US3177159A - Hydroisomerization of olefin - Google Patents
Hydroisomerization of olefin Download PDFInfo
- Publication number
- US3177159A US3177159A US162601A US16260161A US3177159A US 3177159 A US3177159 A US 3177159A US 162601 A US162601 A US 162601A US 16260161 A US16260161 A US 16260161A US 3177159 A US3177159 A US 3177159A
- Authority
- US
- United States
- Prior art keywords
- catalyst
- nickel
- tungsten
- hydroisomerization
- olefins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001336 alkenes Chemical class 0.000 title description 23
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title description 4
- 239000003054 catalyst Substances 0.000 claims description 64
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 30
- 229910052721 tungsten Inorganic materials 0.000 claims description 30
- 239000010937 tungsten Substances 0.000 claims description 30
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical class [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 51
- 229910052759 nickel Inorganic materials 0.000 description 24
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 9
- 238000005984 hydrogenation reaction Methods 0.000 description 8
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000011820 acidic refractory Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- -1 hexene-l Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/049—Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/13—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation with simultaneous isomerisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/12—Silica and alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/02—Sulfur, selenium or tellurium; Compounds thereof
- C07C2527/04—Sulfides
- C07C2527/047—Sulfides with chromium, molybdenum, tungsten or polonium
- C07C2527/049—Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
Definitions
- This invention relates to a process for the catalytic conversion of unbranched or lightly branched hydrocarbons into branched or more highly branched hydrocarbons having the same number of carbon atoms. More particularly, the process relates to the isomerization of normal olefins to isoparaflins having the same number of carbon atoms. The invention more particlularly relates to the application of a special catalyst for carrying out the isomerization.
- olefins can be converted to the corresponding saturated hydrocarbons by hydrogenation, usually by a catalytic process employing a catalyst comprising a hydrogenation component on an inert support, such as the conventional cobalt molybdenum on alumina catalyst.
- a catalytic process employing a catalyst comprising a hydrogenation component on an inert support, such as the conventional cobalt molybdenum on alumina catalyst.
- the Research octane rating of normal olefins is relatively high, the Research octane rating of the normal paraifin product obtained by simple hydrogenation is often very much lower. Therefore, simple hydrogenation processes have not been looked upon with favor since the refiner can rarely tolerate the loss in Research octane rating.
- the catalyst should be selective and stable, i.e., the catalyst should have the ability to convert "ice the non-highly branched olefins into highly branched parafiins for an extended period of time. It isgenerally considered that selectivity is a measure of the ability of the catalyst to provide ahigh ratio of highly branched hydrocarbons to unbranched or lightly branched hydrocarbons whereas stability is a measure of the ability of the catalyst to convert olefins into paratfins.
- a hydroisomerization.catalyst having a high selectivity is comprised of nickel sulfide on an acid-acting support such as acidic refractory oxides.
- nickel sulfide on an acid-acting support such as acidic refractory oxides.
- the ratio of isoparafiin to normal paraffin in the product is at least 7:1.
- the nickel sulfide catalyst rapidly loses its ability to convert the olefin to parafiins. Therefore, as olefins begin to appear in the product in substantial quantities, it is the practice to increase the conversion temperature to maintain the desired degree of saturation. Ultimately, however, usually after only a few hundred hours operation, a point is reached where; the conversion temperature has been raised to the maximum temperature desired for the process and it becomes necessary to interrupt the process and to reactivate or renew .the catalyst.
- the amount of nickel in the hydroisomerization catalyst can vary within wide limits and generally is in the range of from about 0.5 to about 20% by weight based on the total catalyst.
- the amount of nickel is preferably in the range from about 6 to about 12% by weight based on the total catalyst.
- the atomic ratio of nickel to tungsten in the catalyst should be greater than 10:1 and preferably greater than 15:1. With a catalyst containing higher proportion of tungsten, that is at a nickel to tungsten atomic ratio of less than 10:1 the selectivity, although high initially, levels out after a few hours at a level which is about the same as that obtained with a conventional hydrogenation catalyst such as cobalt molybdenum on alumina. On the-other hand, to obtain the benefits of the invention to an appreciable degree, the nickel to tungsten ratio should be not more than about 150:1 and preferably no more than about 125:1. A particularly preferred range for the nickelztungsten atomic ratio is about 20:1 to :1.
