrogen atom. In general the total number of carbon atoms in the alcohol will be in the range of 4 to 60. Thus, examples of these alicyclic secondary alcohols which may be reacted are the unsubstituted cyclic secondary alcohols such as cyclopentanol, cycloheptanol, cyclohexanol, cyclooctanoL cyclodecanol, cyclododecanol, cyclopentadecanol, cycloeicosanol, cyclotriacontanol, etc. Examples of the substituted mono cyclic secondary alcohols are nonylcyclohexanol, 2,3- or 4-methylcyclohexanol, or mixed methyl cyclohexanols obtained for example by hydrogenation of mixed cresols, dodecylcyclohexanol, methylcyclododecanol, dimethylcyclododecanol, decylcyclododecanol, methylcyclohexadecanol, 3,5,5 trimethylcyclohexanol, etc. Nonylcyclohexanol for example may be prepared from the commercially Widely available nonylphenol by hydrogenation. In all of the substituted compounds the alkyl group may of course be attached to any of the carbon atoms of the ring.
The present process is carried out at temperatures in the range of 250 to 375 0., preferably 300 to 360 C., specifically 320 to 350 C. The pressures which may be used are from atmospheric to atmospheres, in general atmospheric pressure being satisfactory. The caustic alkali materials which may be used are the alkali metal hydroxides and the free alkali metals themselves. If free metals are used then water or steam must-be injected at high temperatures to form the caustic in situ. In general NaOH and KOH and'mixtures of these materials are preferred. Amounts of caustic alkali utilized should be in the range of 0.8 to 4 moles based on alcohol, preferably 1 to 3 moles, specifically 1.5 moles. Although it is preferred to carry out the reaction under generally anhydrous conditions in the presence of solid caustic alkali it is also of course contemplated that aqueous alkali solutions may be used.
In practice, it is desirable to mix the reactants and to heat the resultant mixture until a substantial evolution of hydrogen occurs, as evidenced either by its escape from the reaction zone or by the rate of increase of pressure if the system is closed. The temperature can be either held at this point or increased somewhat if a more rapid rate of reaction is desired. Completion of the reaction will be apparent from the decrease in the rate of hydrogen evolution, at which time approximately the theoretical quantity of gas will be found to have been given off.
Certain metals, notably carbon steel, have a detrimental effect on the reactions, and appear to affect adversely the yield of desired products. Chromium alloys of iron and the nickel-containing so-called stainless steels are relatively free from this defect. Accordingly, while it is desirable to avoid the contact of unalloyed iron and ordinary steel with the'reaction mixtures some types of stainless steel may be used. However, it is better to use reactors made of nickel or nickel alloys such as Hastelloy or Inconel. Vessels formed or lined with copper or copper alloys or with cadmium are most advantageous for use in the conduct of the reaction, and arepreferredv When a copper or copper-lined vessel is used with cadmium catalysts, its surface soon becomes plated with cadmium.
Additionally it may be desired to add a small amount of a catalyst to improve reaction rates and to lower temperatures required in reaction. Catalysts which may be used are cadmium, copper, silver, nickel, lead and zinc, cadmium being preferred. The amount of the catalyst used may vary widely and even traces of catalyst exert a discernible effect. It may be advantageous to add fresh portions of catalyst to the mixture during the course of the reaction to maintain a desired rate of reaction and to insure its completion. For most practical purposes, the range of catalyst proportions are in the range of 1 atom of catalyst metal for each to 1000 hydroxyl groups. These catalysts may be supplied either as free metals or as their salts. With or Without the addition of a catalyst it may also be desired to add a solvent to the reaction zone to increase contacting and thus improve reaction rates. Suitable solvents are high boiling saturated petroleum hydrocarbons (those boiling above 320 C.), e.g., white oils.
The salt of the acid may be recovered from the reaction a zone directly or may be purified of unreacted materials by,
e.g., dissolving it in Water, or a water-C C alcohol mixture. Thus, the salt of the acid is dissolved in the aqueous solution and the salt is then recovered by evaporation or distillation. Further purification may be obtained if desired by contacting the water layer with a light hydrocarbon such as a petroleum ether to remove unreacted alicyclic alcohols or other oil soluble products. Where the free acid is desired the water-alcohol solution or the caustic fusion product itself may be acidified with a mineral acid, e.g., H 80 HCl, thus springing the monocarboxylic acid which is then separated, e.g., by distillation.
In a preferred embodiment the process of the present invention is used to prepare lubricating greases. Lubricating greases normally consist of lubricating oils thickened by alkali and alkaline earth metal soaps or other thickeners to a solid or semi-solid consistency. The soaps are generally prepared by the neutralization of high molecular weight fatty acids acids or by the saponification of fats which is usually carried out in a portionof the oil to be thickened.
