US3149062A - Electrodialysis apparatus - Google Patents
Electrodialysis apparatus Download PDFInfo
- Publication number
- US3149062A US3149062A US600328A US60032856A US3149062A US 3149062 A US3149062 A US 3149062A US 600328 A US600328 A US 600328A US 60032856 A US60032856 A US 60032856A US 3149062 A US3149062 A US 3149062A
- Authority
- US
- United States
- Prior art keywords
- membranes
- unit
- conduit means
- outlets
- compartments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000909 electrodialysis Methods 0.000 title claims description 31
- 239000012528 membrane Substances 0.000 claims description 106
- 238000007865 diluting Methods 0.000 claims description 22
- 239000011810 insulating material Substances 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 description 25
- 239000003792 electrolyte Substances 0.000 description 23
- 239000012267 brine Substances 0.000 description 17
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 17
- 239000012530 fluid Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/50—Stacks of the plate-and-frame type
Definitions
- This invention constitutes an improvement in design and arrangement of known forms of electrodialytic apparatus, for example, such as is disclosed in Union of South African Patents Nos. 19,860 and 20,748, which relate to multicell electrodialytic units formed by alternate anion and cation permeable membranes separated by suitable intermembrane spacers all of which being mounted together to form a press between a pair of backing plates which carry electrodes.
- An object of this invention is to provide arrangements for electrodialytic processes and more specifically multicell electrodialytic apparatus, having low electrical power requirements and a high effectiveness per unit total membrane surface.
- a further object is to provide arrangements of electrodialysis apparatus in which the coulomb efficiency is maintained at a high level even when large numbers of cells, for example, fifty or more, are combined to form the multicell unit.
- Another object of this invention is to provide an electrodialysis apparatus wherein external connections to and from the various infiuent and effiuent channels or conduits of the apparatus are easily and readily made with out weakening the arrangement and construction of the unit.
- a multicell electrodialysis apparatus comprising a plurality of fluid spaces formed by alternate anion and cation permeable membrane walls separated by intermediate spacer members all being mounted together to form a press between a pair of backing or end plates carrying electrodes, is characterized in that the electrical resistance of the path through which electric current dissipates, relative to that of the path through the active membrane surfaces, is increased and whereby substantially the total available electric current is employed in effecting electrodialysis.
- More particularly one feature of this invention provides, at selected positions in the membrane press, intermediate plates arranged to interrupt the continuity of the electrolyte conduit streams through the membranes without interrupting the electrical continuity at the active membrane surfaces, said intermediate plates serving to subdivide the membrane press into two or more packs.
- the membranes, intermembrane spacers, backing plates and intermediate plates are characterized by having shapes such that the distances from the geometrical centre of the active membrane surface to the conduits or channels containing the electrolyte streams within the press, and more particularly the conduits containing the more concentrated electrolyte (brine) streams, are increased to the limit of practicability, such limit being consistent with maintaining an adequate proportion of active membrane surface, say not less than about 70%.
- a further feature of this invention which is designed to offset the loss in coulomb efficiency inherent in multicell electrodialysis apparatus of the known and conventional type is an arrangement of spacer material and membrane spacers which reduces to a minimum the volume of electrolyte between the membranes.
- an additional feature of this invention is the recognition of the importance of employing membranes of high electrical conductivity.
- the anion and cation permeable membranes constituting the multicell unit are of high electrical conductance and not less than about millimho per square centimetre membrane surface as measured in 1,000 ppm. neutral aqueous NaCl solution at 30 C. at a frequency of 2,000 c.p.s.
- Use of membranes of high electrical conductance is considered necessary and results in advantages gained in operational efliciency of multicell electrodialysis apparatus over and above that anticipated from a consideration of the effect of the improved membrane conductance upon the overall electrical resistance of the membrane assembly alone.
- the aforesaid features or measures all achieve substantially the same effect, namely, increasing the electrical resistance of the path through which electric current is dissipated relative to that of the path through the active membrane surfaces of the multicell in which the electric current is usefully employed in effecting electrodialysis.