- tungsten and nickel components of the catalyst are intimately combined with an acid-acting catalyst such as the acid-acting refractory oxides.
- an acid-acting catalyst it is meant those which when absorbing butter yellow and still other Weaker basic indicators, show a color change of these indicators, indicating the transition to the acid form.
- Suitable acid-acting catalyst for the dual function hydroisomerization catalyst of the invention are compounds of silica and alumina such as silica-alumina cracking catalyst, compounds of silica and zirconium dioxide, compounds of boron trioxide and alumina, comacting catalyst, for instance silica-alumina cracking catalyst, by any suitable method known per se.
- the tungsten and nickel can be applied byimpregnating the acid catalyst with a solution of a salt of the corresponding metal, for example, nickel nitrate and silicotungstic acid, which is then followed by drying and calcining.
- the tungsten and nickel are converted at least in part to the sulfide form before use in the hydroisomerization process.
- the catalyst can be sulfided before placement in the reaction vessel or it can be sulfided in situ within the reactor vessel-
- the sulfiding can bevcarried out by any manner conventionally known in the art, such as by contacting the catalyst with a mixture of hydrogensulfide and hydrogen or by contacting the catalyst at a low temperature with a hydrocarbon containing a small amount of decomposable sulfur compound such as about 1-3%' by volume carbon disulfide.
- Theprocess of the invention isparticularly suitable for the conversion of unbranched or lightly branched olefins boiling within the gasoline boiling range into more highly branched parafiins.
- the process is especially suitable for the conversion of unbranched or'lightly branched olefins having from 4 to 8 carbon atoms per molecule into more highly. branched paraflinic hydrocarbons.
- the olefinic starting material can be one or more olefins or can be a mixture of one or more olefins andother hydrocarbons.
- the olefinic starting material to be converted is generally passed over the dual function catalyst at a liquid hourly space velocity of from about 0.5 to about barrels of liquid hydrocarbons per hour per. barrel of catalyst, although lower orhigher space velocities may also be used.
- the conversion of olefinsin the present process is carried out in the presence ofhydrogen and at an elevated pressure, preferably at a total pressure not exceeding v1500 pounds per square inch, and'in particular at a total pressure from about 150 to about 1500 pounds per square "inch.
- the 'hydrogen-partial pressure may varywithin naphtha.-
- the sulfiding temperature was raised from approximately 270 F. to'the desired hydroisomerization wide limits and is preferably from about 50% to aboutv 95% of the total pressure.
- Purehydrogen is not necessarily used, as hydrogen containing gases, such "as the hydrogen rich'gases from a reforming process, are also suitable.
- Conversion of the olefin is carried outat an elevated temperature generally in the range of from 400 to 900 F. and preferably 500". to 750 F.
- EXAMPLE I A series of catalytic compounds comprising silica- .alumina, nickel sulfide and tungsten sulfide were prepared in the following manner.
- Total volume of impregnating 4 7 solution used was about 0.9 cc. per gram-of silicaalumina.
- the wetted pellets were allowed to stand for approximately 16 to 20 hours, and were then dried with stirring, under. a heat lamp. The, catalyst was then dried for an additional 3 hours at 266 F. in a vacuum. The
- the catalysts Prior to use, the catalysts weresulfided in the reaction vessel, using 3% by volume carbon disulfide in light temperature at the rate of about 55 F. per hour.
- Catalysts A, B, C, and D contained 0.25%, 1.0%, 2.5% and 10.0% by weight tungsten, respectively, which provided a nickel to tungsten atomic ratio of 81.5, 20.4; 8.2, and 2.0, respectively.
- Catalyst E contained 9.9% by'weight nickel and no tungsten.
- the five catalysts wereindividually employed in the hydroisomerization of a wide boilingrange (120-365 F.) hydrocarbon fraction comprising on a volume basis approximately 75% cracked gasoline and 25% straightrun naphtha. Properties of the hydrocarbon fraction are given in Table I.
- tungsten tothe nickel catalyst improved stability greatly, as indicated by a run life of about 735 and 1125 hours obtained for catalysts A and B, respectively, compared with a run life of only 650 hours obtained'for catalyst E,-which contained no tungsten.
- selectivity for catalysts A through E was 6.0, 3.5, 2.3, 2.3, and 6.8, respectively.
