US3146322A - Rotary electric switch having a plurality of contacts - Google Patents

Rotary electric switch having a plurality of contacts Download PDF

Info

Publication number
US3146322A
US3146322A US52983A US5298360A US3146322A US 3146322 A US3146322 A US 3146322A US 52983 A US52983 A US 52983A US 5298360 A US5298360 A US 5298360A US 3146322 A US3146322 A US 3146322A
Authority
US
United States
Prior art keywords
stator
rotor
contact
sleeve
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US52983A
Inventor
Terence M P Farrell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US52983A priority Critical patent/US3146322A/en
Application granted granted Critical
Publication of US3146322A publication Critical patent/US3146322A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/54Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand the operating part having at least five or an unspecified number of operative positions
    • H01H19/56Angularly-movable actuating part carrying contacts, e.g. drum switch

Definitions

  • INV TOR. fill/me f1. 2 awe/l BY ull! My, My rj af '5 ATTORNEYS above.
  • This invention relates to switching devices and more particularly comprises a new and improved rotary switch suitable for many and diverse applications.
  • the primary object of this invention is to provide a rotary switch having a minimum number of parts, a long life, which is easily assemblable and which is relatively inexpensive to manufacture.
  • my rotary switch includes an annular stator which may be molded of any suitable non-conducting material, and a bar-shaped rotor substantially square in cross section and supported at its center for rotation about an axis coincident with the axis of the stator. Embedded in the stator about its inner edge are one or more pins which form contacts on that inner surface.
  • the rotor carries a pair of contacts, one extending radially outward from an end of the bar and biased to run about the inner surface of the stator when the rotor turns.
  • the second contact carried by the rotor runs about a ring contact disposed adjacent to the rotor. This second contact is also biased to engage the ring contact.
  • the two contacts carried by the rotor are mounted in sleeves, and these sleeves made of electrically conducting material physically engage the contacts and are in turn electrically connected to one another.
  • the ring contact continuously engaged by one of the contacts of the rotor is successively electrically connected to the contacts in the stator over which the other contacts on the rotor passes.
  • the rotary switch of my invention is suitable for programming or for use in any type of electrical system where intermittent cylical switching is required.
  • the contact carried by the rotor successively engages each of the contacts carried by the stator to complete the same or different circuits which include on one side of the switch the ring contact and on the other side one or all of the contacts carried by the stator.
  • the manner in which the stator is made contributes to the relatively long life of the rotary switch.
  • the stator may be made of a moldable material formed in a die previously provided with the one or more pins which later serve as contacts in the stator. These pins extend parallel to and are each spaced a fixed distance from the stator axis. The pins are also spaced from the inner surface of the annular rotor as defined by the die cavity so that when the rotor is molded the pins are not exposed at its inner surface. After the stator is removed from the mold, its inner surface is machined so as to gradually increase the inner diameter of the stator.
  • the stator may be made with an annular aluminum frame within which are embedded contact pins ex tending parallel to the axis of the annulus. These pins may be insulated from the aluminum frame of the stator by a non-conducting material of the same character as employed in the stator fabricated in the manner described This material serves not only to insulate the pins from the aluminum frame, but also provides a coating about the entire inner surface of the stator between the exposed pins spaced about that surface.
  • FIG. 1 is a cross sectional elevation view of a rotary switch constructed in accordance with my invention
  • FIG. 2 is a plan view of the rotary switch shown in FIG. 1;
  • FIGS. 3 and 4 are plan views suggesting the successive steps employed in the manufacture of the stator shown in the rotary switch of FIGS. 1 and 2;
  • FIGS. 5, 7, 9 and 11 are plan views, in some instances fragmentary suggesting an alternative method of making a stator for use in the rotary switch of FIGURES 1 and 2;
  • FIGS. 6, 8 and 10 are fragmentary cross sectional views taken along the corresponding section lines in FIGURES 5, 7 and 9, respectively.
  • the rotary switch shown in FIGS. 1 and 2 includes in its general organization a rotor 10 supported on shaft 12 and a stator 14 extending about the rotor.
  • the rotor 10 is shown to be substantially square in cross section and may be made of a non-conducting material such as a square mica bar.
  • a sleeve 16 extends through the rotor at its center and receives the end of shaft 112 which supports the rotor for rotation about the shaft axis.
  • a set screw 18 or other convenient means may be employed to hold the rotor firmly on the shaft.
  • the rotor 10 carries adjacent each of its ends contact assemblies 20 and 22 which form the extremes of a circuit defined by the rotor itself.
