US3164141A - Volumetric controlled crankcase ventilation systems - Google Patents

Volumetric controlled crankcase ventilation systems Download PDF

Info

Publication number
US3164141A
US3164141A US152709A US15270961A US3164141A US 3164141 A US3164141 A US 3164141A US 152709 A US152709 A US 152709A US 15270961 A US15270961 A US 15270961A US 3164141 A US3164141 A US 3164141A
Authority
US
United States
Prior art keywords
crankcase
volumetric
vapors
valve
ventilation systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US152709A
Inventor
Oscar F Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US152709A priority Critical patent/US3164141A/en
Priority to GB41817/62A priority patent/GB1029817A/en
Priority to GB47069/65A priority patent/GB1029818A/en
Priority to US443729A priority patent/US3241537A/en
Application granted granted Critical
Publication of US3164141A publication Critical patent/US3164141A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M13/022Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure using engine inlet suction
    • F01M13/023Control valves in suction conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0438Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/34Lateral camshaft position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/19Crankcase ventilation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7847With leak passage
    • Y10T137/7848Permits flow at valve interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7869Biased open
    • Y10T137/7871Weight biased

Definitions

  • This invention relates to ventilation systems for the crankcase and related chambers for internal combustion engines. More particularly, it relates to a volumetric control for such systems. v k
  • blow-by gases and vapors such as water and unburned fuel
  • These 'blow-by gases and vapors occur by leakages past the cylinder during the cycle of operation and, if not removed, contaminate the lubricating oil.
  • Modern lubricants in use today contain many additives for suspending and emulsifying extraneous particles picked up from the atmosphere and blow-by vapors, plus gums, tars and acids generated by the combustion process. Ventilating or scavenging systems have been provided for removing these undesirable particles into the atmosphere.
  • crankcase ventilation system is capable of volumetrically controlling the connection between the crankcase chambers and the intake manifold.
  • a yet further object of thisinvention is to provide a unique valve for controllingrflow volume between the engine which adequately controls the flow volume to the intake manifold of said engine.
  • a yet additional object is to provide by the accumulation of gums, tars, corrosive vapors, which might cause other valves to stick under the changing manifold vacuum conditions.
  • FIGURE 1 is a sectional View of the volumetric control valve for use with this invention in the operative condition of the highest manifold vacuum.
  • FIGURE 2 is a sectional view of the volumetric control valve of this invention in the position of reduced'manifold vacuum or load conditions of internal combustion engine.
  • FIGURE 3 is an elevational view of the valve piston used in the volumetric control valve.
  • FIGURES 4 and 5 are top and bottom plan views respectively of the valve piston usedlin the volumetric control valve of this invention.
  • FIGURE 6 is a perspective view, partially in cross section, of a crankcasefilter system as used in combination with the volumetric controlvalve of this invention.
  • FIGURES 7 and'8 are sectional views taken along the lines 77 and 88 respectively of FIGURE 6.
  • FIGURE 9 is an elevationalview, partly in cross-section, of an additional embodiment of use of this invention.
  • FIGURE 10 is a sectional View taken along the line 1010 of FIGURE 9.
  • FIGURE 11 is a still further embodiment of use of the volumetric Ventilation control system of this invention, as used with diesel type internal combustion engines.
  • this invention provides a volumetric control valve and piston for internal combustion engine crankcase ventilation from the crankcase vapor chamber to the intake manifold chamber for all load conditions.
  • the valve body has a piston of design to provide a minimum of surfiace contact between the valve body and the piston.
  • the valve is adaptable to be used withspecially designed filtered and non-filtered ventilation systems and is also eflfective in eliminating smog. V v
  • the valve comprises a body portion 22 with an inlet connector 24 threadablyati tached at 26 to the valve body.
  • This closure includes vapor space of a crankcase. of an internal combustion threadedinle't opening:28 into the interior chamber 30 of the valvebody.
  • An outlet opening 32 is provided at the opposite end and includes threads 34 for connection to various'conduits, tubing and etc. Between'the. interior chamber 30and the outlet 32'are a series of step-down orifices.
  • An upper beveled surface 36 terminates with a first circular orifice 38;
  • a beveled surface 40 extends upwardly and inwardly to the next adjacent smaller orifice 42, which terminates with outlet 32.
  • step down'orifices' are shown the volumetric fice restrictions of the valve piston 44 WhlCh lS operable within chamber-30and1the associated orifices ab'ove'-de- A scribed, and which is --best describedxgbyreference tor FIGURES 3, 4 and 5.
  • portion 48 is caused to be operative within orifice 42 during periods of load, i.e., when vacuum is approaching atmospheric pressure.
  • portion '46 is operative to restrict orifice 42 during idle or high vacuum vconditions. That portion of piston 44 adjacent the inlet end is designated by the numeral 50 which'is substantially horizontaland of diameter substantially less than the diameter of the bevelled edge 25 situated in the threaded closure member 24. .Eachcorner of the triangle forms edges 51, 52 and 53, and in this embodiment a curved chamfer 54, 55 and 56 extends upwardly from the relatively horizontal portion 50; The partial dotted line shown in FIGURE '5 represents the contact surface when piston 44 rests upon the bevelled edge'ZS.
  • the configuration Tofthe'valve piston body forms an important-feature of thisinvention.
  • the triangular shape provides a minimum of surface-t'o-surface frictional contact between the valvepiston and the internal chamber 3tlin additionto the centralizing vertical movement con-' trol.
  • the triangular. points are the only contact with the bevelled surface 36.
  • the contact is between surface 25 and that portion of the chamfered surfaces shown in FIGURE 5. The importance of alow surface contact prevents the possible sticking and fhesitation of the valve during its vertical movement,
  • the piston 44 is composed of a hardened stainless steel while the body 22 is of brass, a relatively softer material.
  • FIGURE 6 wherein a crankcase vapor filtering apparatus 58 is described for use with or without the volumetric control valve of this invention.
  • the outside structure of the apparatus includes a top cover portion 60 and a lower translucent jar or trap 62 which are held assembled by a spring biased bale 64whichincludes an off-center lower locking latch .66.
