US3150035A - Treatment of fourdrinier wire - Google Patents

Treatment of fourdrinier wire Download PDF

Info

Publication number
US3150035A
US3150035A US161701A US16170161A US3150035A US 3150035 A US3150035 A US 3150035A US 161701 A US161701 A US 161701A US 16170161 A US16170161 A US 16170161A US 3150035 A US3150035 A US 3150035A
Authority
US
United States
Prior art keywords
wire
fourdrinier
paper
fourdrinier wire
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US161701A
Inventor
Roderick E Eddy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Chemical Co filed Critical Nalco Chemical Co
Priority to US161701A priority Critical patent/US3150035A/en
Priority to GB35809/62A priority patent/GB977094A/en
Priority to DEN22179A priority patent/DE1262482B/en
Priority to FR914622A priority patent/FR1358391A/en
Application granted granted Critical
Publication of US3150035A publication Critical patent/US3150035A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/06Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • C10M133/46Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • C10M135/36Heterocyclic sulfur, selenium or tellurium compounds the ring containing sulfur and carbon with nitrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • C10M139/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00 having a silicon-to-carbon bond, e.g. silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/10Wire-cloths
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/30Protecting wire-cloths from mechanical damage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/09Heterocyclic compounds containing no sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • This invention relates to a method for improving by chemical means the operational efliciency of a Fourdrinier More specifically, the invention is concerned with extending the life of Fourdrinier wires commonly employed in Fourdrinier paper making machines.
  • Fourdrinierpaper makpaper and paper products as bags, building boards, paper boards, various book stocks, and such specialized paper products as carbon paper stocks, cigarette papers, glassine and greaseproof papers, napkins, newsprint, pulp, tissue, wrapping, and writing stock may be produced on Fourdrinier machines.
  • Fourdrinier wire replacement becomes an expensive and time consuming operation when it is considered that production must stop and elaborate procedure must be followed in order to replace the Fourdrinier wire.
  • the cost of a new Fourdrinier wire can range from as little as $3500 to as Fourdrinier wire life involve the installation of expensive rolls and tension regulating devices, and to this end their installation is only practical in the design of new machinery and is not particularly adaptable to be installed in existing Fourdrinier machines.
  • a practical approach to the problem of reducing the wear and extending the life of Fourdrinier wire resides in the use of chemicals whereby the wire may be treated at low economical dosages, either intermittently or on a continuous basis, to substantially increase the operating life of a Fourdrinier wire.
  • a factor which sometimes tends to accelerate abrasive wear of Fourdrinier wires is corrosion. In and of itself, corrosion is not particularly damaging to Fourdrinier wire, but it tends to substantially reduce abrasion resistance and draining characteristics of the wire so that frictional effects imposed on the wire are increased.
  • a chemical treatment is to succeed in improving the operationcharacteristics of a Fourdrinier paper making machine by the extension of the useful life of the Fourdrinier wire used in such machines, such a treatment must function in a twofold manner, e.g., it must be capable of both preventing abrasive wear by providing a lubricating action on the wire, and secondly, it must act as a dispersant or cleansing agent to prevent or toremove deposits between the open areas defined by the mesh of the particular wire used. It therefore becomes an object of the invention to provide a chemical treatment, which when applied in low, economical dosages, will improve the operational eiiiciency of a Fourdrinier paper making machine.
  • Another object of the invention is to provide a chemical which will substantially reduce the abrasive Wear of Fourdrinier wires.
  • a further object is to provide a chemical which will tend to improve drainage and ereby prevent the blockage of the open areas between the mesh of the wire by vthe operational life of a Fourdrinier paper making machine may be greatly improved by treating the bottom of the wire with a combination of chemicals comprising (A) a water soluble, extreme pressure lubricant, (E) a water miscible nonquaternary cationic dispersant, and (C) a water dispersible organic ilicon-containing compound which may be either an organo silicon oxide condensation product or an organo functional sila'ne.
  • compositions of the invention are applied to improve the operational characteristics of a Fourdrinier machine, reference may be had to the drawing.
  • the drawing is a simple schematic diagram of a typical Fourdrinier end of a paper making machine.
  • the numeals used in the drawing represent the various components of the Fourdrinier system. It is to be understood that the drawing is simplified, but serves to illustrate generally a typical Fourdrinier system.
  • the headbox and slice area are generally represented by the numerals 1 and 2 respectively.
  • the breast roll is illustrated by the numeral 3 whereas the deckle rolls and forming board are shown by the numerals 4 and 5.
  • the table roll 6, tray 7, and suction flat boxes 8 are another common group of components found in Fourdrinier machines.
  • the couch roll 9, dandy I011 10, and lump breaker roll 11, might be considered as ending the top section of a typical Fourdrinier asemblage.
  • Wire showers 12, wash rolls 13, automatic guide rolls 14, stretch roils l5, and wire return rolls 16 and 16A all compose what is generically referred to herein as the return section of the Fourdrinier wire, and operate to control the bottom movement of the wire.
  • the wire itself is indicated by the numeral 18.
  • An important concept of the invention resides in the use of a shower applicator l? which is located between a wire return roll 16A and the breast roll 3. This shower spray is a preferred application point for applying the wire life extending chemicals of the invention. It is obvious that the spray 17 should be positioned so that it uniformly sprays the chemicals onto the entire width of the wire 13.
  • the chemical be applied to the bottom of the wire.
  • the word bottom is used to refer to any point in the return section of the Fourdrinier wire between the couch roll 9 and its point of subsequent contact with the breast roll 3. This wire bottom section is admirably suited for application of the treating agent. It is preferable that the application point be as near the breast roll as possible.
  • An alternative method of applying the chemicals of the invention would be to coat the chemicals by suitable means (not shown) on the wire return roll 16, whereby the bottom of the wire would be coated uniformly. Regardless of the mode of application, it is important that the entire wire 13 be covered with the chemical and that the chemical be applied in the form of a dilute aqueous solution.
  • the chemicals may be prepared initially either as dry chemicals to be subsequently diluted at the mill site or point of use, or they may be made up into an aqueous concentrate for efiiciency in shipment to the mill site where it may be diluted by the machine operators.
  • the water soluble, extreme pressure lubricants are I dilute aqueous solution may be achieved by dissolving the chemicals into a suitable water source (not shown) and sulfhydryl-containing compounds. They may be classified broadly as nitrogen-containing heterocyclic compounds characterized by a ring nitrogen bonded to a ring carbon. To the ring carbon is attached a non-ring sulfhydryl group.
  • the characteristic structural formula covering this sulfhydryl heterocyclic combination of elements maybe illustrated by the Formula I below:
  • FORMULA I Compounds having this illustrative molecular configuration and which are valuable in the practice of the invention are such well-known compounds as Z-mercaptothiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, and Z-mercaptobenzothiazole. Of these compounds, Z-mercapt-obenzothiazole is preferred since it is relatively inexpensive and is commercially available.
  • the above compounds are, for practical purposes, relatively water insoluble, but they are rendered readily soluble by converting them to their alkali metal salts.
  • Any of the well-known alkali metal salts of these compounds e.g., sodium, potassium, cesium, and rubidium may be used, although due to availability and economics, the sodium salts are preferred.