- the coulomb efficiency of a multicell electrodialysis apparatus may be increased by applying any one of the aforesaid features or embodiments, or combination of such features or embodiments.
- FIGURES 1, 2, 3 and 4 are elevations of four forms of membrane shapes, typical of this invention.
- FIGURE 5 is a diagrammatic isometric exploded view showing in some detail the assembly and arrangement of a typical membrane pack and part of an adjacent membrane pack within an electrodialysis press in which membranes of the shape shown in FIGURE 3 are used;
- FIGURE 6 is a fragmentary isometric view of two packs of a membrane press in which membranes of the shape shown in FIGURE 4 are used;
- FIGURE 7 is a fragmentary isometric view of two packs of a membrane press in which membranes of the shape shown in FIGURE 2 are used;
- FIGURE 8 is a diagrammatic fragmentary side view of a typical membrane press constructed according to this invention.
- FIGURE 9 is a diagrammatic representation of another arrangement according to this invention showing the flow .of the dialysate and brine streams and the manner in which these streams are connected to the apparatus;
- FIGURE 10 is an elevation of an intermediate plate typical of the invention, showing the manner in which electrically conducting electrolyte may be introduced for the purpose of preserving electrical continuity at the active membrane surface of an electrodialysis press;
- FIGURE 11 is a sectional elevation on line XIIXII of FIGURE 10.
- reference numeral 1 denotes an end or backing plate in which is set, in the position shown, an electrode 2.
- the electrical connections to the said electrode and the special electrode rinse compartment normally associated with electrodialysis units are not shown for .the sake of simplicity.
- the end plate 1 and its attendant electrode 2 constitute one of two end or backing plates terminating a typical electrodialysis membrane press.
- gaskets 3 Following the end or backing plate 1 and the associated electrode rinse compartment, are arranged in the sequence shown, gaskets 3, sheets of suitable spacer material 4, dialysate and brine distribution rings 5 and '7 respectively, and membranes 6 and 8 which are alternately anionic and cationic permselective.
- the thickness dimensions of the gaskets, spacer material and rings thus define the width and free volume of the various diluting and concentrating compartments formed by the alternate anion and cation permeable membrane walls.
- the whole of the membrane pack 9 is assembled from sequential gaskets, sheets of spacer material, rings and membranes terminating in an intermediate plate Ill.
- the arrangement of gaskets, spacer material, rings and membranes immediately preceding said intermediate plate may vary according to the design of the latter.
- the second membrane pack of the press is built up and assembled from intermediate plates 11 and sequential gaskets, spacer material members, rings and permselective membranes.
- Each membrane pack within the press is defined by separate or individual pairs of intermediate plates except in the case of the packs situated at the extremities of a press in which case the packs are defined by a single intermediate plate and an end or backing plate carrying an electrode.
- Intermediate plates relating to adjacent membrane packs, for example, plates It and 11 in FIGURE 5, are separated by a special gasket 3:: as shown.
- brine enters and leaves the first membrane pack via inlets and outlets 13 and I4 situated adjacent the extreme bottom and top ends of the end plate 1 and the intermediate plate 10 while the dialysate enters and leaves the pack via inlets and outlets l5 and lo situated as shown.
- brine and dialysate enter and leave via inlets and outlets situated at the bottom and top of the intermediate plates 11 which define the pack.
- the brine and dialysate streams flow in parallel through the cells via conduits formed by the holes 17 and I8 (FIGURES 1 to 5) in the corresponding membranes and the respective rings.
- the holes I? provide the brine channels or conduits whereas the holes 18 form the dialysate conduits or channels.
- reference numeral 12 denotes sheets of spacer material which fit into the re Ded faces of the intermediate plates It) and 11.
- FIGURE 8 shows diagrammatically a typical membrane press made up of a number of packs as described above.
- Said drawing shows a manifold feed and efiiuent arrangement for both brine and dialysate and the way in which the several packs are connected in parallel flow.
- the pipes 19 and 2t respectively represent the brine and dialysate supply whereas .21 and 22 are respectively the brine and dialysate effluent tubes.