  • A' filter cartridge generally designated by the numeral-68, includes an inner relatively rigid perforated cylindrical portion 70 and an outer filter .cloth or fiber material 72. The filter material 72 is sandwiched at the topof the cartridge between the inner perforated cylinder 7t) and an outer flange portion 74 to retain the cartridge in sealing engagement between the open upper end of jar 62 and the cover 60.
  • the lower end of the filter includes a; bottom closure. and support plate 76 which is crimped around the lower edge to retain the filter in the shape substantially shown.
  • Anj L-shaped crankcase vapor llnl et 78 extends from the top cover 60 inwardly and downwardly-through the cylindricalfilter 68 and-bottom plate 7s.
  • the battle plate is of raasdiameter slightlyless than 1 the internal diameter of the bottom trap62 and includes amultiplicity d/ or gchange the"filter 68 'or baflle mechanism and making connction theinlet by suitable
  • f;oth er chambers which are directly or indirectlyconnectedito the crankcase vapor space are adaptable tube connected'directly to the inlet conduit 78.
  • a suitable bracketing system is adapted to permit the apparatus of FIGURE 6 to be attached to the firewall or other appropriate places contiguous to the internal combustion engine. Connection is usually made by flexible conduits or the like.
  • An adaptor 88 in the top cover 60 is provided with internal threads to permit attachment of the valve housing 22.
  • the attachment 88 is so located so as to be in communication with the interior of the cylindrical filter element 68. Connection is made from the external threaded attachment 8% to the intake manifold system of the internal combustion engine.
  • the fiow characteristics are controlled by the volumetric control valve 2% as a function of manifold vacuum.
  • the crankcase vapors typically include blow-by gases, tars, acids, water, and the like. These are drawn into the inlet conduit 78 and pass downwardly near the bottom of the trap 62 where the heavier matter is separated by the reversal of flow, substantially shown by the arrows. The separated or formed vapors pass upwardly around the battle with the primary amount passing through the multiple performations 84.
  • baffle 80 being an acid reactive material (cg. zinc) causes neutralization of these acid vapors and conversation into hydrogen gas which continues pasing upwardly with the other crankcase vapors.
  • the vapors are then forced through the cylindrical filter 68 from the outside inward and thence upwardly through the valve 29, and attachment 88 into the intake manifold system.
  • an internal combustion engine 99 includes a crankcase vapor space 92 and an intake manifold 94-.
  • a filter trap as includes internal baffiing 98.
  • the b-afih'ng includes a multiplicity of perforations 106 which are adapted to be placed opposite an outlet 102 such that the vapors from the crankcase space generally follow the direction of the arrows through the volumetric control valve 20 into outlet 164 into the intake manifold M.
  • the filter 96 causes the crankcase vapors to be separated from dense material therein which passes back into the crankcase or is retained permitting the lighter hydrocarbon vapors, and/ or water vapor, to be passed directly into the intake manifold system for improved combustion efiiciency of the internal combustion engine 94).
  • An alternate embodiment of this invention, using the volumetric control valve 20, is diagrammatically shown in FIGURE 9. In this embodiment, ordinarily direct attachment is made. However, to show the embodiment in FIGURE 9 various shut-off and bypass valves are used for descriptive purposes only. Valve 1% would shut off flow through the filter 96 and valve 108 permits passage of crankcase vapors into conduit 110 and thence into the volumetric control valve and the intake manifold. The latter embodiment of FIGURE 9 wherein crankcase vapors are fed directly by volumetric control valve 26 into the intake manifold, an
  • filters such as that shown at 96 and/or the filter system of FIGURE 6 may be'utilized and thus provide greater engineperforrnance and efliciency.
  • a diesel engine 129 includes the typical fuel injection system 122, and air intakevalve 12 cyclically operated by cam andfollower 1,26 and 128 respectively.
  • Crankcase 13% includes an 'air' breather means 132 for normally equilizing the pressure within the crankcase.
  • the breathor 132 may be located with respect to the crankcase as shown, or may be located with respect to the valve housing and cover 134- which permits atmospheric draft-like ventilation of the crankcase.
  • Suitably connected to the air intake manifold 136 is filtered air inlet line 138 which is downstream from filtering unit 141).
  • the filter unit itself includes an inlet conduit 14-2 causing the air to be forced downwardly across an optional oil bath section 144 and thence upwardly through restrictive filter element 146. It has been found that the restrictive passage of air across filter element 146 causes a slight vacuum to exist in the downstream inlet 138 to the air intake manifold. Accordingly, it has been found possible to use the crankcase vapor filtering unit 58 with such a system without the volumetric control valve 20 therein. That is, crankcase vapors and air are drawn, by the slight vacuum of intake 138, from the crankcase space through conduit 48 into the inlet conduit 78 with the filtrate hydrocarbon and/ or water flowing outwardly through a conduit 151) into the air intake system.
  • blow-by vapors from the piston of the internal combustion engine which enter the crankcase and other impurities are therefore filtered and utilized in the combustion process to increase the efiiciency of the diesel engine.
  • the cylinder deposits were softened and removed by the vapors with a 6% increase in horsepower.
  • FIGURE 12 is a graphic indication of the performance curves for various types of volumetric control valves Whose basic dimensions are shown in the chart of FIG- URE 13.
  • the letters A, B and C refer to dimensions indicated in FIGURES 1 and 3.
  • the valves are designed for various maximum cubic inches displacement (C.I.D.) from below 100 to around 900 cubic inches.
  • a volumetric control valve for metering internal combustion engine crankcase vapors into the intake manifold as a function of the no-load and load vacuum therein comprising the combination of,
  • valve body having a cylindrical bore between a lower inlet and upper beveled surface directed upwardly and inwardly to an outlet control orifice;
  • said piston having a triangular cross-section body portion centrally terminating its upper end with axial first and second cylindrical restricting portions 0pcrable within said control orifice at no-load and load vacuum respectively, said first portion of diameter slightly less than said control orifice, and said second portion above said first and of diameter slightly less than said first portion, said piston operable within said bore from a load condition resting on said lower inlet to a no-load condition wherein said upper triangular corners abut said upper beveled surface.