  • Equivalent to the sodium salts of these compounds are the ammonium salts, but they are not particularly preferred due to volatility problems encountered when the machines are operated at elevated temperatures.
  • the water miscible, non-quarternary cationic dispersants used in the practices of the invention should contain at least one, but not more than two aliphatic groups of at least 6 carbon atoms in chain length. Preferably the aliphatic groups should contain 12-22 carbon atoms. It is also contemplated that the carboxylic and inorganic salts of these compounds may also be used, e.g., acetates, sulfates, chlorides, and the like.
  • non-quarternary cationic dispersants that are useful in the practice of the invention, are the aliphatic amines having the general structural formula:
  • R is an aliphatic group of from 1222 carbon atoms in chain length
  • n is an integer of from 2-6
  • x is an integer of from 0-5
  • Commercially available compounds falling within the above structural formula include the well-known aliphatic monoamines and the fatty substituted alkylene diarnines and polyalkylene polyamines.
  • Typical fatty monoamines useful in the practices of the invention are such products as n-dodecyl amine, n-tetradecyl amine, dicoco amine, nhexadecyl amine, n-octadecyl amine and the like.
  • Useful fatty substituted alkylene diarnines are the Duomeens manufactured by Armour Chemical Division which products provide such commercially available chemicals as N-lauryl trimethylene diarnine, N-coco trimethylene diarnine, N-soya trimethylene diamine, and N- tallow trimethylene diamine.
  • D represents a divalent nonamino organic radical containing less than 25 carbon atoms.
  • D may be composed of the elements C, H, O and N.
  • D represents a divalent organic radical containing less than 25 carbons and composed of the elements C, H, O, and N and contains at least one amino group.
  • R is an aliphatic group which may contain at least 7 carbon atoms in chain length, although it preferably contains from 11 to 21 carbon atoms.
  • R may be an aliphatic group similar in all respects to R with the exception that R may also be hydrogen.
  • Y and Z may be either hydrogen or lower alkyl groups of not more than '6 carbon atoms.
  • Imidazolines of the above type are well-known and are described in Wilson US. Patents 2,267,965 and 2,355,837.
  • Typical imidazolines of the type shown in the above structural formulas are such compounds as 1-(2-aminoethyl)-2-heptaclecyl imidazoline and l-(2-hydroxyethyl)- 2-heptadecyl imidazoline.
  • R is a saturated aliphatic group containing from 11-21 carbon atoms.
  • the silicon containing compounds may be of two general types, the first being an organo silicon oxide condensation product which encompasses such well-known products as the condensed esters of ortho and metasilicic acid and the well-known silicon polymers such as the poly dimethyl siloxanes. Products of this general type are described in detail in Trautman et al., U.S. 2,416,503-4.
  • silicon containing compounds of this type it is important that they be at least colloidally dispersible in water. When the compounds are not dispersible per se it is possible to form them into a sufiicient state of subdivision, e.g., 1 micron or less, thereby making it possible to colloidally disperse such silicon containing compounds into the water and to this extent they are usable.
  • a preferred group of siliconcontaining compounds are the organo functional silanes generically represented by the following formula:
  • R is a lower aliphatic hydrocarbon group of notmore than 4 carbon atoms in chain length.
  • Typical exampes of compounds coming within the above structural formula are gamma-aminopropyl triethoxy silane, delta-amino butyl methyl-diethoxy silane and 2-(3-trimethoxy silyl propylamino) ethyl amine.
  • the above described water dispersible, organic siliconcontaining compounds not only tend to improve the lubricating characteristics of the formula, but they also in some instances act as a deforming agent to prevent 0 excessive foam formation at the point of formula application.
  • the chemicals are fed at a relatively low dosage, e.g., .005 pound per ton based on the dry weight of the paper formed on the Fourdrinier wire, with the preferred dosage being from 0.025 to 0.1 pound per ton.
  • the chemicals are combined so that the water soluble, extreme pressure lubricant is present in an amount ranging between 597.99% by Weight.
  • the water miscible non-quarternary cationic dispersant may be employed in amounts ranging from 292% by weight, and the organic silicon-containing compound is advantageously employed in amounts ranging from 0.015% by weight.
  • the proportions of the ingredients may be varied, depending upon the particular condition of the Fourdrinier machine and wire to be treated. For example, if it is determined that abrasive wear is due extensively to plugging of the mesh openings of the wire,
  • compositions of the invention may be either formulated as a dry mix and then diluted at the point of use, or preferably, they are prepared as an aqueous concentrate which is then diluted to use concentration.
  • a typical composition useful in the practices of the invention is the aqueous concentrate illustrated by Formula II below.
  • Example I This test was conducted on a Fourdrinier machine which produced 600 tons per day of unbleached kraft liner board.
  • the machine prior to the test, had an average wire life of about 7 days. Inspection of the wires after removal from the machine showed that abrasion was the primary source of wire wear.
  • Formula II was applied at a dosage of 0.25 pound per ton for the first 6 hours of the test and was then reduced to 0.1 pound per ton for the remainder of the test period.
  • the chemical was applied by means of a shower spray at a point just prior to the breast roll.
  • the wire life during the test period was 10 days at which time a mechanical puncture necessitated wire removal. An inspetcion of the wire showed that there were still several days of wear remaining.
  • the same dosages were maintained and the wire ran for 16 days without necessitating shutdown.
  • Example 11 t another paper mill Formula II was tested on a Fourdrinier machine producing unbleached kraft and paper board.
  • the output of the machine averaged between 200 and 400 tons per day.
  • the Fourdrinier wire was 220 inches in width and was run, .during the test period, at speeds ranging between 1100 and 2100 feet per minute.
  • the pH of the white water system was between 5.5 and 6.5.
  • composition was used to treat four successive wires at an initial dosage of 0.1 pound per ton, which after several hours, was reduced to 0.07 pound per ton.
  • the chemical was applied from a shower header located across the wire bottom at a point between the return roll and the breast roll. At the end of the four tests the average wire life experience was 16.3 days.
  • a method for improving, by chemical means, the operational efiiciency of a Fourdrinier paper making machine which utilizes a continuous Fourdrinier wire upon which paper and paper products are formed which comprises treating the bottom of said Fourdrinier wire with a dilute aqueous solution which contains at least .005 pound per ton, based on the dry weight of the paper and paper products formed on said Fourdrinier wire, of a composition having the formula: (A) from 97.99% by weight of a water soluble, extreme pressure lubricant comprising a nitrogen-containing heterocyclic compound characterized by a ring nitrogen bonded to a ring carbon to which is attached a suifhydryl group, (B) from 292% by weight of a dispersant from the group consisting of water miscible, non-quaternary cationic dispersants and salts thereof which contain at least 1, but not more than 2, aliphatic groups of at least 6 carbon atoms in chain length, and (C) 0.01-5 by weight of a water dispersible,
  • D represents a divalent, non-amino organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N;
  • D represents a divalent organic radical containing less than 25 carbon atoms from the group consisting of C, H, O, and N, and containing at least one amino group;
  • R is an aliphatic group containing from 11 to 21 carbon atoms in chain length, and R is from the group consisting of H and aliphatic groups of from 11 to 21 carbon atoms in chain length,
  • Y and Z are from the group consisting of hydrogen and lower alkyl groups or not more than 6 carbon atoms;
  • the organo functional silane has the formula:
  • R is a lower aliphatic hydrocarbon group of not more than 4 carbon atoms in chain length and Y is an aliphatic amine-containing group and n has the value of 01.
  • R is a saturated aliphatic group containing from 11 to 21 carbon atoms
  • the organo functional silane is 2-(3-trimethoxy silyl propylamino) ethylamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paper (AREA)