- FIGURE 8 indicates feed inlets and efiluent outlets in opposite ends of each of the several packs, other arrangements are possible. Brine and dialysate may also be fed at both ends of the bottom of each pack and leave through similarly located corresponding outlets at both ends of the top of such pack.
- FIGURES 2, 3 and 4 A construction of membranes, intermembrane spacers and backing plates as also intermediate plates according to the shape shown in FIGURE 1 results in a large inactive membrane surface and is, therefore, wasteful, whilst constructions according to FIGURES 2, 3 and 4 are economical because such constructions result in a total inactive surface per membrane of bXc only (neglecting the narrow inactive portions at either side of the electrode area which do not vary with construction).
- the active (electrode) area is shown in FIGURES l, 2, 3 and 4 as the shaded regions.
- the distance a represents the spacing from the brine conduit or channel to the active surface of a membrane. Such distance should be a maximum within practical limits.
- Each plate is provided with an inlet 27 and outlet 28 for the conducting electrolyte rinse stream and a recess 31 permitting distribution of said electrolyte.
- the holes 29 allow for sealing of the entire assembly by means of bolts. Since it is necessary to arrange for continuity of flow in the electrolyte system, the separated electrolyte streams must be connected via paths of high electrical resistance relative to the electrical resistance of the membrane packs, preferably not less than 50 times as high.
- FIGURE 8 An arrangement for achieving this is shown in FIGURE 8, employing membranes, intermembrane spacers and intermediate plates having the shape as shown in FIGURE 3.
- Alternative constructions are possible, such as those having membranes of the shapes shown in FIGURES 2 and 4 but the principle of securing the desired connections is the same.
- the first membrane pack is arranged between end plate 1 and intermediate plate 10 whilst the second pack is arranged between intermediate plates 11 and 11, the plates being reversed so that the dialysate and brine connections of alternate packs are disposed in staggered relationship in order that space is made available for the connections of the pipes to the individual electrolyte channels, for example, the brine pipes 19 and 21 and the dialysate pipes 20 and 22.
- the external connections of similar streams may be arranged as is shown in FIGURE 9 to provide for packs connected in series; long paths should be employed to the manifolds, more especially in the case of the brine.
- the brine streams are denoted by double arrows.
- Other arrangements of flow are possible, for example, the several packs of a membrane press may be arranged in series-parallel in which case the various connections at the top and bottom of the plates will be altered accordingly.
- a further improvement is obtained in the multicell electrodialysis apparatus by providing a small volume of liquid between the membranes per square centimetre of membrane surface, so that the electrical resistance of the intermembrane electrolyte in each compartment in a direction parallel with the plane of the membrane is made as high as possible relative to the electrical resistance per unit length in a direction at right angles to the active membrane surface.
- This may be achieved either by a small membrane spacing or, for example, by use of perforated corrugated intermembrane spacing material of which the thickness of such corrugated material is appreciable in comparison with the amplitude of corrugation. It has been found possible to have intermembrane electrolyte volumes as low as 0.06 ml. per square centimetre membrane surface. A practical limit is set to the extent to which this electrolyte volume can be reduced, by the necessity for the pumping energy requirements not to be unduly high, say about ft. head of water.
- membrane press arranged and described in the drawings represents only typical assemblies for such a unit, but many other features and combinations of features may be introduced into the apparatus without departing from the principles of the invention.
- special electrode rinse compartments may be introduced at the electrode end or backing plates terminating the press.
- the use of special rinse liquid streams may be extended to embrace the intermediate plates through which may be made to circulate a separate stream of liquid containing a high concentration of electrolyte for the purpose of maintaining electrical continuity at the active membrane surface.
- the form taken by the intermediate plates may also be changed in several respects, for example, instead of forming the end brine compartments of the packs by recessing the faces of the corresponding intermediate plates, as shown in FIGURES 5 and 11, these compartments may be formed by additional gaskets and rings.
- a high voltage drop is experienced across a unit composed of a large number of cells where the total current is supplied by a single pair of end electrodes situated in the backing plates.