The use of cyclic secondary alcohols as a grease-making material introduces no complication into the grease-making procedure. While alkali fusion of the alcohol may be carried out in a separate preliminary acid-forming stage, the greases are preferably produced essentially in a single process step in which the cyclic secondary alcohol is fused with alkali in the lubricating oil base in grease-making proportions and at grease-making conditions, although at somewhat higher temperatures. At the conclusion of the fusion process a finished grease is obtained.
The alcohols which will be used in these preparations of greases will in general be higher molecular weight materials such as cyclododecanol, cyclohexadecanol, cyclooctadecanol, etc., preferably cyclododecanol due to its ease of preparation and cheapness. Thus C -C cyclic alcohols are preferred.
When carrying out the alcohol fusion in the lubricating oil itself so as to form the grease thickening salts in situ in accordance with the preferred embodiment of the invention, it has been observed that the alkali has a strong tendency to settle out of the reaction mixture to the bottom of the reactor in the form of a cake which does not fully participate in the reaction. Highly efiicient stirring or agitation will counteract this tendency. However, in many cases more efficient stirring is required than may be obtained in conventional grease kettles and special equipment would have to be used.
It has been found that the settling tendency of the alkali in the lubricating oil-alcohol mixture is negligible when a sullicient amount of a solid suspending agent is present in the reaction mixture. Most desirable suspending agents are those which serve simultaneously as grease 'thickeners, such as soaps of high molecular weight fatty acids, silica gel, carbon black, bentones, Attapulgus clay modifications, etc.
Soaps, particularly sodium soaps of high molecular Weight fatty acids are preferred for this purpose. However, the melting points of most of these soaps in lubricating oil is rather low, usually below 400 F. Thus, at the high reaction or fusion temperature of about 500 F. or thereabove, these soaps are liquid when used as such and do not entirely counteract the settling tendency of the alkali. This difficulty may be overcome by using the salt, preferably the alkali metal salt, of a low molecular weight acid in addition to the high molecular weight fatty acid soap. In this manner, soap-salt complexes are formed which melt well above 500 F. and thus form an excellent suspending agent.
These soaps or soap-salt complexes are preferably formed in situ by neutralization of the corresponding acids in the alcohol-oil mixture with alkali added in amounts sulficient for this neutralization and the subsequent fusion which takes place at considerably higher temperatures. High molecular weight acids useful for this purpose include hydrogenated fish oil acids, C C naturally occurring acids of animal or vegetable origin, etc. These acids may be used in amounts ranging from about 2-30 wt. percent based on the finished product. Suitable low molecular weight acids include acetic, furoic, acrylic and similar acids to be used in proportions of about 1-10 wt. percent based on the finished product. Esters of the high and/or .low molecular weight acids, particularly those containing mono basic acid esters may be used in place of the free acids in corresponding proportions. In this case, the alcohol portions of the esters are converted into acids and the corresponding soaps by alkali fusion. If esters of low molecular weight alcohols are used, elevated pressures may be employed to prevent volatilization of the alcohols. Of course, esters of non-volatile low molecular weight alcohols, such as poly-hydroxy alcohol esters, e.g., sorbitol acetate, glycol acetate, etc. may be used. Particularly the high molecular weight type of acids or their esters used for this purpose may also be prepared by alkali fusion of Oxo products.
The salts formed by alkali fusion of the alcohols herein described in the presence of other fatty acid soaps consistently yield excellent smooth greases. Other conventional thickeners, anti-oxidants, corrosion inhibitors, tackiness agents, load-carrying compounds, viscosity index improvers, olliness agents, and the like may be added prior, during and/or after the fusion process as will be apparent to those skilled in the art.
The base oil used as menstrnum during the fusion process should be a mineral lubricating oil. After the fusion is completed, synthetic lubricating oils, such as a dibasic acid ester (e.g., di-2-ethyl hexyl sebacate, adipate,
. tained throughout the alcohol addition.
, diluted with further amounts of etc.), polyglycol type synthetic oils, esters of di'basic acids and polyhydric alcohols, etc., as well as alkyl silicates, carbonates, formals, acetals, etc. may be used alone or in addition to mineral lubricating oil to bring the grease to V the desired consistency. The oil base preferably comperatures until gas evolution'substantially ceases. The