  • the contact assembly 20 includes a metallic electrically conductive cap 24 embedded in the bar and open at its bottom.
  • a contact 26 made of graphite or other electrically conductive material is disposed in part within the cap 24 and is biased out of the cap by means of a rubber insert 28 which serves as a spring bearing against the closed end of the cap 24 and the inner end of the contact.
  • the contact 26 engages the inner surface of the cap 24, and, therefore, the two are electrically connected.
  • a ring contact 30 Disposed beneath the rotor 10 is a ring contact 30 coaxial with the shaft 12 and spaced from the shaft axis the same distance as the contact 26.
  • the rubber insert 28 which urges the contact 26 out of the cap 24, serves to maintain engagement of the contact 26 with the ring contact 30 as the shaft turns the rotor assembly.
  • the ring contact 30 may in turn be supported by braces 32 or other convenient means connected to the stator 14 or some other part of the switch assembly such as its housing (not shown).
  • the contact assembly 22 is substantially identical to the assembly 29. It includes a metallic electrically conductive cap 34, a contact 36, made of graphite or other conducting material, and a rubber insert 38 which biases the contact 36 out of the sleeve 34. Unlike the contact 26 which extends downwardlygenerally parallel to the shaft 12, the contact 36 extends radially from the shaft 12 and engages the inner surface 40 of the stator. As the rotor 10 rotates about anaxis coincident with the axis of the stator 14, the contact 36 maintains continued engagement with the inner surface 40 of the stator. The rubber insert 38 exerts adequate pressure on the contact .36 to insure this firm engagement.
  • a pair of machine screws 42 and 44 are screwed into the rotor bar 10 and engage the caps 24 and 34, respectively.
  • the machine screws are electrically interconnected by means of a conductor 46 having its ends connected to the screws.
  • the conductor 46 may be a wire lead or any equivalent form.
  • the conductor 46 serves to complete a continuous circuit from the contact 26 through the cap 24, machine screw 42, conductor 46 itself, machine screw 44, and cap 34 to the contact 36.
  • the stator 14 made of an epoxy resin or other nonconducting material carries a plurality of pins 56 made of a highly conductive material such as coin silver.
  • the pins 50 which as described below may originally be cylindrical in shape, have their diameters coincident with the inner surface 40 of the stator 14-. It is highly desirable that the exposed portion of each pin 56 form an extremely smooth surface with the epoxy material 48 which forms the main frame of the stator. The smoother the surface defined by the frame material 4% and the pins 56, the less wear will occur as the contact 36 rides about the inner surface 40 of the stator in response to rotation of the shaft 12. It will, of course, be appreciated that although eight pins are shown in FIG. 2 spaced equidistant about the surface 40, a greater or lesser number of pins may be carried by the stator 14, and they may be spaced varying distances from one another.
  • FIG. 1 I have suggested a circuit composed of two leads 52 and 54 which may be closed and broken by the rotary switch.
  • each of the pins 50 carried by the stator may be electrically connected to one another or separately connected into different circuits.
  • rotation of the rotor 10 Will cause the single circuit intermittently to close and open each time the contact 36 passes over a pin 50.
  • the rotary switch will cause the several circuits which include the separate pins 56 to sequentially close and open as each of these pins is engaged by the contact 36 carried by the rotor.
  • FIGS. 3 and 4 one manner of fabricating the stator 14 is suggested.
  • I suggest that the epoxy resin or other material 48 used as the main composition of the stator is initially formed as an annulus with the pins 50 embedded in it and spaced from the inner surface 40 as well as the outer surface 56 of the stator. After the stator is molded as shown in FIG. 3, its inner surface 40 is machined so as to enlarge its inner diameter. Continued machining of the inner surface 46 ultimately results in the exposure of the pins 50.
  • I suggest that the machining is continued until substantially the diameter of the pins 50 is exposed. While one half of the pins are machined away as suggested in FIG. 4, obviously machining may be discontinued after some lesser amount of the pins is exposed.
  • FIGS. -11 an alternative method is suggested for fabricating a stator suitable for use in the rotary switch shown in FIGS. 1 and 2.
  • a stator made in accordance with the following method will be somewhat more durable than that described above and is better able to withstand physical abuse to which the rotary switch may be subjected upon occasion.
  • FIGS. 5 and 6 I show an annular stator element 60 supported on a micarta backing plate 62 secured together by any convenient means.
  • the stator element 60 is made of aluminum and is provided with holes 64 concentric with smaller holes 66 formed in the plate 62.
  • the concentric pairs of holes 64 and 66 may be spaced at regular or irregular distances about the element 60 and their number and positions are determined by the end use of the rotary switch assembly.