Description

Sept. 22, 1964 R. E. EDDY TREATMENT OF FOURDRINIER WIRE Filed Dec. 22, 1961 Inventor Roderick E. Edchd 3z Mar gH Johns ton, Cock & Root fl-H'ornegs paper making machine.
United States Patent ice 3,150,035 TREATNENT @F FOURDRINIER WIRE Roderick E. Eddy, Jacksonville, Fla, assignor to Nalco Chemical tlompany, (Ihicago, Ill., a corporation of Delaware Filed Dec. 22, 1961, Ser. No. 161,701 4 lairns. (Cl. 162-199) This invention relates to a method for improving by chemical means the operational efliciency of a Fourdrinier More specifically, the invention is concerned with extending the life of Fourdrinier wires commonly employed in Fourdrinier paper making machines.
One of the most versatile machines used in the manufacture of paper is the well-known Fourdrinierpaper makpaper and paper products as bags, building boards, paper boards, various book stocks, and such specialized paper products as carbon paper stocks, cigarette papers, glassine and greaseproof papers, napkins, newsprint, pulp, tissue, wrapping, and writing stock may be produced on Fourdrinier machines.
As Fourdrinier machine technology has been improved over the years, there has been an increased tendency to use Fourdrinier machines which operate at extremely high speeds. While high speed Fourdrinier paper making machinery enables the mills using such machines to produce large tonnages of various types of paper and paper products, there is a disadvantage encountered in that the abrasive wear of the Fourdrinier wire used in the machine is excessive. The life of a typical Fourdrinier wire, particularly in a high speed machine, is short. In some instances, Fourdrinier wires only last several days whereas in other cases, particularly on slower speed machines, it is possible for a Fourdrinier wire to last for as long as several weeks to a month or more. In complex Fourdrinier machines, Fourdrinier wire replacement becomes an expensive and time consuming operation when it is considered that production must stop and elaborate procedure must be followed in order to replace the Fourdrinier wire. Depending upon the particular type of paper being produced on the machine, the cost of a new Fourdrinier wire can range from as little as $3500 to as Fourdrinier wire life involve the installation of expensive rolls and tension regulating devices, and to this end their installation is only practical in the design of new machinery and is not particularly adaptable to be installed in existing Fourdrinier machines. A practical approach to the problem of reducing the wear and extending the life of Fourdrinier wire resides in the use of chemicals whereby the wire may be treated at low economical dosages, either intermittently or on a continuous basis, to substantially increase the operating life of a Fourdrinier wire.
For a chemical treatment to effectively improve the life of Fourdrinier wires, it is necessary that it perform several vital functions which will tend to alleviate the basic problems which cause Fourdrinier wire wear. Microscopic examination of worn Fourdrinier wires has made it evi- 3,l5 35 Patented Sept. 22, 1964 dent that there are numerous factors which effect wire life. One of the most common factors causing Fourdrinier Wire failure is the abrasive wear caused by a friction between the bottom of the Wire and the suction boxes, forming boards, and deflectors. Most of this wear occurs at the suction boxes. A serious form of abrasive wear comprises a burring of the bottom of the wires, particularly the warp knuckles. in some cases, wear spots develop in wires. This is most commonly attributed to the forming of foreign substances which are entrapped in the wire.
Other types of Wear in Fourdrinier wire may be ascribed to frictional effects and present themselves as Worn wire in the forms of scores and distortions. Frequently-excessive wire wear may be attributed to poor drainage characteristics, either because of improper vacuum on the suction boxes or other similar reasons. Also, a poor quality water will cause scaling and edge filling. Similarly, due to mechanical characteristics of the wire, edge cracks, edge splits, and edge distortion frequently occur in Fourdrinier wires operating on various types of Fourdrinier machines.
A factor which sometimes tends to accelerate abrasive wear of Fourdrinier wires is corrosion. In and of itself, corrosion is not particularly damaging to Fourdrinier wire, but it tends to substantially reduce abrasion resistance and draining characteristics of the wire so that frictional effects imposed on the wire are increased.
Acareful study of the above types of wear of a Fourdr'inier Wire leads one skilled in the art to the obvious conclusion that if abrasive wear or frictional properties of Fourdrinier wire, caused by its contacting the various parts and sections used in a Fourdrinier machine, could be reduced and if the drainage characteristics of the wire could be improved, thereby preventing blockage by either fiber or foreign substances, then a practical solution to the extension of Fourdrinier wire life could be achieved. Therefore, if a chemical treatment is to succeed in improving the operationcharacteristics of a Fourdrinier paper making machine by the extension of the useful life of the Fourdrinier wire used in such machines, such a treatment must function in a twofold manner, e.g., it must be capable of both preventing abrasive wear by providing a lubricating action on the wire, and secondly, it must act as a dispersant or cleansing agent to prevent or toremove deposits between the open areas defined by the mesh of the particular wire used. It therefore becomes an object of the invention to provide a chemical treatment, which when applied in low, economical dosages, will improve the operational eiiiciency of a Fourdrinier paper making machine.
Another object of the invention is to provide a chemical which will substantially reduce the abrasive Wear of Fourdrinier wires.