Description

o. F. JONES 3,164,141
VOLUMETRIC CONTROLLED CRANKCASE VENTILATION SYSTEMS Jan. 5, 1965 5 Sheets-Sheet 1 Filed Nov. 6, 1961 53 INVENTOR.
OSCAR F JONES BYM%W ATTORNEYS 0. F. JONES Jan. 5, 1965 VOLUMETRIC CONTROLLED CRANKCASE VENTILATION SYSTEMS 5 Sheets-Sheet 2 Filed NOV. 6, 1961 TO INTAKE MANIFOLD CRANKCASE VAPOR INVENTOR. OSCAR F JONES ATTORNEYS o. F. JONES 3,164,141
VOLUMETRIC CONTROLLED CRANKCASE VENTILATION SYSTEMS Jan. 5, 1965 5 Sheets-Sheet 3 Filed NOV. 6, 1961 FIGJO INVENTOR. OSCAR F JONES ATTORNEYS Jan. 5, 1965 o. F. JONES 3,164,141
VOLUMEIRIC CONTROLLED CRANKCASE VENTILATION SYSTEMS Filed Nov. 6, 1961 5 Sheets-Sheet 4 INVENTOR. F's OSCAR F JONES MLLAM ATTORNEYS Jan. 5, 1965 o, JONES 3,164,141
VOLUMETRIC CONTROLLED CRANKCASE VENTILATION SYSTEMS Filed Nov. 6, 1961 5 Sheets-Sheet 5 53 J N 5 2 N c 2 C D 3 2 h.
L0 q- (0 N (was) F I\ LO U 1 g MOI-l 8 CY (Q (0-0 I :5 f gig] z (0 1n 0 w 1 Q- O O-- O o m m o 0 o l O INVENTOR. U N OSCAR F. JONES Y m 1- 0 00 a B LL] 0 l l l JIM g I ATTORNEYS United States Patent Ofitice 3,164,141 Patented Jan. 5, 1965 3,164,141 VOLUMETRIC CONTRULLED CRANKCASE VENTILATIGN SYSTEMS ()scar F. Jones, 1716 Andover Court,
()lilahoma (City, Okla. Filed Nov. 6, 1961, Ser. No. 152,709 1 Claim. (Cl. 123-119) This invention relates to ventilation systems for the crankcase and related chambers for internal combustion engines. More particularly, it relates to a volumetric control for such systems. v k
'It is a well established fact that blow-by gases and vapors, such as water and unburned fuel, enter the crank case lubricating oil chamber and other associated chambers during the operation of an internal combustion engine. These 'blow-by gases and vapors occur by leakages past the cylinder during the cycle of operation and, if not removed, contaminate the lubricating oil. Modern lubricants in use today contain many additives for suspending and emulsifying extraneous particles picked up from the atmosphere and blow-by vapors, plus gums, tars and acids generated by the combustion process. Ventilating or scavenging systems have been provided for removing these undesirable particles into the atmosphere. It has been found, however, that the release of such vapors and gases into the atmosphere is directly related to the creation of a smog atmosphere. Some systems have been provided to prevent such atmospheric conditions by establishing communication between the crankcase interior and the vacuum pressure source existing in the engine intake manifold. These latter systems, however, have been plagued with the problem of adequate volumetric control of the undesirable vapors, solids, and so on, under all conditions of the engine operation. When an engine is running at idling speed and minimum load conditions, the throttle valve of the carburetor is substantially closed and hence develops a maximum vacuum downstream of the throttle valve. During such a phase of engine operation, there is a minimum of leakage of gases, vapors and solids into the crankcase chambers. However, as the throttle is moved to a loaded or more fully opened position, the manifold vacuum pressure approaches atmospheric pressure conditions. At the same time, the amount of blow-by gases, vapors and solids emitted into the crankcase and related chambers is increased. Accordingly, it is highly desirable that an efficient crankcase ventilation system be provided that is capable of volumetrically controlling the connection between the crankcase chambers and the intake manifold. v
Accordingly, it is an object of this invention to provide a volumetric, control for ventilation systems of internal combustion engine crankcases and its related chambers which overcomes the objections existing with present and prior devices and results in a desirable condition for all engine operation conditions. i
It is another object of this invention to provide a volumetric control for crankcase ventilation systems which willreduce the smog producing. characteristics of internal combustionengine s. v S Another object of this invention is to provide a volumetric control for internal combustion engine crankcase ventilation which increases the overall engine'efliciency,
horsepower, cleanliness and minimizes vyear. 1
A yet further object of thisinventionis to provide a unique valve for controllingrflow volume between the engine which adequately controls the flow volume to the intake manifold of said engine.
A yet additional object is to provide by the accumulation of gums, tars, corrosive vapors, which might cause other valves to stick under the changing manifold vacuum conditions.
It is a yet further object of this invention to provide a volumetric control for use with filteredand unfiltered crankcase ventilation systems.
These and other objects of this invention will become more apparent upon further reading of the specification and claims when taken in conjunction with the following illustrations of which: 1
FIGURE 1 is a sectional View of the volumetric control valve for use with this invention in the operative condition of the highest manifold vacuum.
FIGURE 2 is a sectional view of the volumetric control valve of this invention in the position of reduced'manifold vacuum or load conditions of internal combustion engine. i
FIGURE 3 is an elevational view of the valve piston used in the volumetric control valve.
FIGURES 4 and 5 are top and bottom plan views respectively of the valve piston usedlin the volumetric control valve of this invention.
FIGURE 6 is a perspective view, partially in cross section, of a crankcasefilter system as used in combination with the volumetric controlvalve of this invention. FIGURES 7 and'8 are sectional views taken along the lines 77 and 88 respectively of FIGURE 6.
FIGURE 9 is an elevationalview, partly in cross-section, of an additional embodiment of use of this invention. FIGURE 10 is a sectional View taken along the line 1010 of FIGURE 9.
FIGURE 11 is a still further embodiment of use of the volumetric Ventilation control system of this invention, as used with diesel type internal combustion engines.
General Description In general, this invention provides a volumetric control valve and piston for internal combustion engine crankcase ventilation from the crankcase vapor chamber to the intake manifold chamber for all load conditions. The valve body has a piston of design to provide a minimum of surfiace contact between the valve body and the piston. The valve is adaptable to be used withspecially designed filtered and non-filtered ventilation systems and is also eflfective in eliminating smog. V v