- the arrangement of such apparatus according to this invention permits ready application of extra electrodes mounted in one or more of the intermediate plates of such multicells.
- supplementary electrodes could advantageously be mounted at intervals of every four packs so that a lower voltage supply would be required.
- Such subsidiary electrodes are connected in parallel, possibly with means whereby the voltage over parts of the unit may be adjusted by external resistances for balancing purposes or when it is necessary to replace a faulty pack.
- Said subsidiary electrodes may be arranged as a common electrode between adjacent intermediate plates, or adjacent intermediate plates may each carry a subsidiary electrode.
- An electrodialysis apparatus comprising a plurality of juxtaposed multi-membraned units each conprising a first intermediate plate at one end of the unit and an identical intermediate plate at the other end of the unit rigidly connected to the first intermediate plate, a plurality of parallel alternating anion-selective and cationselective membranes between said intermediate plates, at least one gasket and one intermembrane spacer member between each two membranes defining between said membranes alternate diluting and concentrating compartments having inlets and outlets, all said membranes, gaskets, intermembrane spacer members and intermediate plates being parallel to each other, said intermediate plates being of insulating material and of the same outline as said membranes and gaskets, and having apertures therein in the area thereof which is in contact with the active membrane surfaces of said membranes and having ports therein, said membranes, gaskets, and spacer members having alinged holes therein forming manifold conduit means separately interconnecting the inlets of all the diluting compartments of said unit and
- An electrodialysis apparatus comprising a plurality of juxtaposed multi-membraned units each comprising a first intermediate plate at one end of the unit and an identical intermediatev plate at the other end of the unit rigidly connected to the first intermediate plate, a plurality of parallel alternating anion-selective and cation-selective membranes between said intermediate plates, at least one gasket and one intermembrane spacer member between each two membranes defining between said membranes alternate diluting and concentrating compartments having inlets and outlets, all said membranes, gaskets, intermembrane spacer members and intermediate plates being parallel to each other, said intermediate plates being of insulating material and of the same outline as said membranes and gaskets, and having apertures therein in the area thereof which is in contact with the active membrane surfaces of said membranes and having ports therein, said intermediate plates further having rinse electrolyte ports therein, the apertures in said plate being connected to each other and to said rinse electrolyte ports, said connected apertures forming r
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA813607X | 1955-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3149062A true US3149062A (en) | 1964-09-15 |
Family
ID=25575834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US600328A Expired - Lifetime US3149062A (en) | 1955-07-30 | 1956-07-26 | Electrodialysis apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US3149062A (en(2012)) |
FR (1) | FR1165046A (en(2012)) |
GB (1) | GB813607A (en(2012)) |
NL (1) | NL95176C (en(2012)) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3239442A (en) * | 1957-10-03 | 1966-03-08 | Ionics | Method for electrodialysis of solutions and apparatus therefor |