  • the inner surface 68 of the element 60 is machined or ground to enlarge the inner diameter. This machining or grinding is continued until the holes 64 are opened on the inner surface of the stator element 66, as suggested in FIG. 7. Thereafter, the contact pins 70 of a diameter very slightly larger than the diameter of the holes 66 in the micarta plate 62 are force fitted into the holes 66 as suggested in FIG. 8. While the pins 70 have a forced fit in the holes 66, their cylindrical surfaces are spaced from the walls of the holes 64 as is particularly evident in FIG. 8.
  • a dam in the form of a ring 72 is seated on the plate 62 concentric with the stator element 69.
  • the diameter of the ring 72 is just small enough so that the ring clears the pins 70.
  • the cavity defined by the inner surface 63 of the stator element 60 and the ring 72 is filled with an insulating material such as epoxy resin 74.
  • the resin also fills the space between the pins and the surfaces of the holes 64 so that the pins '76 are completely insulated from the frame element 66.
  • the dam or ring 72 is removed and the inner surface 76 of the stator assembly is machined.
  • Initial machining of the surface 76 serves to remove only the epoxy resin 74, and continued machining ultimately exposes the pins 7% The machining should be continued until a substantial width of the pins '70 are exposed but should be discontinued before the resin is removed from the surface 68 of the stator element 66. In this manner, the stator ultimately takes the form shown in FIG. 11 wherein the pins 70 are exposed and the epoxy resin 74 serves to coat the inner surface of the element 66 and insulate the pins 76 from the stator element.
  • a stator manufactured in accordance with either of the two suggested methods includes an inner surface which is extremely smooth so as to reduce wear on the contact bar 36 of the rotor to a minimum. While the inner surface in each of the stator constructions is made up of alternate sections of insulating and conducting material, nevertheless, the surface is continuous and smooth to assure a surface of maximum uniformity for the contact bar 36 of the rotor.
  • the rotary switch accomplishes the general objectives recited in the introduction.
  • the rotary switch is of extremely simple design and is constructed to result in minimum wear of the parts.
  • the rotor parts are effectively balanced about the axis of the shaft 12 to prevent oscillation of the assembly regardless of the speed at which the rotor turns.
  • a rotary switch comprising a rotor and surrounding annular stator, means for rotating the rotor about the axis of the stator, said stator having a heat conducting outer frame and a heat conducting and electrically insulating inner ring within the frame, spaced contacts embedded in the ring and exposed on the inner surface of the stator, said stator having a smooth continuous inner surface made up of alternate contacts and sections of the electrically insulating rings, a sleeve made of conducting material embedded in the rotor and open in the direction of the inner surface of the stator, a contact bar disposed in and extending out of said sleeve, biasing means disposed in the sleeve behind the contact bar urging that bar into engagement with the inner surface of the stator, a second sleeve embedded in the rotor and made of metallic material, a second contact bar disposed in the second sleeve and extending out of said second sleeve, a ring contact mounted adjacent the rotor and coarcuate with
  • a rotary switch comprising a rotor and surrounding annular stator, means for rotating the rotor about the axis of the stator, said stator having an aluminum heat conducting outer frame and a heat conducting and electrically insulating inner ring made of an epoxy resin within the frame, spaced contacts embedded in the ring and exposed on the inner surface of the stator, said stator having a smooth continuous inner surface made up of alternate contacts and sections of the epoxy resin, a sleeve made of conducting material embedded in the rotor and open in the direction of the inner surface of the stator, a contact bar disposed in and extending out of said sleeve, biasing means disposed in the sleeve behind the contact bar urging that bar into engagement With the inner surface of the stator, a second sleeve embedded in the rotor and made of metallic material, a second contact bar disposed in the second sleeve and extending out of said second sleeve, a ring contact mounted adjacent the rotor and coarcuate
  • a rotary switch comprising a rotor and surrounding annular stator, means for rotating the rotor about the axis of the stator, said stator having an aluminum heat conducting outer frame and a heat conducting and electrically insulating inner ring made of an epoxy resin within the frame, spaced contacts embedded in the ring and exposed on the inner surface of the stator, said stator having a smooth continuous inner surface made up of alternate contacts and sections of the epoxy resin, a
  • sleeve made of electrically conducting material embedded in the rotor and open in the direction of the inner surface of the stator, a contact bar disposed in and extending out of said sleeve, biasing means disposed in the sleeve behind the contact bar urging that bar into engagement with the inner surface of the stator, a second contact bar carried by the rotor, a ring contact mounted adjacent the rotor and coarcuate with the path defined by the second contact bar when the rotor rotates, biasing means carried by the rotor and engaging the second contact bar and urging the second contact bar into engagement With the ring contact, and means electrically connecting the second contact bar to the sleeves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Description

