US3143626A - Sintered electric contact of high contact-fusing resistance - Google Patents

Sintered electric contact of high contact-fusing resistance Download PDF

Info

Publication number
US3143626A
US3143626A US263815A US26381563A US3143626A US 3143626 A US3143626 A US 3143626A US 263815 A US263815 A US 263815A US 26381563 A US26381563 A US 26381563A US 3143626 A US3143626 A US 3143626A
Authority
US
United States
Prior art keywords
layer
contact
silver
lead
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US263815A
Inventor
Schreiner Horst
Lehmann Alfred
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3143626A publication Critical patent/US3143626A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0231Composite material having a noble metal as the basic material provided with a solder layer

Definitions

  • Our invention relates to electric contact structures for opening and closing electric circuits in switching devices such as contactors, relays, selector switches, disconnect switcha, circuit breakers or the like.
  • the contact body consists essentially of two jointly sintered and mutually sinterbonded layers of which one constitutes the contact layer and consists of a silver-lead composition having a porosity between 5 and 20 volume percent, whereas the other layer constitutes a solderable backing layer and is formed of pure silver, copper, or a silver alloy whose silver content by weight is preponderant.
  • the solderable backing layer being also porous in its interior, is densified at its rear surface by smearing, such as produced for example when subjecting the surface to pore-closing sanding or grinding.
  • the thickness of the Ag-Pb layer is at least one-half the total thickness of the twin-layer structure and has a Pb-content of 2 to 20% by weight.
  • An embodiment of a contact structure according to the invention is schematically illustrated on the drawing by a sectional view.
  • the illustrated contact is circular and comprises a contact layer 1 consisting of the above-mentioned Ag-Pb composition, and a solderable layer 2 consisting entirely or predominantly of silver or of copper.
  • Denoted by 3 is the boundary zone between the contact layer.
  • the wavy shape schematically shown for the boundary zone 3 is intended to represent the serration and interlinking of the layer materials resulting from the fact that the two layers are jointly produced from respective powders by sintering which strengthens the coherence between the two layers, as will more fully appear from the following.
  • One way of producing a contact structure according to the invention is as follows. First, the powder or powder mixture for one of the two layers is filled into a matrix or die. Thereafter the predetermined space required for the powder of the other layer is provided by lowering the lower press punch in the die, whereby additional space in the die becomes available on top of the powder layer 3,143,626 Patented Aug. 4, 1964 first deposited. Then the second amount of powder is filled into the die on top of the first layer. The contents of the die is then jointly compressed. This produces a two-layer pressed body in which the two layers are well joined with each other by intimate inter-hooking. By subsequent sintering the pressed and shaped body is solidified essentially by volume diffusion. During sintering a portion of the lead diffuses from the Ag-Pb layer into the solderable layer.
  • the starting mixture of the Ag-Pb composition may contain these two constituents in the ratio 95% to 5% by Weight.
  • the second layer may consist of pure silver.
  • the lead content in the contact layer after sintering was found to be 3.5 to 3.8% by weight instead of the original 5%.
  • the lead content in the content mixture after sintering was 4.5 to 5%, and when using an Ag/Pb ratio of 10%, the lead content in the ultimate contact layer was about 6%.
  • the quantity of lead diffused into the silver layer depends upon the layer thickness ratio d /d and decreases with an increasing value of this ratio.
  • the data exemplified in the foregoing relate to a thickness ratio of 2.25.
  • the thickness of the soldering layer is preferably at least 0.1 mm. With smaller layer thicknesses there occur irregularities in layer thickness when using automatic filling devices in the manufacturing process.
  • the upper limit for the thickness of the soldering layer depends upon the shape of the contact structure, particularly upon the total thickness of the structure and consequently upon the thickness of the contact layer. Particularly advantageous is a thickness of the soldering layer between 0.2 and 0.5 mm.
  • the contact body according to the invention is preferably mounted on a contact carrier by hard-soldering or brazing.
  • a contact carrier For example when the copper carrier of 2.5 mm. thickness is used, it can be heated by high-frequency induction heating to the necessary brazing temperature. To avoid excessive heating of the contact layer, it is preferred to heat the carrier from the side remote from the contact layer.
  • Silver hard-solder compositions with about 40% by weight of silver and about 20% each of copper, zinc and cadmium have been found particularly suitable. The commercially available fluxes for hardsoldering or brazing are applicable.