acid formed may be recovered from the reaction mixture after cooling, by dilutionwith water followed by extraction of the oil and any unreacted alcohol with a light hydrocarbon solvent, suchas pentane, hexane, heptane' or the like, and acidification of the aqueous raifinate. If desired, the. free acid may be purified by vacuum distillation. The acid so prepared may then be introduced into a lubricating oil base stock, other high and/or low molecular weight fatty acids as well as other grease additives may be added and the, mixture may be converted into a grease by'the addition of at least sufficient caustic alkali, preferably in aqueous solution, to neutralize the acids present. Conventional grease-making conditions including temperatures of about 180-260 C. may be used in this stage. The salt derived from the alcohol by alkali fusion should form at least 20 wt. percent and preferably about -50 wt. percent of the grease thickener or about 2.0-20 wt. percent of the finished grease. The remainder of the grease thickener is preferably made up by a suitable soap-salt complex of the type described above.
derived from other acids may be about 1:4 to 4:1 and preferably is about 1:1.
In order to prepare a grease by alkali fusion of the alcohol in situ in accordance with a more desirable em- I bodiment of the invention, the grease-making procedure I may be quite generally as follows. A mineral lubricat ing oil base is mixed with solid alkali, preferably in flake or pellet form. The mixture is heated to about 230- 260 C. whereupon the alcohol is slowly added in increments or continuously over a period of about 1-20 hours I under vigorous stirring. A reaction temperature of about 250-320 C., preferably about 260305 C., is main- After all the alcohol has been added, heating at these temperatures is continued until evolution of hydrogen ceases or until the desired conversion has been obtained. The reaction mixture is quenched or allowed to cool and may then be lubricating oil to the desired grease consistency.
A similar procedure is employed when the alcohol is subjected to alkali fusion in situ in the presence of suspending agents, such as soaps of high molecular weight fatty acids .or complexes of such soaps with low molecular weight fatty acids salts in accordance with the preferred embodiment of the invention. In this case, all the acids heated at a saponification temperature of about l50-205 1 C. until the-acids are converted to soaps and salts and all the water is volatilized. Alkali fusion is then carried out substantially as described above, except that less violent stirring is required.
The present invention will be more clearly understood from a consideration of the following examples.
The proportion of soap derived from alcohol to soaps and salts 6 EXAMPLE 1 A one gallon nickel reactor, equipped with a stirrer, thermometer, feed line and condenser was charged with 300 g. Primol D solvent (i.e., a highly acid treated naphthenic mineral oil having a boiling range between 395520 C.), 108 g. NaOH pellets and 94 g. KOH pellet-s. After heating the mixture to 320 C., 91 g. of cyclododecanol dissolved in 600 g. of Primol D was added gradually during 45 minutes with the temperature at 320 to 370 C. For most of this period the temperature was at 350360 C. During the course of the reaction 0.6 cu. ft. of gas were evolved.
After allowing the reactor to cool to 270 C. the product was removed by suction and dispersed in 4 liters of water to which was added 500 cc. isopropyl alcohol. This mixture was given three extractions with petroleum ether. The remaining aqueous layer was acidified with HCl and the acid removed by extraction with petroleum ether. On evaporation a residue of 64 g. of crude acid was obtained. The crude acid mixture was then esterified with methanolusing toluene sulfonic acid as a catalyst. The ester was washed with 5% NaOH and then with water and then evaporated on the steam bath. The total ester recoveredwas 51 g. which Was distilled through a spinning band column. In the distillation 36.7 g. of product was obtained having a boiling range of 98 C.
w 6.5 mm. to 88 C. 3.5 mm.
The above methyl ester had a sapon-ification number of 261.5' mg. KOH/gm. (theory 262). Its mass spectrogram showed it to be the methyl ester of a C acid. The nuclear magnetic resonance showed that there was only one methyl group in addition to the methyl ester grouping and that all the other hydrogen atoms are very similar. Thus the product is the methyl ester of n-dodecanoic acid.
;EXAMPLE 2 Preparation of sodium soap thickened grease by fusion of cyclododecanol in mineral oil Diol 55 2 r. 68.0 i Hydrofol acids are hydrogenated fish oil acids having a degree of saturation corresponding to commercial stearic acid.
Biol 55 is a base cut oil cm a hydrofined low cold gessttl coastal crude having a viscosity at 40 C. of about 500 Preparation: The cyclododecanol, Hydrofol Acids 51 and the mineral oil (Diol 55) were charged to a fire treated'kettle and intimately mixed. To the mixing materials was added the acetic acid followed immediately with a 40% aqueous solution of the sodium hydroxide.
The heat of reaction caused the temperature to rise to 60 C. whereupon heating was initiated and the temperature was raised to 370 C. The time above 260 C. is
given as follows:
Minutes: Temperature, C. 0 260 10 290 20 320 40' 330 50 34S 55 360 1 370 260 1 Heating discontinued.
During the cooling cycle the phenyl u-naphthylamine was added at 120 C. and the grease further cooled to C. A sample taken for free alkalinity showed an H excess of 1.0% calculated as NaOH. This free alkalinity was reduced to 0.4% by the addition of suflicient .Hydrofol Acids 51 (3.0% sodium hydroxide) as a 40% aqueous solution, the water being boiled off from thegrease. The grease was finished by Morehouse Milling at 0.005" clearance.