- the selectivity of 2.3 for catalysts C and D was substantially the same as that obtained with a'conventional cobalt molybdenum hydrogenationcatalyst under the same conditions.
- the amount of tungsten added to the nickel catalyst should be kept relatively low so as to obtain the advantages of the hydroisomerization conversion.
- a catalyst which comprises nickel and tungsten deposited on an acid-actingsupport, the atomic ratio of nickel to tungsten being from about 10 to 1 to about 150 to 1, the amount of nickel being from about 0.5 to about 20% by weight, based on the total catalyst, and said nickel and tungsten being in the form of a sulfide.
- a catalyst which comprises nickel and tungsten deposited on an acid-acting refractory mode support, the atomic ratio of nickel to tungsten being from about 10 to 1 to about 150 to 1, the amount of nickel being from about 0.5 to about 20% by weight, based on the total catalyst, and said nickel and tungsten being in the form of a sulfide,
- a catalyst which comprises nickel and tungsten deposited on silica-alumina, the atomic ratio of nickel to tungsten being from about 10 to 1 to about 150 to 1, the amount of nickel being from about 0.5 to about 20% by weight, based on the total catalyst, and said nickel and tungsten being in the form of a sulfide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL287188D NL287188A (enrdf_load_stackoverflow) | 1961-12-27 | ||
US162601A US3177159A (en) | 1961-12-27 | 1961-12-27 | Hydroisomerization of olefin |
DE1962S0083061 DE1242200C2 (de) | 1961-12-27 | 1962-12-24 | Verfahren zur katalytischen Umwandlung unverzweigter oder wenig verzweigter olefinischer Kohlenwasserstoffe in gesaettigte Kohlenwasserstoffe mit verzweigten oder staerker verzweigten Kohlenstoffketten in Anwesenheit von Wasserstoff und eines Nickel undWolfram auf Siliziumdioxyd-Aluminiumoxyd enthaltenden Katalysators |
GB48596/62A GB962071A (en) | 1961-12-27 | 1962-12-24 | A process for the conversion of unbranched or sparsely branched olefinic hydrocarbons into saturated hydrocarbons having a branched or more highly branched carbon chain,respectively |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US162601A US3177159A (en) | 1961-12-27 | 1961-12-27 | Hydroisomerization of olefin |
Publications (1)
Publication Number | Publication Date |
---|---|
US3177159A true US3177159A (en) | 1965-04-06 |
Family
ID=22586344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US162601A Expired - Lifetime US3177159A (en) | 1961-12-27 | 1961-12-27 | Hydroisomerization of olefin |
Country Status (4)
Country | Link |
---|---|
US (1) | US3177159A (enrdf_load_stackoverflow) |
DE (1) | DE1242200C2 (enrdf_load_stackoverflow) |
GB (1) | GB962071A (enrdf_load_stackoverflow) |
NL (1) | NL287188A (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3696160A (en) * | 1970-03-26 | 1972-10-03 | Exxon Research Engineering Co | Selective hydrogenation of diolefins |
US4032591A (en) * | 1975-11-24 | 1977-06-28 | Gulf Research & Development Company | Preparation of alpha-olefin oligomer synthetic lubricant |
WO1997028106A3 (en) * | 1996-02-02 | 1998-10-29 | Exxon Research Engineering Co | Hydroisomerization with reduced hydrocracking |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2554282A (en) * | 1946-09-12 | 1951-05-22 | Standard Oil Dev Co | Lubricating oil manufacture |
US2595772A (en) * | 1949-12-08 | 1952-05-06 | Standard Oil Dev Co | Method of preparing catalysts |
US2744052A (en) * | 1955-02-25 | 1956-05-01 | Shell Dev | Hydrogenation of hydrocarbon oils, tungsten, molybdenum, and nickel containing catalysts therefor and their preparation |
US2943127A (en) * | 1957-11-05 | 1960-06-28 | Pure Oil Co | Hydrocarbon isomerization process and catalyst treatment |
US2982802A (en) * | 1957-10-31 | 1961-05-02 | Pure Oil Co | Isomerization of normal paraffins |
GB878035A (en) * | 1959-07-13 | 1961-09-20 | Shell Int Research | Improvements in or relating to the catalytic isomerization of olefinic hydrocarbons |