  • the porosity of the contact layer results in a relatively high fusion resistance at the contact surface.
  • the closing of the pores by smearing of the solderable layer at the rear side prevents that liquid metal is sucked into the contact body during brazing. Due to the high plasticity and the cold-welding tendency of the above-mentioned materials the smearing of the surface zone can be etfected in a simple manner mechanically, for example by sanding.
  • the two-layer contact according to the invention can be produced in its ultimate shape of any desired geometric configuration, for example as a twin-layer rivet contact.
  • Electrolysis silver powder having a grain size below 37a is mixed with lead powder obtained by ejecting molten lead under pressure out of a pressure nozzle.
  • the mixing ratio is to 5% by weight.
  • the lower pressure punch is adjusted to a filling height of 1.7 mm.
  • the die space is filled with pure silver powder to form the soldering layer.
  • the lower punch is lowered a further distance of 4.7 mm., thus providing an additional filling space on top of the silver layer.
  • This additional space is filled with the Ag-Pb powder mixture.
  • the pressed body has a density of 7.8 g./cm. which corresponds to an average space filling degree of 0.74 (the space filling degree indicates the ratio of press density and theoretical density which, for the 95/5 mixture of Ag-Pb amounts to 10.53 g./cm. and for pure silver amounts to 10.5 g./cm.
  • the pressed and selfsupporting body is then sintered at 700 for thirty minutes in hydrogen. This results in linear shrinking of about 6%. Ultimately a sintering density of 8.9 g./crn. is reached, corresponding to a space filling degree of 0.844. Consequently, the median porosity of the contact body is 15.6%.
  • the surface of the silver layer is then smeared 'by grinding on sand paper or Carboru'ndum paper. Thereafter the body, Without further treatment, is brazed onto a copper carrier of 1.5 mm. thickness. Used for this purpose is a hard-silver composition of 40% by weight silver and 20% by weight each of copper, zinc and cadmium, together with commercial flux. The heating of the carrier is effected with high-frequency induction. This results in satisfactory brazing without segregation of lead from the contact body.
  • the production method is performed analogously when forming the soldering layer of copper or a silver alloy having a preponderant silver content (more than 50% by weight). An example relating to such a silver alloy will be described presently.
  • Electrolysis silver powder having a grain size below 37a is mixed with lead powder obtained in the above-described manner, in the ratio of 90/ by weight.
  • electrolysis silver powder and electrolysis copper powder each in a grain size below 37,41. are mixed in the ratio of 60/ 40% by weight.
  • the lower punch is first adjusted to 2 mm. filling height, and the available die space is then filled with the silver-copper powder. Then the lower punch is lowered 8 mm., down to a total filling. height of 10 mm. The adidtional die space of 8 mm. height is filled with the silver-lead mixture to produce the contact layer.
  • the two layers are jointly densified at a pressure of l t./cm. to form a cylindrical pressed body.
  • the density of this body is 7.0 g./cm. corresponding to a median space filling degree of 0.67.
  • the body is then sintered at 650 C. for thirty minutes in hydrogen.
  • the density of the body after sintering is 8.32 g./cm. corresponding to a median space filling degree of 0.80. By after-pressing the density is increased to 9.88 g./cm.
  • the further processing of the two-lamination body thus produced is as described in the preceding example. When hard-soldering or brazing the contact body to a carrier at a temperature of about 650 C., no lead segregates out of the contact body.
  • a sintered electric contact body of high welding resistance comprising two layers sinter-bonded to each other, one of said layers forming an electric contact surface and consisting of a silver-lead composition and having a porosity between 5 and 20 volume percent, said other layer forming a solderable backing and consisting of metal selected from the group consisting of silver, copper and silver alloys having a predominant silver content, said backing layer beingporous in its interior but dense at the surface remote from said one layer.
  • said silver-lead layer containing 2 to 20% by Weight of lead.
  • the thickness of said silver-lead layer being at least onehalf the total thickness of the contact body.
  • solderable backing layer having a thickness of 0.2 to 0.5 mm.
  • a twin-lamination sintered electric contact body comprising a contact layer and a solderable backing layer sinter-bonded to each other, said contact layer forming a contact-fusion resistant contacting surface and consisting of a sintered silver-lead composition having a lead content of 2 to 20% by weight and a porosity of 5 to 20 percent by volume, said backing layer being formed of metal selected from the group consisting of silver, copper and silver alloys having a predominant silver content, and said backing layer being porous in its interior but substantially poreless at its solderable surface remote from said contacting surface, the thickness of said backing layer'being smaller than that of said contact layer and beingabout 0.2 to about 0.5 mm.