US4172779A (en) * | 1976-07-30 | 1979-10-30 | Asahi Kasei Kogyo Kabushiki Kaisha | Electrodialysis using multi-stage electrodialytic cell |
WO1997028889A1 (en) * | 1996-02-09 | 1997-08-14 | Glegg Water Conditioning, Inc. | Modular apparatus for the demineralization of liquids |
US5961805A (en) * | 1996-03-21 | 1999-10-05 | Ashai Glass Company Ltd. | Method and apparatus for producing deionized water |
US6338784B1 (en) | 1997-02-27 | 2002-01-15 | Asahi Glass Company Ltd. | Apparatus for producing deionized water |
US6607647B2 (en) | 2001-04-25 | 2003-08-19 | United States Filter Corporation | Electrodeionization apparatus with expanded conductive mesh electrode and method |
US6649037B2 (en) | 2001-05-29 | 2003-11-18 | United States Filter Corporation | Electrodeionization apparatus and method |
US7083733B2 (en) | 2003-11-13 | 2006-08-01 | Usfilter Corporation | Water treatment system and method |
US7147785B2 (en) | 2000-09-28 | 2006-12-12 | Usfilter Corporation | Electrodeionization device and methods of use |
US7279083B2 (en) | 2000-07-10 | 2007-10-09 | Vws (Uk) Ltd | Electrodeionisation apparatus |
US7329358B2 (en) | 2004-05-27 | 2008-02-12 | Siemens Water Technologies Holding Corp. | Water treatment process |
US7371319B2 (en) | 2002-10-23 | 2008-05-13 | Siemens Water Technologies Holding Corp. | Production of water for injection using reverse osmosis |
US7563351B2 (en) | 2003-11-13 | 2009-07-21 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7572359B2 (en) | 2001-10-15 | 2009-08-11 | Siemens Water Technologies Holding Corp. | Apparatus for fluid purification and methods of manufacture and use thereof |
US7582198B2 (en) | 2003-11-13 | 2009-09-01 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7604725B2 (en) | 2003-11-13 | 2009-10-20 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7658828B2 (en) | 2005-04-13 | 2010-02-09 | Siemens Water Technologies Holding Corp. | Regeneration of adsorption media within electrical purification apparatuses |
US7744760B2 (en) | 2006-09-20 | 2010-06-29 | Siemens Water Technologies Corp. | Method and apparatus for desalination |
US7820024B2 (en) | 2006-06-23 | 2010-10-26 | Siemens Water Technologies Corp. | Electrically-driven separation apparatus |
US7846340B2 (en) | 2003-11-13 | 2010-12-07 | Siemens Water Technologies Corp. | Water treatment system and method |
US7862700B2 (en) | 2003-11-13 | 2011-01-04 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US20110162964A1 (en) * | 2007-11-30 | 2011-07-07 | Evgeniya Freydina | Systems and methods for water treatment |
US8045849B2 (en) | 2005-06-01 | 2011-10-25 | Siemens Industry, Inc. | Water treatment system and process |
US8377279B2 (en) | 2003-11-13 | 2013-02-19 | Siemens Industry, Inc. | Water treatment system and method |
ES2401643R1 (es) * | 2010-10-20 | 2013-05-30 | Yosef Yarob Tilouni | Modulo de electrodialisis reversible en dos etapas para la desalacion de aguas salobres |
US20140008227A1 (en) * | 2011-01-17 | 2014-01-09 | Oceansaver As | Electrodialysis unit for water treatment |
US8658043B2 (en) | 2003-11-13 | 2014-02-25 | Siemens Water Technologies Llc | Water treatment system and method |
US8671985B2 (en) | 2011-10-27 | 2014-03-18 | Pentair Residential Filtration, Llc | Control valve assembly |
US8961770B2 (en) | 2011-10-27 | 2015-02-24 | Pentair Residential Filtration, Llc | Controller and method of operation of a capacitive deionization system |
US9010361B2 (en) | 2011-10-27 | 2015-04-21 | Pentair Residential Filtration, Llc | Control valve assembly |
US9023185B2 (en) | 2006-06-22 | 2015-05-05 | Evoqua Water Technologies Llc | Low scale potential water treatment |
US9340437B2 (en) | 2011-01-17 | 2016-05-17 | Oceansaver As | Electrodialysis unit for water treatment |
US9561971B2 (en) | 2011-01-17 | 2017-02-07 | Oceansaver As | Electrodialysis unit for water treatment |