. Specific Description Referring now toFIGURES 1 and 2, the numeral 20 valve of this invention. The valve comprises a body portion 22 with an inlet connector 24 threadablyati tached at 26 to the valve body. This closure includes vapor space of a crankcase. of an internal combustion threadedinle't opening:28 into the interior chamber 30 of the valvebody. An outlet opening 32 is provided at the opposite end and includes threads 34 for connection to various'conduits, tubing and etc. Between'the. interior chamber 30and the outlet 32'are a series of step-down orifices. An upper beveled surface 36 terminates with a first circular orifice 38; A beveled surface 40 extends upwardly and inwardly to the next adjacent smaller orifice 42, which terminates with outlet 32. Although the step down'orifices' are shown the volumetric fice restrictions of the valve piston 44 WhlCh lS operable within chamber-30and1the associated orifices ab'ove'-de- A scribed, and which is --best describedxgbyreference tor FIGURES 3, 4 and 5.
The--main body of the pistonis,tria ng1ilar.in crossu section as shown'and terminates, at its uppenportion'ifor operation with the orificing restrictions between the 'ch'am ber 30 and the outlet 32. Typically; theserestrictions-- include a first cylindricalportion 46 and a, secondcylincontrol is largely dependent on the size of orifice 42 with respect to the oridrical portion 43 whose diameter is. slightly less than the diameter of cylindrical portion 45. In some instances, a constant diameter orifice restriction is used. Forthe most part, portion 48 is caused to be operative within orifice 42 during periods of load, i.e., when vacuum is approaching atmospheric pressure. Conversely, portion '46 is operative to restrict orifice 42 during idle or high vacuum vconditions. That portion of piston 44 adjacent the inlet end is designated by the numeral 50 which'is substantially horizontaland of diameter substantially less than the diameter of the bevelled edge 25 situated in the threaded closure member 24. .Eachcorner of the triangle forms edges 51, 52 and 53, and in this embodiment a curved chamfer 54, 55 and 56 extends upwardly from the relatively horizontal portion 50; The partial dotted line shown in FIGURE '5 represents the contact surface when piston 44 rests upon the bevelled edge'ZS.
The configuration Tofthe'valve piston body forms an important-feature of thisinvention. The triangular shape provides a minimum of surface-t'o-surface frictional contact between the valvepiston and the internal chamber 3tlin additionto the centralizing vertical movement con-' trol. When the piston is in the position of FIGURE 1, the triangular. points are the only contact with the bevelled surface 36. In the position of FIGURE 2 the contact is between surface 25 and that portion of the chamfered surfaces shown in FIGURE 5. The importance of alow surface contact prevents the possible sticking and fhesitation of the valve during its vertical movement,
since vapors containing gums, tars, waxes, etc. pass through. The piston 44 is composed of a hardened stainless steel while the body 22 is of brass, a relatively softer material.
Reference is now made to FIGURE 6, wherein a crankcase vapor filtering apparatus 58 is described for use with or without the volumetric control valve of this invention. The outside structure of the apparatus includes a top cover portion 60 and a lower translucent jar or trap 62 which are held assembled by a spring biased bale 64whichincludes an off-center lower locking latch .66. A' filter cartridge, generally designated by the numeral-68, includes an inner relatively rigid perforated cylindrical portion 70 and an outer filter .cloth or fiber material 72. The filter material 72 is sandwiched at the topof the cartridge between the inner perforated cylinder 7t) and an outer flange portion 74 to retain the cartridge in sealing engagement between the open upper end of jar 62 and the cover 60. Release of the, bale '64 permits separation of the cover 60 and jar 62 and hence replacement of the cartridge 68. V The lower end of the filter includes a; bottom closure. and support plate 76 which is crimped around the lower edge to retain the filter in the shape substantially shown.
Anj L-shaped crankcase vapor llnl et 78 extends from the top cover 60 inwardly and downwardly-through the cylindricalfilter 68 and-bottom plate 7s. At the lower end thereof, and below the cylindn'cal: filter 68, is acid reactive plate orbaffle 80 which is detachably secured thereto, sucli;.as by threads 8 2..v Preferably, the battle plate is of raasdiameter slightlyless than 1 the internal diameter of the bottom trap62 and includes amultiplicity d/ or gchange the"filter 68 'or baflle mechanism and making connction theinlet by suitable Of course,f;oth er chambers which are directly or indirectlyconnectedito the crankcase vapor space are adaptable tube connected'directly to the inlet conduit 78.
i A suitable bracketing system, not shown, is adapted to permit the apparatus of FIGURE 6 to be attached to the firewall or other appropriate places contiguous to the internal combustion engine. Connection is usually made by flexible conduits or the like.
An adaptor 88 in the top cover 60 is provided with internal threads to permit attachment of the valve housing 22. The attachment 88 is so located so as to be in communication with the interior of the cylindrical filter element 68. Connection is made from the external threaded attachment 8% to the intake manifold system of the internal combustion engine.
In'the operation of the device of FIGURE 6, the fiow characteristics are controlled by the volumetric control valve 2% as a function of manifold vacuum. A circulatory induced draft'is established in the crankcase vapor chambers by the atmosphere drawn through an oil fill vent into the vapor space, into the filter, through the volumetric control thence into the intake manifold. The crankcase vapors typically include blow-by gases, tars, acids, water, and the like. These are drawn into the inlet conduit 78 and pass downwardly near the bottom of the trap 62 where the heavier matter is separated by the reversal of flow, substantially shown by the arrows. The separated or formed vapors pass upwardly around the battle with the primary amount passing through the multiple performations 84. Due to the nature of baffle 80, being an acid reactive material (cg. zinc) causes neutralization of these acid vapors and conversation into hydrogen gas which continues pasing upwardly with the other crankcase vapors. The vapors are then forced through the cylindrical filter 68 from the outside inward and thence upwardly through the valve 29, and attachment 88 into the intake manifold system.