A further object is to provide a chemical which will tend to improve drainage and ereby prevent the blockage of the open areas between the mesh of the wire by vthe operational life of a Fourdrinier paper making machine may be greatly improved by treating the bottom of the wire with a combination of chemicals comprising (A) a water soluble, extreme pressure lubricant, (E) a water miscible nonquaternary cationic dispersant, and (C) a water dispersible organic ilicon-containing compound which may be either an organo silicon oxide condensation product or an organo functional sila'ne. By using this combination of ingredients'it is possible to treat a Fourdrinier wire with as little as .005 pound of treating agent per ton, based on the Weight of the paper formed on the wire with the above combination of ingredients, to substantially increase wire life. The chemicals have a two fold effect in that they afiord lubricity and improve the drainage of the stock formed, thereby providing a surface which has less tendency to abraid than an untreated wire, when passing over the various sections of a typical Four drinier machine. My investigations have led me to believe that localized areas of stress are excessive to the point that high pressures are involved. This means that conventional lubricants are of little value in the solution of the problems enumerated above.
For a more comprehensive understanding of how the compositions of the invention are applied to improve the operational characteristics of a Fourdrinier machine, reference may be had to the drawing.
The drawing is a simple schematic diagram of a typical Fourdrinier end of a paper making machine. The numeals used in the drawing represent the various components of the Fourdrinier system. It is to be understood that the drawing is simplified, but serves to illustrate generally a typical Fourdrinier system. The headbox and slice area are generally represented by the numerals 1 and 2 respectively. The breast roll is illustrated by the numeral 3 whereas the deckle rolls and forming board are shown by the numerals 4 and 5. The table roll 6, tray 7, and suction flat boxes 8 are another common group of components found in Fourdrinier machines.
The couch roll 9, dandy I011 10, and lump breaker roll 11, might be considered as ending the top section of a typical Fourdrinier asemblage. Wire showers 12, wash rolls 13, automatic guide rolls 14, stretch roils l5, and wire return rolls 16 and 16A all compose what is generically referred to herein as the return section of the Fourdrinier wire, and operate to control the bottom movement of the wire. The wire itself is indicated by the numeral 18. An important concept of the invention resides in the use of a shower applicator l? which is located between a wire return roll 16A and the breast roll 3. This shower spray is a preferred application point for applying the wire life extending chemicals of the invention. It is obvious that the spray 17 should be positioned so that it uniformly sprays the chemicals onto the entire width of the wire 13.
To be effective, it is desirable that the chemical be applied to the bottom of the wire. The word bottom is used to refer to any point in the return section of the Fourdrinier wire between the couch roll 9 and its point of subsequent contact with the breast roll 3. This wire bottom section is admirably suited for application of the treating agent. It is preferable that the application point be as near the breast roll as possible.
An alternative method of applying the chemicals of the invention would be to coat the chemicals by suitable means (not shown) on the wire return roll 16, whereby the bottom of the wire would be coated uniformly. Regardless of the mode of application, it is important that the entire wire 13 be covered with the chemical and that the chemical be applied in the form of a dilute aqueous solution.
From the above description it is apparent that the chemicals in the invention are most preperably applied I as a dilute aqueous solution to the bottom of the wire just prior to its engagement with the stock entering from the head'box 1. through the slice 2. The application of a thereby applying them through the header or spray 17.
.The chemicals may be prepared initially either as dry chemicals to be subsequently diluted at the mill site or point of use, or they may be made up into an aqueous concentrate for efiiciency in shipment to the mill site where it may be diluted by the machine operators.
The water soluble, extreme pressure lubricants are I dilute aqueous solution may be achieved by dissolving the chemicals into a suitable water source (not shown) and sulfhydryl-containing compounds. They may be classified broadly as nitrogen-containing heterocyclic compounds characterized by a ring nitrogen bonded to a ring carbon. To the ring carbon is attached a non-ring sulfhydryl group. The characteristic structural formula covering this sulfhydryl heterocyclic combination of elements maybe illustrated by the Formula I below:
FORMULA I Compounds having this illustrative molecular configuration and which are valuable in the practice of the invention are such well-known compounds as Z-mercaptothiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, and Z-mercaptobenzothiazole. Of these compounds, Z-mercapt-obenzothiazole is preferred since it is relatively inexpensive and is commercially available.
The above compounds are, for practical purposes, relatively water insoluble, but they are rendered readily soluble by converting them to their alkali metal salts. Any of the well-known alkali metal salts of these compounds, e.g., sodium, potassium, cesium, and rubidium may be used, although due to availability and economics, the sodium salts are preferred. Equivalent to the sodium salts of these compounds are the ammonium salts, but they are not particularly preferred due to volatility problems encountered when the machines are operated at elevated temperatures.
The water miscible, non-quarternary cationic dispersants used in the practices of the invention should contain at least one, but not more than two aliphatic groups of at least 6 carbon atoms in chain length. Preferably the aliphatic groups should contain 12-22 carbon atoms. It is also contemplated that the carboxylic and inorganic salts of these compounds may also be used, e.g., acetates, sulfates, chlorides, and the like.