US9592472B2 (en) | 2006-06-13 | 2017-03-14 | Evoqua Water Technologies Llc | Method and system for irrigation |
US9637397B2 (en) | 2011-10-27 | 2017-05-02 | Pentair Residential Filtration, Llc | Ion removal using a capacitive deionization system |
US9695070B2 (en) | 2011-10-27 | 2017-07-04 | Pentair Residential Filtration, Llc | Regeneration of a capacitive deionization system |
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US10625211B2 (en) | 2006-06-13 | 2020-04-21 | Evoqua Water Technologies Llc | Method and system for water treatment |
US11484839B2 (en) | 2017-05-04 | 2022-11-01 | Bl Technologies, Inc. | Electrodialysis stack |
US11820689B2 (en) | 2017-08-21 | 2023-11-21 | Evoqua Water Technologies Llc | Treatment of saline water for agricultural and potable use |
US12180103B2 (en) | 2017-08-21 | 2024-12-31 | Evoqua Water Technologies Llc | Treatment of saline water for agricultural and potable use and for generation of disinfectant solution |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2694680A (en) * | 1952-07-22 | 1954-11-16 | Ionics | Transfer of electrolytes in solution |
US2758083A (en) * | 1952-09-23 | 1956-08-07 | Tno | Multicell electrodialysis apparatus |
US2758965A (en) * | 1954-01-20 | 1956-08-14 | Borden Co | Electrodialysis of solutions |
US2802344A (en) * | 1953-07-08 | 1957-08-13 | Eureka Williams Corp | Electrodialysis of solutions in absorption refrigeration |
-
0
- NL NL95176D patent/NL95176C/xx active
-
1956
- 1956-07-18 GB GB22200/56A patent/GB813607A/en not_active Expired
- 1956-07-26 US US600328A patent/US3149062A/en not_active Expired - Lifetime
- 1956-07-30 FR FR1165046D patent/FR1165046A/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2694680A (en) * | 1952-07-22 | 1954-11-16 | Ionics | Transfer of electrolytes in solution |
US2758083A (en) * | 1952-09-23 | 1956-08-07 | Tno | Multicell electrodialysis apparatus |
US2802344A (en) * | 1953-07-08 | 1957-08-13 | Eureka Williams Corp | Electrodialysis of solutions in absorption refrigeration |
US2758965A (en) * | 1954-01-20 | 1956-08-14 | Borden Co | Electrodialysis of solutions |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3239442A (en) * | 1957-10-03 | 1966-03-08 | Ionics | Method for electrodialysis of solutions and apparatus therefor |
US4172779A (en) * | 1976-07-30 | 1979-10-30 | Asahi Kasei Kogyo Kabushiki Kaisha | Electrodialysis using multi-stage electrodialytic cell |
CN1104937C (zh) * | 1996-02-09 | 2003-04-09 | 格莱格水处理公司 | 用于液体脱盐的标准部件设备 |
US6193869B1 (en) | 1996-02-09 | 2001-02-27 | Glegg Water Conditioning, Inc. | Modular apparatus for the demineralization of liquids |
WO1997028889A1 (en) * | 1996-02-09 | 1997-08-14 | Glegg Water Conditioning, Inc. | Modular apparatus for the demineralization of liquids |
US6228240B1 (en) | 1996-03-21 | 2001-05-08 | Asahi Glass Company Ltd. | Method and apparatus for producing deionized water |
US5961805A (en) * | 1996-03-21 | 1999-10-05 | Ashai Glass Company Ltd. | Method and apparatus for producing deionized water |
US6338784B1 (en) | 1997-02-27 | 2002-01-15 | Asahi Glass Company Ltd. | Apparatus for producing deionized water |
US7279083B2 (en) | 2000-07-10 | 2007-10-09 | Vws (Uk) Ltd | Electrodeionisation apparatus |
US7147785B2 (en) | 2000-09-28 | 2006-12-12 | Usfilter Corporation | Electrodeionization device and methods of use |
US6607647B2 (en) | 2001-04-25 | 2003-08-19 | United States Filter Corporation | Electrodeionization apparatus with expanded conductive mesh electrode and method |
US6649037B2 (en) | 2001-05-29 | 2003-11-18 | United States Filter Corporation | Electrodeionization apparatus and method |
US6824662B2 (en) | 2001-05-29 | 2004-11-30 | Usfilter Corporation | Electrodeionization apparatus and method |