Referring now to FIGURES 9 and 10, an additional embodiment of this invention is described using the volumetric valve 2% In this embodiment an internal combustion engine 99 includes a crankcase vapor space 92 and an intake manifold 94-. In one embodiment a filter trap as includes internal baffiing 98. The b-afih'ng includes a multiplicity of perforations 106 which are adapted to be placed opposite an outlet 102 such that the vapors from the crankcase space generally follow the direction of the arrows through the volumetric control valve 20 into outlet 164 into the intake manifold M.
In the operation of this embodiment, the filter 96 causes the crankcase vapors to be separated from dense material therein which passes back into the crankcase or is retained permitting the lighter hydrocarbon vapors, and/ or water vapor, to be passed directly into the intake manifold system for improved combustion efiiciency of the internal combustion engine 94). An alternate embodiment of this invention, using the volumetric control valve 20, is diagrammatically shown in FIGURE 9. In this embodiment, ordinarily direct attachment is made. However, to show the embodiment in FIGURE 9 various shut-off and bypass valves are used for descriptive purposes only. Valve 1% would shut off flow through the filter 96 and valve 108 permits passage of crankcase vapors into conduit 110 and thence into the volumetric control valve and the intake manifold. The latter embodiment of FIGURE 9 wherein crankcase vapors are fed directly by volumetric control valve 26 into the intake manifold, an
economical system of smog control is effected. In those systems whereit'is desired to provide greater filtering of the densematerial from. the vapor material, filters such as that shown at 96 and/or the filter system of FIGURE 6 may be'utilized and thus provide greater engineperforrnance and efliciency.
. Another modificaton of this invention is diagrammatically shown in FIGURE 11. In this instance, a diesel engine 129 includes the typical fuel injection system 122, and air intakevalve 12 cyclically operated by cam andfollower 1,26 and 128 respectively. Crankcase 13% includes an 'air' breather means 132 for normally equilizing the pressure within the crankcase. The breathor 132 may be located with respect to the crankcase as shown, or may be located with respect to the valve housing and cover 134- which permits atmospheric draft-like ventilation of the crankcase. Suitably connected to the air intake manifold 136 is filtered air inlet line 138 which is downstream from filtering unit 141). The filter unit itself includes an inlet conduit 14-2 causing the air to be forced downwardly across an optional oil bath section 144 and thence upwardly through restrictive filter element 146. It has been found that the restrictive passage of air across filter element 146 causes a slight vacuum to exist in the downstream inlet 138 to the air intake manifold. Accordingly, it has been found possible to use the crankcase vapor filtering unit 58 with such a system without the volumetric control valve 20 therein. That is, crankcase vapors and air are drawn, by the slight vacuum of intake 138, from the crankcase space through conduit 48 into the inlet conduit 78 with the filtrate hydrocarbon and/ or water flowing outwardly through a conduit 151) into the air intake system. Accordingly, blow-by vapors from the piston of the internal combustion engine which enter the crankcase and other impurities are therefore filtered and utilized in the combustion process to increase the efiiciency of the diesel engine. In one test it was apparent that the cylinder deposits were softened and removed by the vapors with a 6% increase in horsepower.
FIGURE 12 is a graphic indication of the performance curves for various types of volumetric control valves Whose basic dimensions are shown in the chart of FIG- URE 13. The letters A, B and C refer to dimensions indicated in FIGURES 1 and 3. The valves are designed for various maximum cubic inches displacement (C.I.D.) from below 100 to around 900 cubic inches.
Although this invention has been described with reference to specific and preferred embodiments, this is not to be held as limiting. Accordingly, this invention should be limited only by the scope of the appended claim.
What is claimed:
A volumetric control valve for metering internal combustion engine crankcase vapors into the intake manifold as a function of the no-load and load vacuum therein comprising the combination of,
a valve body having a cylindrical bore between a lower inlet and upper beveled surface directed upwardly and inwardly to an outlet control orifice;
a valve piston,
said piston having a triangular cross-section body portion centrally terminating its upper end with axial first and second cylindrical restricting portions 0pcrable within said control orifice at no-load and load vacuum respectively, said first portion of diameter slightly less than said control orifice, and said second portion above said first and of diameter slightly less than said first portion, said piston operable within said bore from a load condition resting on said lower inlet to a no-load condition wherein said upper triangular corners abut said upper beveled surface.
References (lited by the Examiner UNITED STATES PATENTS 2,122,080 6/38 Wisdom 138-46 2,240,459 4/41 McDowell 123-119 2,333,288 11/43 Benzel 137-519 2,359,485 10/44 Lowther 123-119 2,444,677 7/48 Rosenblum 138-45 2,593,315 4/52 Kraft 138-45 2,716,398 8/55 1 McMullen 123-119 2,742,057 4/56 Krieck 138-45 2,853,986 9/58 Kolbe 123-119 2899,981 8/59 Binks 138-46 2,984,261 5/61 Kates 138-46 3,088,447 5/63 Henderson 123-119 KARL I. ALBRECHT, Acting Primary Examiner. FRED E. ENGELTHALER, Examiner.
US152709A 1961-11-06 1961-11-06 Volumetric controlled crankcase ventilation systems Expired - Lifetime US3164141A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US152709A US3164141A (en) 1961-11-06 1961-11-06 Volumetric controlled crankcase ventilation systems
GB41817/62A GB1029817A (en) 1961-11-06 1962-11-05 Internal-combustion engine crankcase ventilation systems
GB47069/65A GB1029818A (en) 1961-11-06 1962-11-05 Crankcase ventilation filter device
US443729A US3241537A (en) 1961-11-06 1965-01-04 Volumetric controlled crankcase ventilation systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US152709A US3164141A (en) 1961-11-06 1961-11-06 Volumetric controlled crankcase ventilation systems