One class of non-quarternary cationic dispersants that are useful in the practice of the invention, are the aliphatic amines having the general structural formula:
In the above formula, R is an aliphatic group of from 1222 carbon atoms in chain length, n is an integer of from 2-6 and x is an integer of from 0-5 Commercially available compounds falling within the above structural formula include the well-known aliphatic monoamines and the fatty substituted alkylene diarnines and polyalkylene polyamines. Typical fatty monoamines useful in the practices of the invention are such products as n-dodecyl amine, n-tetradecyl amine, dicoco amine, nhexadecyl amine, n-octadecyl amine and the like.
Useful fatty substituted alkylene diarnines are the Duomeens manufactured by Armour Chemical Division which products provide such commercially available chemicals as N-lauryl trimethylene diarnine, N-coco trimethylene diarnine, N-soya trimethylene diamine, and N- tallow trimethylene diamine.
From the above list of aliphatic monoamines and fatty alkylene diarnines, it is apparent that the invention contemplates using amines Which contain mixed fatty aliphatic groups of the type commonly found as components of animal fats and vegetable oils.
Another group of useful water miscible non-quaternary structural formulas:
In the above formula, D represents a divalent nonamino organic radical containing less than 25 carbon atoms. D may be composed of the elements C, H, O and N. D represents a divalent organic radical containing less than 25 carbons and composed of the elements C, H, O, and N and contains at least one amino group. R is an aliphatic group which may contain at least 7 carbon atoms in chain length, although it preferably contains from 11 to 21 carbon atoms. R may be an aliphatic group similar in all respects to R with the exception that R may also be hydrogen. Y and Z may be either hydrogen or lower alkyl groups of not more than '6 carbon atoms.
Imidazolines of the above type are well-known and are described in Wilson US. Patents 2,267,965 and 2,355,837. Typical imidazolines of the type shown in the above structural formulas are such compounds as 1-(2-aminoethyl)-2-heptaclecyl imidazoline and l-(2-hydroxyethyl)- 2-heptadecyl imidazoline. For a comprehensive description of the imidazolines of the type described above which may be used, reference may be had to Clausen, US. 2,865,817.
Of all the imidazolines thus far described, a favored group of these chemicals are those having the structural formula:
In the above formula, R is a saturated aliphatic group containing from 11-21 carbon atoms.
The silicon containing compounds may be of two general types, the first being an organo silicon oxide condensation product which encompasses such well-known products as the condensed esters of ortho and metasilicic acid and the well-known silicon polymers such as the poly dimethyl siloxanes. Products of this general type are described in detail in Trautman et al., U.S. 2,416,503-4. When silicon containing compounds of this type are used, it is important that they be at least colloidally dispersible in water. When the compounds are not dispersible per se it is possible to form them into a sufiicient state of subdivision, e.g., 1 micron or less, thereby making it possible to colloidally disperse such silicon containing compounds into the water and to this extent they are usable. A preferred group of siliconcontaining compounds are the organo functional silanes generically represented by the following formula:
In the above formula, R is a lower aliphatic hydrocarbon group of notmore than 4 carbon atoms in chain length. Y is an aliphatic amine-containing group and n= or 1. Typical exampes of compounds coming within the above structural formula are gamma-aminopropyl triethoxy silane, delta-amino butyl methyl-diethoxy silane and 2-(3-trimethoxy silyl propylamino) ethyl amine. The above described water dispersible, organic siliconcontaining compounds not only tend to improve the lubricating characteristics of the formula, but they also in some instances act as a deforming agent to prevent 0 excessive foam formation at the point of formula application.
In treating the Fourdrinier wire to provide increased life during its normal operation, the chemicals are fed at a relatively low dosage, e.g., .005 pound per ton based on the dry weight of the paper formed on the Fourdrinier wire, with the preferred dosage being from 0.025 to 0.1 pound per ton.
The chemicals are combined so that the water soluble, extreme pressure lubricant is present in an amount ranging between 597.99% by Weight. The water miscible non-quarternary cationic dispersant may be employed in amounts ranging from 292% by weight, and the organic silicon-containing compound is advantageously employed in amounts ranging from 0.015% by weight.
The proportions of the ingredients, of course, may be varied, depending upon the particular condition of the Fourdrinier machine and wire to be treated. For example, if it is determined that abrasive wear is due extensively to plugging of the mesh openings of the wire,
then it would be desirable that a larger quantity of surface active agent and/or the silicon containing compound be employed, whereas if abrasive wear is the predominant problem, then the amount of water soluble extreme pressure lubricant should be increased.
The compositions of the invention may be either formulated as a dry mix and then diluted at the point of use, or preferably, they are prepared as an aqueous concentrate which is then diluted to use concentration.
A typical composition useful in the practices of the invention is the aqueous concentrate illustrated by Formula II below.
FORMULA II Ingredient: Percent by weight Sodium-2-mercaptobenzothiazole 25 Isopropanol 20 1- (Z-hydroxyethyl) -2-heptadecyl imidazoline 20 2-(3 trimethoxy silyl propylamino)-ethylamine 0.1
Soft water 34.9
To illustrate the invention, the following are presented by way of example.