US8721862B2 (en) | 2001-10-15 | 2014-05-13 | Evoqua Water Technologies Llc | Apparatus for fluid purification and methods of manufacture and use thereof |
US7572359B2 (en) | 2001-10-15 | 2009-08-11 | Siemens Water Technologies Holding Corp. | Apparatus for fluid purification and methods of manufacture and use thereof |
US8101058B2 (en) | 2001-10-15 | 2012-01-24 | Siemens Industry, Inc. | Apparatus for fluid purification |
US7371319B2 (en) | 2002-10-23 | 2008-05-13 | Siemens Water Technologies Holding Corp. | Production of water for injection using reverse osmosis |
US7501061B2 (en) | 2002-10-23 | 2009-03-10 | Siemens Water Technologies Holding Corp. | Production of water for injection using reverse osmosis |
US8658043B2 (en) | 2003-11-13 | 2014-02-25 | Siemens Water Technologies Llc | Water treatment system and method |
US7563351B2 (en) | 2003-11-13 | 2009-07-21 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7582198B2 (en) | 2003-11-13 | 2009-09-01 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US20090236235A1 (en) * | 2003-11-13 | 2009-09-24 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US7604725B2 (en) | 2003-11-13 | 2009-10-20 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US8864971B2 (en) | 2003-11-13 | 2014-10-21 | Evoqua Water Technologies Llc | Water treatment system and method |
US7083733B2 (en) | 2003-11-13 | 2006-08-01 | Usfilter Corporation | Water treatment system and method |
US8894834B2 (en) | 2003-11-13 | 2014-11-25 | Evoqua Water Technologies Llc | Water treatment system and method |
US7846340B2 (en) | 2003-11-13 | 2010-12-07 | Siemens Water Technologies Corp. | Water treatment system and method |
US7862700B2 (en) | 2003-11-13 | 2011-01-04 | Siemens Water Technologies Holding Corp. | Water treatment system and method |
US8377279B2 (en) | 2003-11-13 | 2013-02-19 | Siemens Industry, Inc. | Water treatment system and method |
US8114260B2 (en) | 2003-11-13 | 2012-02-14 | Siemens Industry, Inc. | Water treatment system and method |
US7329358B2 (en) | 2004-05-27 | 2008-02-12 | Siemens Water Technologies Holding Corp. | Water treatment process |
US7481929B2 (en) | 2004-05-27 | 2009-01-27 | Siemens Water Technologies Holding Corp. | Water treatment system |
US7658828B2 (en) | 2005-04-13 | 2010-02-09 | Siemens Water Technologies Holding Corp. | Regeneration of adsorption media within electrical purification apparatuses |
US8045849B2 (en) | 2005-06-01 | 2011-10-25 | Siemens Industry, Inc. | Water treatment system and process |
US10625211B2 (en) | 2006-06-13 | 2020-04-21 | Evoqua Water Technologies Llc | Method and system for water treatment |
US9592472B2 (en) | 2006-06-13 | 2017-03-14 | Evoqua Water Technologies Llc | Method and system for irrigation |
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US9023185B2 (en) | 2006-06-22 | 2015-05-05 | Evoqua Water Technologies Llc | Low scale potential water treatment |
US9586842B2 (en) | 2006-06-22 | 2017-03-07 | Evoqua Water Technologies Llc | Low scale potential water treatment |
US7820024B2 (en) | 2006-06-23 | 2010-10-26 | Siemens Water Technologies Corp. | Electrically-driven separation apparatus |
US8182693B2 (en) | 2006-09-20 | 2012-05-22 | Siemens Industry, Inc. | Method and apparatus for desalination |
US7744760B2 (en) | 2006-09-20 | 2010-06-29 | Siemens Water Technologies Corp. | Method and apparatus for desalination |
US8585882B2 (en) | 2007-11-30 | 2013-11-19 | Siemens Water Technologies Llc | Systems and methods for water treatment |
US9011660B2 (en) | 2007-11-30 | 2015-04-21 | Evoqua Water Technologies Llc | Systems and methods for water treatment |
US9637400B2 (en) | 2007-11-30 | 2017-05-02 | Evoqua Water Technologies Llc | Systems and methods for water treatment |