Properties:
Appearance Excellent, smooth homogeneous product. Dropping point, F. 500+. Penetrations, 77 F., mm./l:
Unworked 265. Worked, 60 strokes 270. Worked, 10,000 strokes 269. Water solubility Soluble. Wheel bearing test Pass.
Slump None. Leakage, grams 0.0. Norma Hofimann oxidation, hours, to p.s.i. drop in 0 198. Lubrication life, hours, 250
F.-10,000 r.p.m. 2000+.
In the above preparation, the cyclododecanol shows a conversion to the sodium salt of approximately 64.5%. This is desirable in that the remaining unconverted cyclododecanol remains as a plasticizer preventing the extremely hard product when all the alcohol is converted.
EXAMPLE 3 Caustic fusion of cyclolzexanol A one gallon nickel reactor equipped with a stirrer, condenser, thermometer and feed line was charged with:
700 g. Primol D' 370 g. NaOH flakes 330 g. KOH flakes After heating the above mixture to 345 C., 600 g. cyclohexanol were added gradually during 5 hours at 325 to 345 C. This mixture was allowed to cool to 290 C. and then removed from the reactor by means of suction. During the reaction 6.28 cu. ft. of gas was evolved which was measured by.means of a wet test meter. The total product removed from the reactor was 1780 g. which was added to 6 liters of water. This was then given three extractions with petroleum ether to remove Primol D and any unreacted cyclohexanol. The aqueous layer was then acidified with HCl and the crude acid layer removed and evaporated on the steam bath to remove traces of petroleum ether. Yield=504 g. of crude evaporated acid having an acid number of 439.8 mg. KOH/g.
A portion of the crude acid (500 cc.) was distilled in an Oldershaw column at /1 reflux ratio theoretical plates). In the distillation 36-8 cc. were obtained with a boiling point of 198206.5 C. which is in the range of caproic acid having an acid number of 479.1 mg. KOH/ g. (theoretical for caproic acid=482.9 mg. KOH/gm) EXAMPLE 4 iCaustic fusion of 3,5,5, trimethylcyclohexanol The same reactor as used in Examples 1 and 3 was charged with:
800 g. Primol D 555g- NaOH pellets 500 g. KOH pellets After heating the mixture to 320 C. there was gradually added 1500 g. 3,5,5 trimethylcyclohexanol during'2 hours with the temperature being maintained at 320340 C. The resulting product was allowed to cool to 270 C. during 1 hour, then removed from the reactor by means of 'leaving a residue of 1171 g. of crude acids having an acid number of 305 mg. KOH/ gm. A 975 g. portion of the acid was distilled and a main cut of 531 g. was obtained boiling at 152l57 C. 50mm. having an acid number of 339.4 mg. KOH per gm. and a hydroxyl number of 16 mg. KOH per gm.
It is to be understood that this invention is not limited to the specific examples, which have been offered merely as illustrations, and that modifications may be made without departing from the spirit of this invention.
What is claimed is:
1. A process for preparing a lubricating grease which comprises: admixing a mineral lubricating oil with 2-30 weight percent, based on final composition, of a fatty acid having from 12 to 22 carbon atoms, 1 to 10 weight percent, based on final composition, of a low molecular weight carboxylic acid, and a cyclic secondary alcohol represented by the formula presented below wherein n is 2 to 20, wherein each R and R is a radical selected from the group consisting of C to C alkyl groups and a hydrogen atom, and wherein the total number of carbon atoms in the alcohol is 10 to 20, the amount of said cyclic secondary alcohol being sufficient for the salt derived therefrom by subsequent alkali fusion to amount to 2-20 weight percent of the final composition, and themole ratio of the salt derived from said cyclic secondary alcohol to the soap and salt derived from said fatty and carboxylic acids being in the range of 1:4 to 4:1; adding to the resulting admixture sufiicient sodium hydroxide to neutralize all acids present and to convert by subsequent alkali fusion said cyclic secondary alcohol into the corresponding acid salt; heating the admixture to a saponification temperature in the range of to 205 C. until all acids originally added are converted to soaps and salts, and the Water present is substantially removed by volatilization; then further heating the admixture to an alkali fusion temperature in the range of 260 to 305 C.; maintaining the admixture at said alkali fusion temperature until gas evolution recedes substantially; and cooling the thus heated admixture to obtain a lubricating grease composition.
2. The process of claim 1 in which the cyclic secondary alcohol is cyclododecanol.
3. The process of claim 1 in which the cyclic secondary alcohol is nonylcyclohexanol.
4. A process for preparing a lubricating grease which comprises admixing a mineral lubricating oil with solid alkali; heating said mixture to about 230 to 260 C., continuously adding for a period of 1 to 20 hours a cyclic secondary alcohol represented by the formula wherein n is 2 to 20, wherein each R and R is a radical composition; maintaining said mixture at a temperature of about 260 to 305 C. throughout said alcohol addition and for a time thereafter sufficient to complete said alkali fusion, quenching said mixture and recovering a grease.
10 Chitwood 260-531 Sutton 260-531 X Hill 260-413 Bartlett et a1. 252-41 Morway et a1 252-41 Sutton 260-531 Bartlett et a1 252-41 X DANIEL E. WYMAN, Primary Examiner.