Example I This test was conducted on a Fourdrinier machine which produced 600 tons per day of unbleached kraft liner board. The machine, prior to the test, had an average wire life of about 7 days. Inspection of the wires after removal from the machine showed that abrasion was the primary source of wire wear. Formula II was applied at a dosage of 0.25 pound per ton for the first 6 hours of the test and was then reduced to 0.1 pound per ton for the remainder of the test period. The chemical was applied by means of a shower spray at a point just prior to the breast roll. The wire life during the test period was 10 days at which time a mechanical puncture necessitated wire removal. An inspetcion of the wire showed that there were still several days of wear remaining. In a second test at the same location, the same dosages were maintained and the wire ran for 16 days without necessitating shutdown.
During the second test described above, the feeding of the chemical was discontinued for several minutes for comparative measurement of the couch motor power requirements. Amperage at the cessation of the treatment, jumped from 850 amps. to 1100 amp-s. Continuation of the treatment within a matter of minutes reduced the amperage to 850.
Example 11 t another paper mill Formula II was tested on a Fourdrinier machine producing unbleached kraft and paper board. The output of the machine averaged between 200 and 400 tons per day. The Fourdrinier wire was 220 inches in width and was run, .during the test period, at speeds ranging between 1100 and 2100 feet per minute. The pH of the white water system was between 5.5 and 6.5. A record of prior wire life indicated an average wire to last 7.5 days to 9 days.
The composition was used to treat four successive wires at an initial dosage of 0.1 pound per ton, which after several hours, was reduced to 0.07 pound per ton.
The chemical was applied from a shower header located across the wire bottom at a point between the return roll and the breast roll. At the end of the four tests the average wire life experience was 16.3 days.
In both Examples I and II, inspection of the wires showed them to be extremely clean and bright. There was a dramatic improvement in both test series, of the stock drainage characteristics as well as in the efliciency of the entire machine operation.
An important result as shown above achieved by practicing the invention, is the great improvement noticed in the drainage of the stocks formed on the treated wires. This elfect permits a better quality of paper to be produced, faster drying and sheet formation. Also, the invention permits greater variations in refining and machine speeds to be utilized.
I claim:
1. A method for improving, by chemical means, the operational efiiciency of a Fourdrinier paper making machine which utilizes a continuous Fourdrinier wire upon which paper and paper products are formed, which comprises treating the bottom of said Fourdrinier wire with a dilute aqueous solution which contains at least .005 pound per ton, based on the dry weight of the paper and paper products formed on said Fourdrinier wire, of a composition having the formula: (A) from 97.99% by weight of a water soluble, extreme pressure lubricant comprising a nitrogen-containing heterocyclic compound characterized by a ring nitrogen bonded to a ring carbon to which is attached a suifhydryl group, (B) from 292% by weight of a dispersant from the group consisting of water miscible, non-quaternary cationic dispersants and salts thereof which contain at least 1, but not more than 2, aliphatic groups of at least 6 carbon atoms in chain length, and (C) 0.01-5 by weight of a water dispersible, organic, silicon-containing compound from the group consisting of organosilicon oxide condensation products and organo functional silanes.
2. The method of improving, by chemical means,.the operational efficiency of a Fourdrinier paper making machine in accordance with claim 1 where the non-quaternary cationic dispersant has the structural formula:
E H R1 I[ (CH2) n I] =H where R is an aliphatic group containing from 12-22 carbon atoms in chain length, n is an integer of from 2 to 6, and x is an integer of from O to 5.
3. The method for improving, by chemical means, the operational efiiciency of Fourdrinier paper making machines in accordance with claim 1 wherein the water miscible, nonquaternary cationic dispersant is an imidazoline having a structurel formula from the group consisting of:
I 1 DR 2 where D represents a divalent, non-amino organic radical containing less than 25 carbon atoms, composed of elements from the group consisting of C, H, O, and N; D represents a divalent organic radical containing less than 25 carbon atoms from the group consisting of C, H, O, and N, and containing at least one amino group; R is an aliphatic group containing from 11 to 21 carbon atoms in chain length, and R is from the group consisting of H and aliphatic groups of from 11 to 21 carbon atoms in chain length, Y and Z are from the group consisting of hydrogen and lower alkyl groups or not more than 6 carbon atoms; and the organo functional silane has the formula:
where R is a lower aliphatic hydrocarbon group of not more than 4 carbon atoms in chain length and Y is an aliphatic amine-containing group and n has the value of 01.
4. The method for improving by chemical means, the operational efiiciency of Fourdrinier paper making machines in accordance with claim 3 wherein the imidazoline has the structural formula:
where R is a saturated aliphatic group containing from 11 to 21 carbon atoms, and the organo functional silane is 2-(3-trimethoxy silyl propylamino) ethylamine.
References Cited in the file of this patent UNITED STATES PATENTS 1,216,861 Shorey Feb. 20, 1917 2,825,693 Beaubien Mar. 4, 1958 2,947,703 Larsonneur Aug. 2, 1960 2,990,943 Turinsky July 4, 1961 2,992,469 Hose July 18, 1961 2,999,064 Sluhan Sept. 5, 1961 OTHER REFERENCES Paper Industry and Paper World, page 903, October 1944.
Pye; Wear of Fourdrinier Wire Bearing Materials, From Pulp and Paper Magazine of Canada, pages 124- 136, March 1958.
Some Corrosion Inhibitors From Corrosion, vol. 11, No.4, pp. 65, 66, and 67, April 1955.