Publications (1)

Publication Number Publication Date
US3164141A true US3164141A (en) 1965-01-05

Family

ID=22544070

Family Applications (1)

Application Number Title Priority Date Filing Date
US152709A Expired - Lifetime US3164141A (en) 1961-11-06 1961-11-06 Volumetric controlled crankcase ventilation systems

Country Status (2)

Country Link
US (1) US3164141A (en)
GB (2) GB1029817A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250062A (en) * 1964-07-20 1966-05-10 Lusk Hilton Frank Crankcase emission liquid collector
US3257995A (en) * 1964-04-29 1966-06-28 William H Schnabel Crankcase ventilator
US3271938A (en) * 1963-06-05 1966-09-13 Allen Elect Equip Breather cap and dipstick combination for an oil filler pipe
US3439703A (en) * 1966-06-11 1969-04-22 Toyota Motor Co Ltd Flow control valve for blow-by gas
US3459403A (en) * 1967-02-13 1969-08-05 Bunkner Ind Inc Fluid metering device
US3463132A (en) * 1967-06-26 1969-08-26 James H Krieck System for increasing the efficiency of internal combustion engines
US3504663A (en) * 1965-10-21 1970-04-07 Smithkline Corp Air flow control
US3854501A (en) * 1973-06-14 1974-12-17 Wagner Electric Corp Antilock brake system and control valve therefor
US4213770A (en) * 1979-04-02 1980-07-22 Schaefer John W Engine emission pollutant separator
US4502510A (en) * 1983-02-09 1985-03-05 Dana Corporation Automatic cleaning and metering device
US4708176A (en) * 1983-12-07 1987-11-24 Gerhard Esser Riser for drawing off liquids
US5228424A (en) * 1992-03-30 1993-07-20 Collins Gregorio S Positive crankcase ventilation valve
US5406978A (en) * 1993-01-26 1995-04-18 Sauer Inc. Shuttle orifice control mechanism
US5704391A (en) * 1995-02-16 1998-01-06 Umac Incorporated Gravity-operated gas shut-off valve
US5967178A (en) * 1997-09-29 1999-10-19 Shrode; Theodore E. Flow-controlled one-way valve
WO2007053411A2 (en) * 2005-10-28 2007-05-10 Donaldson Company, Inc. Aerosol separator and method of use
US20090071111A1 (en) * 2007-06-14 2009-03-19 Donaldson Company, Inc Crankcase ventilation filter arrangments; components; and, methods
US20120031228A1 (en) * 2010-08-05 2012-02-09 Toyo Electric Mfg. Co. Ltd. Gear device for electric motor
US8714142B2 (en) 2007-08-02 2014-05-06 Donaldson Company, Inc. Crankcase ventilation filter assembly; components; and methods
US8758467B2 (en) 2007-03-20 2014-06-24 Donaldson Company, Inc. Aerosol separator assembly; components; and methods
US20150232287A1 (en) * 2014-02-20 2015-08-20 Stephen B. Maguire Air flow regulator
US9550635B2 (en) 2014-02-20 2017-01-24 Stephen B. Maguire Air flow limiter with closed/open sensing
US9550636B2 (en) 2014-02-20 2017-01-24 Stephen B. Maguire Method and apparatus for resin delivery with adjustable air flow limiter
US9604793B2 (en) 2014-02-20 2017-03-28 Maguire Products, Inc. Resin delivery system with air flow regulator
US9937651B2 (en) 2014-02-20 2018-04-10 Novatec, Inc. Resin delivery apparatus and method with plural air flow limiters
US10131506B2 (en) 2014-12-09 2018-11-20 Maguire Products, Inc. Selective matrix conveyance apparatus and methods for granular resin material
US10138076B2 (en) 2015-02-25 2018-11-27 Stephen B. Maguire Method for resin delivery including metering introduction of external air to maintain desired vacuum level
US10144598B2 (en) 2014-02-20 2018-12-04 Novatec, Inc. Variable frequency drive combined with flow limiter set for limiting flow to selected level above design choice
US10175701B2 (en) 2014-02-20 2019-01-08 Stephen B. Maguire Air flow regulator with detector and method for regulating air flow
US10179708B2 (en) 2014-02-20 2019-01-15 Maguire Products, Inc. Granular material delivery system with air flow limiter
US10179696B2 (en) 2015-01-27 2019-01-15 Novatec, Inc. Variable opening slide gate for regulating material flow into airstream
US10221950B1 (en) * 2017-08-17 2019-03-05 Stedlin Manufacturing Incorporated High pressure coupler
US10280015B2 (en) 2014-02-20 2019-05-07 Stephen B. Maguire Method for adjustably restricting air flow and apparatus therefor
US10414083B2 (en) 2014-02-20 2019-09-17 Novatec, Inc. Multiple sensor resin delivery optimizing vacuum pump operation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH606779A5 (en) * 1977-01-31 1978-11-15 Max Bachmann
DE2719600C2 (en) * 1977-05-02 1986-11-20 Elmer W. Sacramento Calif. Bush Separator for the crankcase ventilation of an internal combustion engine
US5669366A (en) * 1996-07-10 1997-09-23 Fleetguard, Inc. Closed crankcase ventilation system
DE19923093A1 (en) * 1999-05-20 2000-11-23 Mann & Hummel Filter Fluid separator for purifying IC engine crankshaft gases has a separator cartridge with an elastic end plate on at least one of its front sides corresponding to a receiver
DE19928727C2 (en) * 1999-06-23 2001-04-26 Daimler Chrysler Ag Device for venting the crankcase of an at least largely throttle-free internal combustion engine
NO342497B1 (en) * 2016-10-26 2018-06-04 Viking Heat Engines As Fluid separator for a displacement machine and a method for separating lubricant and working fluid in a displacement machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122080A (en) * 1936-07-09 1938-06-28 George P Wisdom Automatic well flow control
US2240459A (en) * 1940-02-05 1941-04-29 Henry H Mcdowell Fuel economizer for internal combustion engines
US2333288A (en) * 1942-07-01 1943-11-02 Scott Aviation Corp Valve
US2359485A (en) * 1939-09-11 1944-10-03 Donaldson Co Inc Crankcase ventilating system
US2444677A (en) * 1946-12-14 1948-07-06 Dole Valve Co Flow control device
US2593315A (en) * 1946-10-31 1952-04-15 Dole Valve Co Flow control device
US2716398A (en) * 1951-11-21 1955-08-30 Gen Motors Corp Crankcase ventilation valve incorporating flame arrester
US2742057A (en) * 1952-10-22 1956-04-17 James H Krieck Device for ventilating engine crankcase
US2853986A (en) * 1955-10-07 1958-09-30 Gen Motors Corp Crankcase ventilation system
US2899981A (en) * 1959-08-18 Certificate of correction
US2984261A (en) * 1958-04-16 1961-05-16 W A Kates Company Fluid flow regulator
US3088447A (en) * 1961-12-05 1963-05-07 Alvin H Tutt Control for automotive exhaust air pollution