US3078238A (en) * | 1959-07-24 | 1963-02-19 | Gulf Research Development Co | Hydrogenation catalyst and method of preparation |
US3116232A (en) * | 1961-12-01 | 1963-12-31 | Shell Oil Co | Process for upgrading cracked gasoline fractions |
-
0
- NL NL287188D patent/NL287188A/xx unknown
-
1961
- 1961-12-27 US US162601A patent/US3177159A/en not_active Expired - Lifetime
-
1962
- 1962-12-24 DE DE1962S0083061 patent/DE1242200C2/de not_active Expired
- 1962-12-24 GB GB48596/62A patent/GB962071A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2554282A (en) * | 1946-09-12 | 1951-05-22 | Standard Oil Dev Co | Lubricating oil manufacture |
US2595772A (en) * | 1949-12-08 | 1952-05-06 | Standard Oil Dev Co | Method of preparing catalysts |
US2744052A (en) * | 1955-02-25 | 1956-05-01 | Shell Dev | Hydrogenation of hydrocarbon oils, tungsten, molybdenum, and nickel containing catalysts therefor and their preparation |
US2982802A (en) * | 1957-10-31 | 1961-05-02 | Pure Oil Co | Isomerization of normal paraffins |
US2943127A (en) * | 1957-11-05 | 1960-06-28 | Pure Oil Co | Hydrocarbon isomerization process and catalyst treatment |
GB878035A (en) * | 1959-07-13 | 1961-09-20 | Shell Int Research | Improvements in or relating to the catalytic isomerization of olefinic hydrocarbons |
US3078238A (en) * | 1959-07-24 | 1963-02-19 | Gulf Research Development Co | Hydrogenation catalyst and method of preparation |
US3116232A (en) * | 1961-12-01 | 1963-12-31 | Shell Oil Co | Process for upgrading cracked gasoline fractions |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3696160A (en) * | 1970-03-26 | 1972-10-03 | Exxon Research Engineering Co | Selective hydrogenation of diolefins |
US4032591A (en) * | 1975-11-24 | 1977-06-28 | Gulf Research & Development Company | Preparation of alpha-olefin oligomer synthetic lubricant |
WO1997028106A3 (en) * | 1996-02-02 | 1998-10-29 | Exxon Research Engineering Co | Hydroisomerization with reduced hydrocracking |
Also Published As
Publication number | Publication date |
---|---|
DE1242200C2 (de) | 1967-12-07 |
GB962071A (en) | 1964-06-24 |
DE1242200B (de) | 1967-06-15 |
NL287188A (enrdf_load_stackoverflow) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2983670A (en) | Hydrocracking process and catalyst | |
EP0064372B1 (en) | Silica-containing catalytic composite and hydrocarbon conversion processes using it | |
US5986158A (en) | Process for alkylating hydrocarbons | |
US3149180A (en) | Hydroisomerization of olefin hydrocarbons | |
US4403044A (en) | Process for carrying out catalytic conversions | |
US3943053A (en) | Selective hydrogenation of aromatics and olefins in hydrocarbon fractions | |
US3649523A (en) | Hydrocracking process and catalyst | |
US3116345A (en) | Process for production of branch chain hydrocarbons from propene | |
US3132110A (en) | Coprecipitated alumina-zirconium oxide sulfate-containing catalyst | |
US4177219A (en) | Process for selective ethyl scission of ethylaromatics to methylaromatics | |
US4175033A (en) | Hydroprocessing of hydrocarbons over nickel, moly, platinum catalyst | |
US4447556A (en) | Hydrocarbon conversion catalyst and use thereof | |
US4151071A (en) | Dehydrocyclization process | |
US3092567A (en) | Low temperature hydrocracking process | |
US4202996A (en) | Hydrocarbon isomerization process | |
US4049576A (en) | Platinum-palladium catalyst for selective hydrogenation of aromatics and olefins in hydrocarbon fractions | |
US3177159A (en) | Hydroisomerization of olefin | |
US4400571A (en) | Hydrocarbon isomerization process | |
US3116232A (en) | Process for upgrading cracked gasoline fractions | |
US2926207A (en) | Isomerization catalysts and process | |
US3153627A (en) | Catalytic process | |
US2311498A (en) | Aviation fuel | |
US3182097A (en) | Hydrocarbon conversion process | |
US3617517A (en) | Hydroforming catalyst | |
US4100058A (en) | Hydroprocessing of hydrocarbons |