Description

4, 1964 H. SCHREINER ETAL 3,143,626
SINTERED ELECTRI C CONTACT OF HIGH CONTACT-FUSING RESISTANCE Filed March 8, 1965 United States Patent ice 3,143,626 SINTERED ELECTRIC CONTACT OF HIGH CONTACT-FUSING RESISTANCE Horst Schreiner, Nurnberg, and Alfred Lehmann, Am-
berg, Germany, assignors to Siemens-Schuclrertwerke Aktiengesellschaft, Berlin-Siemensstadt, Germany, a corporation of Germany Filed Mar. 8, 1963, Ser. No. 263,815 Claims priority, application Germany Mar. 15, 1962 Claims. (Cl. 200-1645) Our invention relates to electric contact structures for opening and closing electric circuits in switching devices such as contactors, relays, selector switches, disconnect switcha, circuit breakers or the like.
Aside from silver and copper, having long since been used as well solderable electric contact metals, various other contact metals have become known more recently as superior in some respects, particularly as regards resistance to sticking, freezing or welding at the contact surface. In this respect, compositions of silver and lead have been found especially advantageous. But the solderability of this material is much inferior to that of silver and copper so that it is often difficult to obtain a satisfactory adhesion or attachment to a contact carrier. For coping with such difficulties use has been made of two-layer contacts produced for example by rolling-mill cladding methods and formed of a silver-lead composition in one layer and a well solderable metal in the other layer. These contact structures have the disadvantages that, when they are being hard-soldered to a carrier structure, the interposed solder metal and flux tend to reach and impair the contact layer.
It is an object of our invention to provide electric laminated contact structure which eliminates such trouble and loss in reliability while also atfording a particularly high resistance to sticking and welding at the contact surface.
According to our invention the contact body consists essentially of two jointly sintered and mutually sinterbonded layers of which one constitutes the contact layer and consists of a silver-lead composition having a porosity between 5 and 20 volume percent, whereas the other layer constitutes a solderable backing layer and is formed of pure silver, copper, or a silver alloy whose silver content by weight is preponderant. The solderable backing layer, being also porous in its interior, is densified at its rear surface by smearing, such as produced for example when subjecting the surface to pore-closing sanding or grinding. Preferably the thickness of the Ag-Pb layer is at least one-half the total thickness of the twin-layer structure and has a Pb-content of 2 to 20% by weight.
An embodiment of a contact structure according to the invention is schematically illustrated on the drawing by a sectional view.
The illustrated contact is circular and comprises a contact layer 1 consisting of the above-mentioned Ag-Pb composition, and a solderable layer 2 consisting entirely or predominantly of silver or of copper. Denoted by 3 is the boundary zone between the contact layer. The wavy shape schematically shown for the boundary zone 3 is intended to represent the serration and interlinking of the layer materials resulting from the fact that the two layers are jointly produced from respective powders by sintering which strengthens the coherence between the two layers, as will more fully appear from the following.
One way of producing a contact structure according to the invention is as follows. First, the powder or powder mixture for one of the two layers is filled into a matrix or die. Thereafter the predetermined space required for the powder of the other layer is provided by lowering the lower press punch in the die, whereby additional space in the die becomes available on top of the powder layer 3,143,626 Patented Aug. 4, 1964 first deposited. Then the second amount of powder is filled into the die on top of the first layer. The contents of the die is then jointly compressed. This produces a two-layer pressed body in which the two layers are well joined with each other by intimate inter-hooking. By subsequent sintering the pressed and shaped body is solidified essentially by volume diffusion. During sintering a portion of the lead diffuses from the Ag-Pb layer into the solderable layer.
For example, the starting mixture of the Ag-Pb composition may contain these two constituents in the ratio 95% to 5% by Weight. The second layer may consist of pure silver. Under these conditions, when producing a contact in which the Ag-Pb layer had an ultimate thickness of 0.9 mm. and the silver layer a thickness of 0.4- mm., the lead content in the contact layer after sintering was found to be 3.5 to 3.8% by weight instead of the original 5%. Under otherwise the same conditions but when using a starting mixture in the Ag/Pb ratio of 92.5/7.5% by weight, the lead content in the content mixture after sintering was 4.5 to 5%, and when using an Ag/Pb ratio of 10%, the lead content in the ultimate contact layer was about 6%. The quantity of lead diffused into the silver layer depends upon the layer thickness ratio d /d and decreases with an increasing value of this ratio. The data exemplified in the foregoing relate to a thickness ratio of 2.25.
The thickness of the soldering layer is preferably at least 0.1 mm. With smaller layer thicknesses there occur irregularities in layer thickness when using automatic filling devices in the manufacturing process. The upper limit for the thickness of the soldering layer depends upon the shape of the contact structure, particularly upon the total thickness of the structure and consequently upon the thickness of the contact layer. Particularly advantageous is a thickness of the soldering layer between 0.2 and 0.5 mm.
The contact body according to the invention is preferably mounted on a contact carrier by hard-soldering or brazing. For example when the copper carrier of 2.5 mm. thickness is used, it can be heated by high-frequency induction heating to the necessary brazing temperature. To avoid excessive heating of the contact layer, it is preferred to heat the carrier from the side remote from the contact layer. Silver hard-solder compositions with about 40% by weight of silver and about 20% each of copper, zinc and cadmium have been found particularly suitable. The commercially available fluxes for hardsoldering or brazing are applicable.