Aug. 25, 1964 -r. M. P. FARRELL 3,146,322
ROTARY ELECTRIC SWITCH HAVING A PLURALITY OF CONTACTS Filed Aug. 30, 1960 2 Sheets-Sheet 1 INVENTOR. Te/ehpe /"drre// rN/M 41g, 01 W ATTORNEYS 25, 1964 'r. M. P. FARRELL 3,146,322
ROTARY ELECTRIC SWITCH HAVING A PLURALITY 0F CONTACTS Filed Aug. 30, 1960 2 Sheets-Sheet 2 FIG. IO
INV TOR. fill/me f1. 2 awe/l BY ull! My, My rj af '5 ATTORNEYS above.
tct
3,146,322 ROTARY ELECTRIC SWlTtIH HAVING A PLURALETY F CONTACTS Terence M. P. Farreli, 15 Idlewell St., Weymouth, Mass. Filed Aug. 30, 1960, Ser. No. 52,983 3 Claims. (Cl. 200-23) This invention relates to switching devices and more particularly comprises a new and improved rotary switch suitable for many and diverse applications.
The primary object of this invention is to provide a rotary switch having a minimum number of parts, a long life, which is easily assemblable and which is relatively inexpensive to manufacture.
To accomplish this general objective, my rotary switch includes an annular stator which may be molded of any suitable non-conducting material, and a bar-shaped rotor substantially square in cross section and supported at its center for rotation about an axis coincident with the axis of the stator. Embedded in the stator about its inner edge are one or more pins which form contacts on that inner surface. The rotor carries a pair of contacts, one extending radially outward from an end of the bar and biased to run about the inner surface of the stator when the rotor turns. The second contact carried by the rotor runs about a ring contact disposed adjacent to the rotor. This second contact is also biased to engage the ring contact. The two contacts carried by the rotor are mounted in sleeves, and these sleeves made of electrically conducting material physically engage the contacts and are in turn electrically connected to one another. Thus, the ring contact continuously engaged by one of the contacts of the rotor is successively electrically connected to the contacts in the stator over which the other contacts on the rotor passes.
The rotary switch of my invention is suitable for programming or for use in any type of electrical system where intermittent cylical switching is required. The contact carried by the rotor successively engages each of the contacts carried by the stator to complete the same or different circuits which include on one side of the switch the ring contact and on the other side one or all of the contacts carried by the stator.
The manner in which the stator is made contributes to the relatively long life of the rotary switch. The stator may be made of a moldable material formed in a die previously provided with the one or more pins which later serve as contacts in the stator. These pins extend parallel to and are each spaced a fixed distance from the stator axis. The pins are also spaced from the inner surface of the annular rotor as defined by the die cavity so that when the rotor is molded the pins are not exposed at its inner surface. After the stator is removed from the mold, its inner surface is machined so as to gradually increase the inner diameter of the stator. Continued machining of the moldable material which forms the stator frame gradually exposes the pins embedded in the material, and ideally the machining is continued until the pin diameters lie at the inner surface of the stator. Formed in this manner, the inner surface of the stator about which the contact of the rotor runs has maximum smoothness to reduce wear of the contacts on the rotor and stator.
To provide the stator with additional strength and ruggedness, the stator may be made with an annular aluminum frame within which are embedded contact pins ex tending parallel to the axis of the annulus. These pins may be insulated from the aluminum frame of the stator by a non-conducting material of the same character as employed in the stator fabricated in the manner described This material serves not only to insulate the pins from the aluminum frame, but also provides a coating about the entire inner surface of the stator between the exposed pins spaced about that surface.
These and other objects and features of my invention will be better understood and appreciated from the following detailed description of two embodiments thereof, selected for purposes of illustration, and shown in the accompanying drawing, in which:
FIG. 1 is a cross sectional elevation view of a rotary switch constructed in accordance with my invention;
FIG. 2 is a plan view of the rotary switch shown in FIG. 1;
FIGS. 3 and 4 are plan views suggesting the successive steps employed in the manufacture of the stator shown in the rotary switch of FIGS. 1 and 2;
FIGS. 5, 7, 9 and 11 are plan views, in some instances fragmentary suggesting an alternative method of making a stator for use in the rotary switch of FIGURES 1 and 2; and
FIGS. 6, 8 and 10 are fragmentary cross sectional views taken along the corresponding section lines in FIGURES 5, 7 and 9, respectively.
The rotary switch shown in FIGS. 1 and 2 includes in its general organization a rotor 10 supported on shaft 12 and a stator 14 extending about the rotor.
The rotor 10 is shown to be substantially square in cross section and may be made of a non-conducting material such as a square mica bar. A sleeve 16 extends through the rotor at its center and receives the end of shaft 112 which supports the rotor for rotation about the shaft axis. A set screw 18 or other convenient means may be employed to hold the rotor firmly on the shaft.
The rotor 10 carries adjacent each of its ends contact assemblies 20 and 22 which form the extremes of a circuit defined by the rotor itself. The contact assembly 20 includes a metallic electrically conductive cap 24 embedded in the bar and open at its bottom. A contact 26 made of graphite or other electrically conductive material is disposed in part within the cap 24 and is biased out of the cap by means of a rubber insert 28 which serves as a spring bearing against the closed end of the cap 24 and the inner end of the contact. The contact 26 engages the inner surface of the cap 24, and, therefore, the two are electrically connected.