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899981A (en) * 1959-08-18 Certificate of correction
US2122080A (en) * 1936-07-09 1938-06-28 George P Wisdom Automatic well flow control
US2359485A (en) * 1939-09-11 1944-10-03 Donaldson Co Inc Crankcase ventilating system
US2240459A (en) * 1940-02-05 1941-04-29 Henry H Mcdowell Fuel economizer for internal combustion engines
US2333288A (en) * 1942-07-01 1943-11-02 Scott Aviation Corp Valve
US2593315A (en) * 1946-10-31 1952-04-15 Dole Valve Co Flow control device
US2444677A (en) * 1946-12-14 1948-07-06 Dole Valve Co Flow control device
US2716398A (en) * 1951-11-21 1955-08-30 Gen Motors Corp Crankcase ventilation valve incorporating flame arrester
US2742057A (en) * 1952-10-22 1956-04-17 James H Krieck Device for ventilating engine crankcase
US2853986A (en) * 1955-10-07 1958-09-30 Gen Motors Corp Crankcase ventilation system
US2984261A (en) * 1958-04-16 1961-05-16 W A Kates Company Fluid flow regulator
US3088447A (en) * 1961-12-05 1963-05-07 Alvin H Tutt Control for automotive exhaust air pollution

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271938A (en) * 1963-06-05 1966-09-13 Allen Elect Equip Breather cap and dipstick combination for an oil filler pipe
US3257995A (en) * 1964-04-29 1966-06-28 William H Schnabel Crankcase ventilator
US3250062A (en) * 1964-07-20 1966-05-10 Lusk Hilton Frank Crankcase emission liquid collector
US3504663A (en) * 1965-10-21 1970-04-07 Smithkline Corp Air flow control
US3439703A (en) * 1966-06-11 1969-04-22 Toyota Motor Co Ltd Flow control valve for blow-by gas
US3459403A (en) * 1967-02-13 1969-08-05 Bunkner Ind Inc Fluid metering device
US3463132A (en) * 1967-06-26 1969-08-26 James H Krieck System for increasing the efficiency of internal combustion engines
US3854501A (en) * 1973-06-14 1974-12-17 Wagner Electric Corp Antilock brake system and control valve therefor
US4213770A (en) * 1979-04-02 1980-07-22 Schaefer John W Engine emission pollutant separator
US4502510A (en) * 1983-02-09 1985-03-05 Dana Corporation Automatic cleaning and metering device
US4708176A (en) * 1983-12-07 1987-11-24 Gerhard Esser Riser for drawing off liquids
US5228424A (en) * 1992-03-30 1993-07-20 Collins Gregorio S Positive crankcase ventilation valve
US5406978A (en) * 1993-01-26 1995-04-18 Sauer Inc. Shuttle orifice control mechanism
US5704391A (en) * 1995-02-16 1998-01-06 Umac Incorporated Gravity-operated gas shut-off valve
US5967178A (en) * 1997-09-29 1999-10-19 Shrode; Theodore E. Flow-controlled one-way valve
WO2007053411A2 (en) * 2005-10-28 2007-05-10 Donaldson Company, Inc. Aerosol separator and method of use
WO2007053411A3 (en) * 2005-10-28 2007-06-28 Donaldson Co Inc Aerosol separator and method of use
US20100031940A1 (en) * 2005-10-28 2010-02-11 Donaldson Company Inc. Aerosol Separator; Components; and, Methods
US8499749B2 (en) 2005-10-28 2013-08-06 Donaldson Company, Inc. Aerosol separator; components; and, methods
US9737839B2 (en) 2007-03-20 2017-08-22 Donaldson Company, Inc. Aerosol separator assembly; components; and, methods
US8758467B2 (en) 2007-03-20 2014-06-24 Donaldson Company, Inc. Aerosol separator assembly; components; and methods
US8834610B2 (en) 2007-06-14 2014-09-16 Donaldson Company, Inc. Crankcase ventilation filter arrangments; components; and, methods
US20090071111A1 (en) * 2007-06-14 2009-03-19 Donaldson Company, Inc Crankcase ventilation filter arrangments; components; and, methods
US8404029B2 (en) 2007-06-14 2013-03-26 Donaldson Company, Inc. Crankcase ventilation filter arrangments; components; and, methods
US10837331B2 (en) 2007-06-14 2020-11-17 Donaldson Company, Inc. Filter arrangements; components; and, methods
US9752474B2 (en) 2007-06-14 2017-09-05 Donaldson Company, Inc. Filter arrangements; components; and, methods
US9353658B2 (en) 2007-08-02 2016-05-31 Donaldson Company, Inc. Crankcase ventilation filter assembly; components; and methods
US8714142B2 (en) 2007-08-02 2014-05-06 Donaldson Company, Inc. Crankcase ventilation filter assembly; components; and methods
US20120031228A1 (en) * 2010-08-05 2012-02-09 Toyo Electric Mfg. Co. Ltd. Gear device for electric motor