The porosity of the contact layer results in a relatively high fusion resistance at the contact surface. The closing of the pores by smearing of the solderable layer at the rear side prevents that liquid metal is sucked into the contact body during brazing. Due to the high plasticity and the cold-welding tendency of the above-mentioned materials the smearing of the surface zone can be etfected in a simple manner mechanically, for example by sanding.
The two-layer contact according to the invention can be produced in its ultimate shape of any desired geometric configuration, for example as a twin-layer rivet contact.
A production example for a contact according to the invention will be more fully described presently.
Electrolysis silver powder having a grain size below 37a is mixed with lead powder obtained by ejecting molten lead under pressure out of a pressure nozzle. The mixing ratio is to 5% by weight. In a matrix die having a pressure area of 8 x 7 mm. the lower pressure punch is adjusted to a filling height of 1.7 mm. The die space is filled with pure silver powder to form the soldering layer. Thereafter the lower punch is lowered a further distance of 4.7 mm., thus providing an additional filling space on top of the silver layer. This additional space is filled with the Ag-Pb powder mixture. Thereafter the total content of the die is pressed at 1.5 t./cm. (t. =metric ton). The pressed body has a density of 7.8 g./cm. which corresponds to an average space filling degree of 0.74 (the space filling degree indicates the ratio of press density and theoretical density which, for the 95/5 mixture of Ag-Pb amounts to 10.53 g./cm. and for pure silver amounts to 10.5 g./cm. The pressed and selfsupporting body is then sintered at 700 for thirty minutes in hydrogen. This results in linear shrinking of about 6%. Ultimately a sintering density of 8.9 g./crn. is reached, corresponding to a space filling degree of 0.844. Consequently, the median porosity of the contact body is 15.6%. The surface of the silver layer is then smeared 'by grinding on sand paper or Carboru'ndum paper. Thereafter the body, Without further treatment, is brazed onto a copper carrier of 1.5 mm. thickness. Used for this purpose is a hard-silver composition of 40% by weight silver and 20% by weight each of copper, zinc and cadmium, together with commercial flux. The heating of the carrier is effected with high-frequency induction. This results in satisfactory brazing without segregation of lead from the contact body.
The production method is performed analogously when forming the soldering layer of copper or a silver alloy having a preponderant silver content (more than 50% by weight). An example relating to such a silver alloy will be described presently.
Electrolysis silver powder having a grain size below 37a is mixed with lead powder obtained in the above-described manner, in the ratio of 90/ by weight. For preparing the soldering layer, electrolysis silver powder and electrolysis copper powder, each in a grain size below 37,41. are mixed in the ratio of 60/ 40% by weight. In a die of mm. diameter, the lower punch is first adjusted to 2 mm. filling height, and the available die space is then filled with the silver-copper powder. Then the lower punch is lowered 8 mm., down to a total filling. height of 10 mm. The adidtional die space of 8 mm. height is filled with the silver-lead mixture to produce the contact layer. The two layers are jointly densified at a pressure of l t./cm. to form a cylindrical pressed body. The density of this body is 7.0 g./cm. corresponding to a median space filling degree of 0.67. The body is then sintered at 650 C. for thirty minutes in hydrogen. The
occurring linear shrinking is approximately 5.5%. The density of the body after sintering is 8.32 g./cm. corresponding to a median space filling degree of 0.80. By after-pressing the density is increased to 9.88 g./cm. The further processing of the two-lamination body thus produced is as described in the preceding example. When hard-soldering or brazing the contact body to a carrier at a temperature of about 650 C., no lead segregates out of the contact body.
We claim:
1. A sintered electric contact body of high welding resistance, comprising two layers sinter-bonded to each other, one of said layers forming an electric contact surface and consisting of a silver-lead composition and having a porosity between 5 and 20 volume percent, said other layer forming a solderable backing and consisting of metal selected from the group consisting of silver, copper and silver alloys having a predominant silver content, said backing layer beingporous in its interior but dense at the surface remote from said one layer.
2. In a sintered laminated contact according to claim 1, said silver-lead layer containing 2 to 20% by Weight of lead.
3. In a sintered laminated contact according to claim 1, the thickness of said silver-lead layer being at least onehalf the total thickness of the contact body.
4. In a sintered laminated contact according to claim 3, said solderable backing layer having a thickness of 0.2 to 0.5 mm.
5. A twin-lamination sintered electric contact body, comprising a contact layer and a solderable backing layer sinter-bonded to each other, said contact layer forming a contact-fusion resistant contacting surface and consisting of a sintered silver-lead composition having a lead content of 2 to 20% by weight and a porosity of 5 to 20 percent by volume, said backing layer being formed of metal selected from the group consisting of silver, copper and silver alloys having a predominant silver content, and said backing layer being porous in its interior but substantially poreless at its solderable surface remote from said contacting surface, the thickness of said backing layer'being smaller than that of said contact layer and beingabout 0.2 to about 0.5 mm.
No references cited.