Disposed beneath the rotor 10 is a ring contact 30 coaxial with the shaft 12 and spaced from the shaft axis the same distance as the contact 26. The rubber insert 28 which urges the contact 26 out of the cap 24, serves to maintain engagement of the contact 26 with the ring contact 30 as the shaft turns the rotor assembly. The ring contact 30 may in turn be supported by braces 32 or other convenient means connected to the stator 14 or some other part of the switch assembly such as its housing (not shown).
The contact assembly 22 is substantially identical to the assembly 29. It includes a metallic electrically conductive cap 34, a contact 36, made of graphite or other conducting material, and a rubber insert 38 which biases the contact 36 out of the sleeve 34. Unlike the contact 26 which extends downwardlygenerally parallel to the shaft 12, the contact 36 extends radially from the shaft 12 and engages the inner surface 40 of the stator. As the rotor 10 rotates about anaxis coincident with the axis of the stator 14, the contact 36 maintains continued engagement with the inner surface 40 of the stator. The rubber insert 38 exerts adequate pressure on the contact .36 to insure this firm engagement.
A pair of machine screws 42 and 44 are screwed into the rotor bar 10 and engage the caps 24 and 34, respectively. The machine screws are electrically interconnected by means of a conductor 46 having its ends connected to the screws. The conductor 46 may be a wire lead or any equivalent form. The conductor 46 serves to complete a continuous circuit from the contact 26 through the cap 24, machine screw 42, conductor 46 itself, machine screw 44, and cap 34 to the contact 36.
The stator 14 made of an epoxy resin or other nonconducting material carries a plurality of pins 56 made of a highly conductive material such as coin silver. The pins 50, which as described below may originally be cylindrical in shape, have their diameters coincident with the inner surface 40 of the stator 14-. It is highly desirable that the exposed portion of each pin 56 form an extremely smooth surface with the epoxy material 48 which forms the main frame of the stator. The smoother the surface defined by the frame material 4% and the pins 56, the less wear will occur as the contact 36 rides about the inner surface 40 of the stator in response to rotation of the shaft 12. It will, of course, be appreciated that although eight pins are shown in FIG. 2 spaced equidistant about the surface 40, a greater or lesser number of pins may be carried by the stator 14, and they may be spaced varying distances from one another.
In FIG. 1, I have suggested a circuit composed of two leads 52 and 54 which may be closed and broken by the rotary switch. Obviously, each of the pins 50 carried by the stator may be electrically connected to one another or separately connected into different circuits. In the first engagement, rotation of the rotor 10 Will cause the single circuit intermittently to close and open each time the contact 36 passes over a pin 50. In the second arrangement, the rotary switch will cause the several circuits which include the separate pins 56 to sequentially close and open as each of these pins is engaged by the contact 36 carried by the rotor.
In FIGS. 3 and 4, one manner of fabricating the stator 14 is suggested. In FIG. 3, I suggest that the epoxy resin or other material 48 used as the main composition of the stator is initially formed as an annulus with the pins 50 embedded in it and spaced from the inner surface 40 as well as the outer surface 56 of the stator. After the stator is molded as shown in FIG. 3, its inner surface 40 is machined so as to enlarge its inner diameter. Continued machining of the inner surface 46 ultimately results in the exposure of the pins 50. In FIG. 4, I suggest that the machining is continued until substantially the diameter of the pins 50 is exposed. While one half of the pins are machined away as suggested in FIG. 4, obviously machining may be discontinued after some lesser amount of the pins is exposed.
In FIGS. -11, an alternative method is suggested for fabricating a stator suitable for use in the rotary switch shown in FIGS. 1 and 2. A stator made in accordance with the following method will be somewhat more durable than that described above and is better able to withstand physical abuse to which the rotary switch may be subjected upon occasion. In FIGS. 5 and 6, I show an annular stator element 60 supported on a micarta backing plate 62 secured together by any convenient means. Preferably, the stator element 60 is made of aluminum and is provided with holes 64 concentric with smaller holes 66 formed in the plate 62. The concentric pairs of holes 64 and 66 may be spaced at regular or irregular distances about the element 60 and their number and positions are determined by the end use of the rotary switch assembly. To fabricate the stator, the inner surface 68 of the element 60 is machined or ground to enlarge the inner diameter. This machining or grinding is continued until the holes 64 are opened on the inner surface of the stator element 66, as suggested in FIG. 7. Thereafter, the contact pins 70 of a diameter very slightly larger than the diameter of the holes 66 in the micarta plate 62 are force fitted into the holes 66 as suggested in FIG. 8. While the pins 70 have a forced fit in the holes 66, their cylindrical surfaces are spaced from the walls of the holes 64 as is particularly evident in FIG. 8.