Claims (1)

1. A METHOD FOR IMPROVING, BY CHEMICAL MEANS, THE OPERATIONAL EFFICIENTY OF A FOURDRINIER PAPER MAKING MACHINE WHICH UTILIZES A CONTINUOUS FOURDRINIER WIRE UPON WHICH PAPER AND PAPER PRODUCTS ARE FORMED, WHICH COMPRISES TRETING THE BOTTOM OF SAID FOURDRINIER WIRE WITH A DILUTE AQUEOUS SOLUTION WHICH CONTAINS AT LEAST .005 POUND PER TON, BASED ON THE DRY WEIGHT OF THE PAPER AND PAPER PRODUCTS FORMED ON SAID FOURDRINIER WIRE, OF A COMPOSITON HAVING THE FORMULA: (A) FROM 5-97.99% BY WEIGHT OF A WATER SOLUBLE, EXTREME PRESSURE LUBRICANT COMPRISING A NITROGEN-CONTAINING HETEROCYCLIC COMPOUND
US161701A 1961-12-22 1961-12-22 Treatment of fourdrinier wire Expired - Lifetime US3150035A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US161701A US3150035A (en) 1961-12-22 1961-12-22 Treatment of fourdrinier wire
GB35809/62A GB977094A (en) 1961-12-22 1962-09-20 Method of improving the operational efficiency of a fourdrinier papermaking machine
DEN22179A DE1262482B (en) 1961-12-22 1962-10-05 Means for lubricating the inside of the machine wires of Fourdrinier paper machines
FR914622A FR1358391A (en) 1961-12-22 1962-11-07 Advanced papermaking process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US161701A US3150035A (en) 1961-12-22 1961-12-22 Treatment of fourdrinier wire

Publications (1)

Publication Number Publication Date
US3150035A true US3150035A (en) 1964-09-22

Family

ID=22582331

Family Applications (1)

Application Number Title Priority Date Filing Date
US161701A Expired - Lifetime US3150035A (en) 1961-12-22 1961-12-22 Treatment of fourdrinier wire

Country Status (3)