US20110162964A1 (en) * | 2007-11-30 | 2011-07-07 | Evgeniya Freydina | Systems and methods for water treatment |
ES2401643R1 (es) * | 2010-10-20 | 2013-05-30 | Yosef Yarob Tilouni | Modulo de electrodialisis reversible en dos etapas para la desalacion de aguas salobres |
US20140008227A1 (en) * | 2011-01-17 | 2014-01-09 | Oceansaver As | Electrodialysis unit for water treatment |
US9561971B2 (en) | 2011-01-17 | 2017-02-07 | Oceansaver As | Electrodialysis unit for water treatment |
US9359232B2 (en) * | 2011-01-17 | 2016-06-07 | Oceansaver As | Electrodialysis unit for water treatment |
US9340437B2 (en) | 2011-01-17 | 2016-05-17 | Oceansaver As | Electrodialysis unit for water treatment |
US8671985B2 (en) | 2011-10-27 | 2014-03-18 | Pentair Residential Filtration, Llc | Control valve assembly |
US9637397B2 (en) | 2011-10-27 | 2017-05-02 | Pentair Residential Filtration, Llc | Ion removal using a capacitive deionization system |
US9695070B2 (en) | 2011-10-27 | 2017-07-04 | Pentair Residential Filtration, Llc | Regeneration of a capacitive deionization system |
US9903485B2 (en) | 2011-10-27 | 2018-02-27 | Pentair Residential Filtration, Llc | Control valve assembly |
US9010361B2 (en) | 2011-10-27 | 2015-04-21 | Pentair Residential Filtration, Llc | Control valve assembly |
US8961770B2 (en) | 2011-10-27 | 2015-02-24 | Pentair Residential Filtration, Llc | Controller and method of operation of a capacitive deionization system |
US11484839B2 (en) | 2017-05-04 | 2022-11-01 | Bl Technologies, Inc. | Electrodialysis stack |
US11904278B2 (en) | 2017-05-04 | 2024-02-20 | Bl Technologies, Inc. | Electrodialysis stack |
US11820689B2 (en) | 2017-08-21 | 2023-11-21 | Evoqua Water Technologies Llc | Treatment of saline water for agricultural and potable use |
US12180103B2 (en) | 2017-08-21 | 2024-12-31 | Evoqua Water Technologies Llc | Treatment of saline water for agricultural and potable use and for generation of disinfectant solution |
US12227442B2 (en) | 2017-08-21 | 2025-02-18 | Evoqua Water Technologies Llc | Treatment of saline water for agricultural and potable use |
Also Published As
Publication number | Publication date |
---|---|
NL95176C (en(2012)) | |
GB813607A (en) | 1959-05-21 |
FR1165046A (fr) | 1958-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3149062A (en) | Electrodialysis apparatus | |
US6193869B1 (en) | Modular apparatus for the demineralization of liquids | |
US2758083A (en) | Multicell electrodialysis apparatus | |
US4233146A (en) | Cell flow distributors | |
US4202772A (en) | Fluid distribution cell module | |
US2799644A (en) | Apparatus for transferring electrolytes from one solution into another | |
US5972191A (en) | Electrodialysis apparatus | |
US3223612A (en) | Fluid treatment | |
EP0853972B1 (en) | Electrodeionization apparatus and module | |
JPH0116522B2 (en(2012)) | ||
US3219573A (en) | Multiple chamber electrodialysis apparatus | |
JPS5830307A (ja) | 電解フイルタ−プレスの単極隔室 | |
US10155201B2 (en) | Disposable membrane stacks | |
US2948668A (en) | Electrodialysing apparatus with supported membranes | |
US3085970A (en) | Electrodialysis cells and inserts therefor | |
US3216920A (en) | Electrodialysis stack design | |
US3235481A (en) | Spacer gasket | |
US3323653A (en) | Multimembrane apparatus for demineralizing liquids | |
US2990361A (en) | Electrodialytic cells | |
US3291716A (en) | Noble metal coated valve metal electrodes useful in electrodialysis systems | |
US3223606A (en) | Electrodialysis device and method of operation | |
US3256174A (en) | Dialysis cell with laminated gaskets | |
US4737260A (en) | Membrane stack unit for multi-chamber electrodialysis | |
US3219572A (en) | Dialysis spacer gasket | |
US2891899A (en) | Centered strap spacer for electrodialysis unit |