After the pins are mounted in the holes, a dam in the form of a ring 72 is seated on the plate 62 concentric with the stator element 69. The diameter of the ring 72 is just small enough so that the ring clears the pins 70. After the ring is seated on the plate 62, the cavity defined by the inner surface 63 of the stator element 60 and the ring 72 is filled with an insulating material such as epoxy resin 74. The resin also fills the space between the pins and the surfaces of the holes 64 so that the pins '76 are completely insulated from the frame element 66. After the plastic material 74 sets, the dam or ring 72 is removed and the inner surface 76 of the stator assembly is machined. Initial machining of the surface 76 serves to remove only the epoxy resin 74, and continued machining ultimately exposes the pins 7% The machining should be continued until a substantial width of the pins '70 are exposed but should be discontinued before the resin is removed from the surface 68 of the stator element 66. In this manner, the stator ultimately takes the form shown in FIG. 11 wherein the pins 70 are exposed and the epoxy resin 74 serves to coat the inner surface of the element 66 and insulate the pins 76 from the stator element.
A stator manufactured in accordance with either of the two suggested methods includes an inner surface which is extremely smooth so as to reduce wear on the contact bar 36 of the rotor to a minimum. While the inner surface in each of the stator constructions is made up of alternate sections of insulating and conducting material, nevertheless, the surface is continuous and smooth to assure a surface of maximum uniformity for the contact bar 36 of the rotor.
From the foregoing description, it will be recognized that the rotary switch accomplishes the general objectives recited in the introduction. The rotary switch is of extremely simple design and is constructed to result in minimum wear of the parts. The rotor parts are effectively balanced about the axis of the shaft 12 to prevent oscillation of the assembly regardless of the speed at which the rotor turns.
Because numerous modifications may be made of the described embodiments without departing from the spirit of my invention, I do not intend to limit its breadth to the embodiments described and shown. Rather, I intend that the breadth of my invention be determined by the appended claims and their equivalents.
What is claimed is:
1. A rotary switch comprising a rotor and surrounding annular stator, means for rotating the rotor about the axis of the stator, said stator having a heat conducting outer frame and a heat conducting and electrically insulating inner ring within the frame, spaced contacts embedded in the ring and exposed on the inner surface of the stator, said stator having a smooth continuous inner surface made up of alternate contacts and sections of the electrically insulating rings, a sleeve made of conducting material embedded in the rotor and open in the direction of the inner surface of the stator, a contact bar disposed in and extending out of said sleeve, biasing means disposed in the sleeve behind the contact bar urging that bar into engagement with the inner surface of the stator, a second sleeve embedded in the rotor and made of metallic material, a second contact bar disposed in the second sleeve and extending out of said second sleeve, a ring contact mounted adjacent the rotor and coarcuate with the path defined by the second contact bar when the rotor rotates, biasing means disposed in the second sleeve and urging said second bar into engagement with the ring contact, said contact bars being in electrical contact with their respective sleeves, and means electrically connecting the two sleeves.
2. A rotary switch comprising a rotor and surrounding annular stator, means for rotating the rotor about the axis of the stator, said stator having an aluminum heat conducting outer frame and a heat conducting and electrically insulating inner ring made of an epoxy resin within the frame, spaced contacts embedded in the ring and exposed on the inner surface of the stator, said stator having a smooth continuous inner surface made up of alternate contacts and sections of the epoxy resin, a sleeve made of conducting material embedded in the rotor and open in the direction of the inner surface of the stator, a contact bar disposed in and extending out of said sleeve, biasing means disposed in the sleeve behind the contact bar urging that bar into engagement With the inner surface of the stator, a second sleeve embedded in the rotor and made of metallic material, a second contact bar disposed in the second sleeve and extending out of said second sleeve, a ring contact mounted adjacent the rotor and coarcuate with the path defined by the second contact bar When the rotor rotates, biasing means disposed in the second sleeve and urging said second bar into engagement with the ring contact, said contact bars being in electrical contact with their respective sleeves, and means electrically connecting the two sleeves.
3. A rotary switch comprising a rotor and surrounding annular stator, means for rotating the rotor about the axis of the stator, said stator having an aluminum heat conducting outer frame and a heat conducting and electrically insulating inner ring made of an epoxy resin within the frame, spaced contacts embedded in the ring and exposed on the inner surface of the stator, said stator having a smooth continuous inner surface made up of alternate contacts and sections of the epoxy resin, a
sleeve made of electrically conducting material embedded in the rotor and open in the direction of the inner surface of the stator, a contact bar disposed in and extending out of said sleeve, biasing means disposed in the sleeve behind the contact bar urging that bar into engagement with the inner surface of the stator, a second contact bar carried by the rotor, a ring contact mounted adjacent the rotor and coarcuate with the path defined by the second contact bar when the rotor rotates, biasing means carried by the rotor and engaging the second contact bar and urging the second contact bar into engagement With the ring contact, and means electrically connecting the second contact bar to the sleeves.
References Cited in the file of this patent UNITED STATES PATENTS 1,258,098 De Lorme Mar. 5, 1918 1,357,455 Holway Nov. 2, 1920 1,361,314 De Lorme Dec. 7, 1920 1,400,561 Mason et a1 Dec. 20, 1921 1,411.073 Werner Mar. 28, 1922 1,731,513 Wagner Oct. 15, 1929 2,274,816 Winther Mar. 3, 1942 2,649,515 De Lorme Aug. 18, 1953 2,887,764 Knoll et a1 May 26, 1959 2.934,815 Stumbock May 3, 1960