Claims (1)

1. A PORCESS FOR PREPARING A LUBRICATING GREASE WHICH COMPRISES: ADMIXING A MINERAL LUBRICATING OIL WITH 2-30 WEIGHT PERCENT, BASED ON FINAL COMPOSITION, OF A FATTY ACID HAVING FROM 12 TO 22 CARBON ATOMS, 1 TO 10 WEIGHT PERCENT, BASED ON FINAL COMPOSITON, OF A LOW MOLECULAR WEIGHT CARBOXYLIC ACID, AND A CYCLIC SECONDARY ALCOHOL REPRESENTED BY THE FORMULA PRESENTED BELOW
US302740A 1960-05-20 1963-08-16 Production of monocarboxylic acids from large ring alicyclic alcohols Expired - Lifetime US3183187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US302740A US3183187A (en) 1960-05-20 1963-08-16 Production of monocarboxylic acids from large ring alicyclic alcohols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30453A US3121728A (en) 1960-05-20 1960-05-20 Production of monocarboxylic acids from large ring alicyclic alcohols
US302740A US3183187A (en) 1960-05-20 1963-08-16 Production of monocarboxylic acids from large ring alicyclic alcohols

Publications (1)

Publication Number Publication Date
US3183187A true US3183187A (en) 1965-05-11

Family

ID=26706058

Family Applications (1)