Country Link
US (1) US3150035A (en)
DE (1) DE1262482B (en)
GB (1) GB977094A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199989A (en) * 1962-07-16 1965-08-10 Stanley J Buckman Corrosion inhibitor and method of using the same
US3316176A (en) * 1967-04-25 Paper making process
US4995944A (en) * 1988-09-16 1991-02-26 Dearborn Chemical Company Ltd. Controlling deposits on paper machine felts using cationic polymer and cationic surfactant mixture
WO1991016492A1 (en) * 1990-04-12 1991-10-31 The Procter & Gamble Company Process for chemically treating papermaking belts
US5223097A (en) * 1986-01-09 1993-06-29 W. R. Grace Ab Method for controlling pitch on a paper-making machine
US5520781A (en) * 1993-10-07 1996-05-28 Betz Paperchem, Inc. Method of inhibiting wet strength resin deposition in papermaking felts
US5626720A (en) * 1986-01-09 1997-05-06 W.R. Grace & Co.-Conn. Method for controlling pitch on a papermaking machine
DE19737646A1 (en) * 1997-08-29 1999-03-04 Voith Sulzer Papiermasch Gmbh Sheet formation system with format labels
US20120043040A1 (en) * 2010-08-23 2012-02-23 Fushan Zhang Method of Treating Paper Forming Wire Surface
US12043794B2 (en) 2018-08-28 2024-07-23 Kao Corporation Oil and gas field corrosion inhibitor compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2251868B (en) * 1990-12-24 1994-07-27 Grace W R & Co Pitch control
GB2284833A (en) * 1993-11-02 1995-06-21 Steven Frederick Finch Inhibiting the deposition of sticky particles on paper mill dryer fabrics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1216861A (en) * 1916-06-07 1917-02-20 Napoleon Shorey Suction-box.
US2825693A (en) * 1955-02-03 1958-03-04 Shell Dev Metal working lubricant
US2947703A (en) * 1958-07-16 1960-08-02 Nalco Chemical Co Process of inhibiting corrosion of ferrous metals in contact with aqueous solutions of acids
US2990943A (en) * 1956-10-09 1961-07-04 Armour & Co Metal working process
US2992469A (en) * 1959-05-14 1961-07-18 Lindsay Wire Weaving Co Fourdrinier wire cloth
US2999064A (en) * 1959-02-11 1961-09-05 Master Chemical Corp Stable aqueous cutting fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1216861A (en) * 1916-06-07 1917-02-20 Napoleon Shorey Suction-box.
US2825693A (en) * 1955-02-03 1958-03-04 Shell Dev Metal working lubricant
US2990943A (en) * 1956-10-09 1961-07-04 Armour & Co Metal working process
US2947703A (en) * 1958-07-16 1960-08-02 Nalco Chemical Co Process of inhibiting corrosion of ferrous metals in contact with aqueous solutions of acids
US2999064A (en) * 1959-02-11 1961-09-05 Master Chemical Corp Stable aqueous cutting fluid
US2992469A (en) * 1959-05-14 1961-07-18 Lindsay Wire Weaving Co Fourdrinier wire cloth

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316176A (en) * 1967-04-25 Paper making process
US3199989A (en) * 1962-07-16 1965-08-10 Stanley J Buckman Corrosion inhibitor and method of using the same
US5626720A (en) * 1986-01-09 1997-05-06 W.R. Grace & Co.-Conn. Method for controlling pitch on a papermaking machine
US5223097A (en) * 1986-01-09 1993-06-29 W. R. Grace Ab Method for controlling pitch on a paper-making machine
US4995944A (en) * 1988-09-16 1991-02-26 Dearborn Chemical Company Ltd. Controlling deposits on paper machine felts using cationic polymer and cationic surfactant mixture
WO1991016492A1 (en) * 1990-04-12 1991-10-31 The Procter & Gamble Company Process for chemically treating papermaking belts
US5073235A (en) * 1990-04-12 1991-12-17 The Procter & Gamble Company Process for chemically treating papermaking belts
US5520781A (en) * 1993-10-07 1996-05-28 Betz Paperchem, Inc. Method of inhibiting wet strength resin deposition in papermaking felts
DE19737646A1 (en) * 1997-08-29 1999-03-04 Voith Sulzer Papiermasch Gmbh Sheet formation system with format labels
US6214169B1 (en) 1997-08-29 2001-04-10 Voith Sulzer Papiermaschinen Gmbh Sheet formation system with deckle plates and method for reducing edge waves
US20120043040A1 (en) * 2010-08-23 2012-02-23 Fushan Zhang Method of Treating Paper Forming Wire Surface
US8524042B2 (en) * 2010-08-23 2013-09-03 Hercules Incorporated Method of treating paper forming wire surface
US12043794B2 (en) 2018-08-28 2024-07-23 Kao Corporation Oil and gas field corrosion inhibitor compositions

Also Published As

Publication number Publication date
DE1262482B (en) 1968-03-07
GB977094A (en) 1964-12-02

Similar Documents

Publication Publication Date Title
US3150035A (en) Treatment of fourdrinier wire
US3554863A (en) Cellulose fiber pulp sheet impregnated with a long chain cationic debonding agent
US3953283A (en) Paperboard having improved oil resistance
US4710267A (en) Process for reducing discoloration and/or tackiness in processing waste paper fibers
US8865263B2 (en) Papermaking additives for roll release improvement
US2715614A (en) Defoaming agent for pulp and paper stock
US5853539A (en) Method of applying dry strength resins for making soft, strong, absorbent tissue structures
US3901987A (en) Slip resistant composition for paper coating
US3140222A (en) Treatment of fourdrinier wire
EP1268932A2 (en) Pitch and stickies control in pulp and papermaking processes
AU2001245969A1 (en) Pitch and stickies control in pulp and papermaking processes
US2961366A (en) Sized paper and method of making same
US3316176A (en) Paper making process
US3274050A (en) Pitch control in pulp and papermaking
JPH07279081A (en) Method for improving releasability of wet paper from stone roll
JPS597828B2 (en) Smoothing agent composition for synthetic fibers with antistatic effect
US2986488A (en) Method of sizing paper
US5536363A (en) Methods for inhibiting the deposition of organic contaminants in pulp and papermaking systems using a composition comprising of polyvinyl alcohol and gelatin
FR2732368B1 (en) NEW PAPERMAKING PROCESS
US3560332A (en) Paper moldproofed with di(phenyl-mercuric)-ammonium salts of aliphatic carboxylic acids
US10604895B2 (en) Method of improving paper machine forming wire, felt and woven dryer belt performance by the application of peroxide containing solutions
US5082528A (en) Iron salts as retention agents
US2325085A (en) Antioxidizing paraffin composition
US5866618A (en) Compositions and Methods for inhibiting the deposition of organic contaminants in pulp and papermaking systems
WO1997035062A1 (en) Mixtures of reducing-action sulphur compounds and organic corrosion inhibitors and their use as corrosion-inhibiting bleaching or reducing agents