Claims (1)

1. A ROTARY SWITCH COMPRISING A ROTOR AND SURROUNDING ANNULAR STATOR, MEANS FOR ROTATING THE ROTOR ABOUT THE AXIS OF THE STATOR, SAID STATOR HAVING A HEAT CONDUCTING OUTER FRAME AND A HEAT CONDUCTING AND ELECTRICALLY INSULATING INNER RING WITHIN THE FRAME, SPACED CONTACTS EMBEDDED IN THE RING AND EXPOSED ON THE INNER SURFACE OF THE STATOR, SAID STATOR HAVING A SMOOTH CONTINUOUS INNER SURFACE MADE UP OF ALTERNATE CONTACTS AND SECTIONS OF THE ELECTRICALLY INSULATING RINGS, A SLEEVE MADE OF CONDUCTING MATERIAL EMBEDDED IN THE ROTOR AND OPEN IN THE DIRECTION OF THE INNER SURFACE OF THE STATOR, A CONTACT BAR DISPOSED IN AND EXTENDING OUT OF SAID SLEEVE, BIASING MEANS DISPOSED IN THE SLEEVE BEHIND THE CONTACT BAR URGING THAT BAR INTO ENGAGEMENT WITH THE INNER SURFACE OF THE STATOR, A SECOND SLEEVE EMBEDDED IN THE ROTOR AND MADE OF METALLIC MATERIAL, A SECOND CONTACT BAR DISPOSED IN THE SECOND SLEEVE AND EXTENDING OUT OF SAID SECOND SLEEVE, A RING CONTACT MOUNTED ADJACENT THE ROTOR AND COARCUATE WITH THE PATH DEFINED BY THE SECOND CONTACT BAR WHEN THE ROTOR ROTATES, BIASING MEANS DISPOSED IN THE SECOND SLEEVE AND URGING SAID SECOND BAR INTO ENGAGEMENT WITH THE RING CONTACT, SAID CONTACT BARS BEING IN ELECTRICAL CONTACT WITH THEIR RESPECTIVE SLEEVES, AND MEANS ELECTRICALLY CONNECTING THE TWO SLEEVES.
US52983A 1960-08-30 1960-08-30 Rotary electric switch having a plurality of contacts Expired - Lifetime US3146322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US52983A US3146322A (en) 1960-08-30 1960-08-30 Rotary electric switch having a plurality of contacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52983A US3146322A (en) 1960-08-30 1960-08-30 Rotary electric switch having a plurality of contacts