Application Number Title Priority Date Filing Date
US302740A Expired - Lifetime US3183187A (en) 1960-05-20 1963-08-16 Production of monocarboxylic acids from large ring alicyclic alcohols

Country Status (1)

Country Link
US (1) US3183187A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926068A (en) * 1932-07-21 1933-09-12 Dow Chemical Co Oxidation of alcohols
US2384817A (en) * 1942-09-05 1945-09-18 Carbide & Carbon Chem Corp Catalytic alkaline oxidation of alcohols
US2727050A (en) * 1952-11-19 1955-12-13 Standard Oil Co Caustic oxidation of alcohols and aldehydes
US2766267A (en) * 1955-06-29 1956-10-09 Standard Oil Co Organic acids from oxygen-bearing organic compounds
US2801974A (en) * 1952-12-22 1957-08-06 Exxon Research Engineering Co Grease process utilizing the alkali fusion products of cyclic alcohols
US2801972A (en) * 1952-12-01 1957-08-06 Exxon Research Engineering Co Manufacture of lubricating greases by alkali fusion of ether alcohols
US2926182A (en) * 1956-06-18 1960-02-23 Standard Oil Co Caustic oxidation of alcohols
US3121728A (en) * 1960-05-20 1964-02-18 Exxon Research Engineering Co Production of monocarboxylic acids from large ring alicyclic alcohols

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926068A (en) * 1932-07-21 1933-09-12 Dow Chemical Co Oxidation of alcohols
US2384817A (en) * 1942-09-05 1945-09-18 Carbide & Carbon Chem Corp Catalytic alkaline oxidation of alcohols
US2727050A (en) * 1952-11-19 1955-12-13 Standard Oil Co Caustic oxidation of alcohols and aldehydes
US2801972A (en) * 1952-12-01 1957-08-06 Exxon Research Engineering Co Manufacture of lubricating greases by alkali fusion of ether alcohols
US2801974A (en) * 1952-12-22 1957-08-06 Exxon Research Engineering Co Grease process utilizing the alkali fusion products of cyclic alcohols
US2766267A (en) * 1955-06-29 1956-10-09 Standard Oil Co Organic acids from oxygen-bearing organic compounds
US2926182A (en) * 1956-06-18 1960-02-23 Standard Oil Co Caustic oxidation of alcohols
US3121728A (en) * 1960-05-20 1964-02-18 Exxon Research Engineering Co Production of monocarboxylic acids from large ring alicyclic alcohols

Similar Documents

Publication Publication Date Title
US2417429A (en) Complex basic soap greases
US2976242A (en) Lubricating grease compositions
US2712527A (en) Improved lubricating greases containing dihydroxy stearic acid soap
US3121728A (en) Production of monocarboxylic acids from large ring alicyclic alcohols
US2019022A (en) Preparation of high molecular weight alcohols
US3183187A (en) Production of monocarboxylic acids from large ring alicyclic alcohols
US2875244A (en) Dicarboxylic acids from dicyclopentadienes
US2877181A (en) Stabilized calcium fatty acid base grease
US2801974A (en) Grease process utilizing the alkali fusion products of cyclic alcohols
US2891084A (en) Method of preparing same
US2801971A (en) Manufacture of lubricating greases by the in situ alkali fusion of alcohols
US2079403A (en) Reduction of acyloins
US2880174A (en) Soap-salt complex thickened greases
US3389084A (en) Lubricating grease containing odd and even-numbered fatty acids
US2801973A (en) Grease process utilizing the alkali fusion of aldehydes
US2206167A (en) Process for manufacturing fatty esters
US2515909A (en) Glyoxal-tertiary-butyl cresol condensation products
US3287405A (en) Production of carboxylic acids by the alkali fusion of 1, 2-epoxycycloalkanes
US2962441A (en) Alkali fusion products of cyclohexenones in lubricant manufacture
US2375495A (en) Catalytic hydrogenation processes
US3125523A (en) Lubricating greases containing salts of
US2801969A (en) Lubricating greases thickened with soaps obtained by alkali fusion of amino alcohols
US3021365A (en) Process for the manufacture of sorbic acid
US2779736A (en) Production of lubricating greases from oxo esters
US3010901A (en) Lubricating grease compositions containing a salt of an alicyclic acid