US9777823B2 (en) * 2010-08-05 2017-10-03 Toyo Electric Mfg. Co. Ltd. Gear device for electric motor
US9937651B2 (en) 2014-02-20 2018-04-10 Novatec, Inc. Resin delivery apparatus and method with plural air flow limiters
US10414083B2 (en) 2014-02-20 2019-09-17 Novatec, Inc. Multiple sensor resin delivery optimizing vacuum pump operation
US9550636B2 (en) 2014-02-20 2017-01-24 Stephen B. Maguire Method and apparatus for resin delivery with adjustable air flow limiter
US9550635B2 (en) 2014-02-20 2017-01-24 Stephen B. Maguire Air flow limiter with closed/open sensing
US9371198B2 (en) * 2014-02-20 2016-06-21 Stephen B. Maguire Air flow regulator
US10988328B2 (en) 2014-02-20 2021-04-27 Novatec, Inc. Flow limiting and variable frequency drive apparatus for limiting flow to selected level
US10913195B2 (en) 2014-02-20 2021-02-09 Novatec, Inc. Plural air flow regulator delivery apparatus and method
US10144598B2 (en) 2014-02-20 2018-12-04 Novatec, Inc. Variable frequency drive combined with flow limiter set for limiting flow to selected level above design choice
US10175701B2 (en) 2014-02-20 2019-01-08 Stephen B. Maguire Air flow regulator with detector and method for regulating air flow
US10179708B2 (en) 2014-02-20 2019-01-15 Maguire Products, Inc. Granular material delivery system with air flow limiter
US20150232287A1 (en) * 2014-02-20 2015-08-20 Stephen B. Maguire Air flow regulator
US9604793B2 (en) 2014-02-20 2017-03-28 Maguire Products, Inc. Resin delivery system with air flow regulator
US10280015B2 (en) 2014-02-20 2019-05-07 Stephen B. Maguire Method for adjustably restricting air flow and apparatus therefor
US10131506B2 (en) 2014-12-09 2018-11-20 Maguire Products, Inc. Selective matrix conveyance apparatus and methods for granular resin material
US10179696B2 (en) 2015-01-27 2019-01-15 Novatec, Inc. Variable opening slide gate for regulating material flow into airstream
US10138076B2 (en) 2015-02-25 2018-11-27 Stephen B. Maguire Method for resin delivery including metering introduction of external air to maintain desired vacuum level
US10906225B2 (en) 2015-03-12 2021-02-02 Novatec, Inc. Multiple sensor resin delivery method for optimizing vacuum pump operation
US11059212B2 (en) 2015-03-12 2021-07-13 Novatec, Inc. Resin delivery method and apparatus using multiple sensors for optimal vacuum pump operation
US10221950B1 (en) * 2017-08-17 2019-03-05 Stedlin Manufacturing Incorporated High pressure coupler

Also Published As

Publication number Publication date
GB1029817A (en) 1966-05-18
GB1029818A (en) 1966-05-18

Similar Documents

Publication Publication Date Title
US3164141A (en) Volumetric controlled crankcase ventilation systems
US3241537A (en) Volumetric controlled crankcase ventilation systems
US5499616A (en) Crankcase pressure regulation system for an internal combustion engine
US2359485A (en) Crankcase ventilating system
US2742057A (en) Device for ventilating engine crankcase
DE102016100094A1 (en) System and method for improving canister unloading
US5201301A (en) Adjustable ambient air filtering system and pollution control device
EP0162142A3 (en) Vehicle fuel tank vent apparatus
JPH08512115A (en) Vacuum relief valve
US5046474A (en) Crankcase ventilator/evacuation system
US3463132A (en) System for increasing the efficiency of internal combustion engines
US5697349A (en) Blowby mist separator and regulator system for an enclosed crankcase
US3145697A (en) Crankcase reculating system
US3880130A (en) Control valve
US20140096753A1 (en) Diesel pollution control system
US2450864A (en) Crankcase ventilating apparatus
US3313281A (en) Crankcase ventilation system
US4157082A (en) Self-purging fuel supply system for internal combustion engines
US2277749A (en) Device for introducing combustion controlling and other substances into internal combustion engines
US2976864A (en) Oil purifying apparatus
US3158142A (en) Crankcase ventilation
US1327494A (en) Auxiliary air-valve
US3585976A (en) Manifold vacuum controlled supplemental air inlet with air filtering means
US2057165A (en) Apparatus for supplying fuel gases to internal combustion engines
US2226405A (en) Valve