Publications (1)

Publication Number Publication Date
US3146322A true US3146322A (en) 1964-08-25

Family

ID=21981158

Family Applications (1)

Application Number Title Priority Date Filing Date
US52983A Expired - Lifetime US3146322A (en) 1960-08-30 1960-08-30 Rotary electric switch having a plurality of contacts

Country Status (1)

Country Link
US (1) US3146322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697981A (en) * 1971-02-08 1972-10-10 Chester M Harkins Monitoring attachment for self-service gasoline pumps
US3999022A (en) * 1973-04-04 1976-12-21 Ideal Aerosmith, Inc. Electrical brush sensor apparatus useful for analog-to-digital converters

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1258098A (en) * 1917-05-18 1918-03-05 Splitdorf Electrical Co Ignition system.
US1357455A (en) * 1920-11-02 Timer
US1361314A (en) * 1920-12-07 Ignition system
US1400561A (en) * 1921-12-20 mason
US1411073A (en) * 1918-07-22 1922-03-28 Splitdorf Electrical Co Distributor and means for mounting the same
US1731513A (en) * 1929-10-15 Electric sign flasher
US2274816A (en) * 1941-03-10 1942-03-03 Jr Simon P Winther Ignition timer
US2649515A (en) * 1950-07-08 1953-08-18 Ducellier Sa Ets Contact breaker of ignition systems for internal-combustion engines
US2887764A (en) * 1952-09-04 1959-05-26 Siemens Ag Method for making commutators
US2934815A (en) * 1954-03-09 1960-05-03 Engelhard Ind Inc Method of manufacturing a collector ring

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1357455A (en) * 1920-11-02 Timer
US1361314A (en) * 1920-12-07 Ignition system
US1400561A (en) * 1921-12-20 mason
US1731513A (en) * 1929-10-15 Electric sign flasher
US1258098A (en) * 1917-05-18 1918-03-05 Splitdorf Electrical Co Ignition system.
US1411073A (en) * 1918-07-22 1922-03-28 Splitdorf Electrical Co Distributor and means for mounting the same
US2274816A (en) * 1941-03-10 1942-03-03 Jr Simon P Winther Ignition timer
US2649515A (en) * 1950-07-08 1953-08-18 Ducellier Sa Ets Contact breaker of ignition systems for internal-combustion engines
US2887764A (en) * 1952-09-04 1959-05-26 Siemens Ag Method for making commutators
US2934815A (en) * 1954-03-09 1960-05-03 Engelhard Ind Inc Method of manufacturing a collector ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697981A (en) * 1971-02-08 1972-10-10 Chester M Harkins Monitoring attachment for self-service gasoline pumps
US3999022A (en) * 1973-04-04 1976-12-21 Ideal Aerosmith, Inc. Electrical brush sensor apparatus useful for analog-to-digital converters

Similar Documents

Publication Publication Date Title
US4845396A (en) Motor brush holder assembly
ATE310327T1 (en) COMMUTATOR FOR AN ELECTRICAL MACHINE
US3146322A (en) Rotary electric switch having a plurality of contacts
US3011041A (en) Precision switch and method of construction
US3568309A (en) Method of manufacturing dynamo electric machines
US3925881A (en) Method of making a face commutator
US2090505A (en) Rotary switch
US2694756A (en) Rotary switch
US3535776A (en) Method of manufacturing a multi-segment commutator
US2997559A (en) Governor
US2834095A (en) Method of making drum type sequence switches
JP4446328B2 (en) Electric slip ring assembly
US4814556A (en) Camstack and switch assembly and timer utilizing same
US2478536A (en) Commutator construction for electric devices
US2847522A (en) Electric switches
ES419968A1 (en) Electric multipolar rotatable switch with helical rotor drive
US2700088A (en) Brush block
US3314132A (en) Method of making a rotary switch
US3095252A (en) Slip ring apparatus for signal transfer
ATE21973T1 (en) ELECTRICAL RESISTORS AND PROCESSES FOR THEIR MANUFACTURE.
US3368041A (en) Rotary miniature commutator switch with improved contact structure
US3647994A (en) Rotary switch with improved spiral contact structure
US3118037A (en) Commutator construction
US3151384A (en) Method of making electrical collector means
US1761225A (en) Timer for ignition systems