Claims (1)

1. A SINTERED ELECTRIC CONTACT BODY OF HIGH WELDING RESISTANCE, COMPRISING TWO LAYERS SINTER-BONDED TO EACH OTHER, ONE OF SAID LAYERS FORMING AN ELECTRIC CONTACT SURFACE AND CONSISTING OF A SILVER-LEAD COMPOSITION AND HAVING A POROSITY BETWEEN 5 AND 20 VOLUME PERCENT, SAID OTHER LAYER FORMING A SOLDERABLE BACKING AND CONSISTING OF METAL SELECTED FROM THE GROUP CONSISTING OF SILVER, COPPER AND SILVER ALLOYS HAVING A PREDOMINANT SILVER CONTENT, SAID BACKING LAYER BEING POROUS IN ITS INNER BUT DENSE AT THE SURFACE REMOTE FROM SAID ONE LAYER.
US263815A 1962-03-15 1963-03-08 Sintered electric contact of high contact-fusing resistance Expired - Lifetime US3143626A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES78496A DE1248303B (en) 1962-03-15 1962-03-15 Electrical, easily solderable two-layer sintered contact body with great welding security

Publications (1)

Publication Number Publication Date
US3143626A true US3143626A (en) 1964-08-04

Family

ID=7507502

Family Applications (1)

Application Number Title Priority Date Filing Date
US263815A Expired - Lifetime US3143626A (en) 1962-03-15 1963-03-08 Sintered electric contact of high contact-fusing resistance

Country Status (4)

Country Link
US (1) US3143626A (en)
AT (1) AT252366B (en)
DE (1) DE1248303B (en)
GB (1) GB1032519A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686456A (en) * 1970-04-09 1972-08-22 Gen Electric Contact structure for an electric circuit breaker
US3863337A (en) * 1971-09-01 1975-02-04 Siemens Ag Powder metallurgy method for making an electric contact and the resulting contact
US3864827A (en) * 1971-09-01 1975-02-11 Siemens Ag Method for making an electric contact by powder metallurgy and the resulting contact
US4147909A (en) * 1976-05-03 1979-04-03 Siemens Aktiengesellschaft Sintered composite material as contact material for medium-voltage vacuum power circuit breakers
US4591951A (en) * 1984-07-24 1986-05-27 Matsushita Electric Industrial Co., Ltd. Mounting arrangement for electronic components
US4803322A (en) * 1984-05-19 1989-02-07 Chugai Denki Kogyo K.K. Electrical contacts for electric breakers
US4922068A (en) * 1988-05-26 1990-05-01 Bangs Edmund R Densified braided switch contact
EP0702039A1 (en) 1994-08-17 1996-03-20 Bayer Ag Isocyanate prepolymers, their preparation process and their use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE618063C (en) * 1930-01-18 1935-09-02 I G Farbenindustrie Akt Ges Process for the production of composite metals
DE649958C (en) * 1934-05-23 1937-09-08 Aeg Use of silver alloys for electrical contacts
DE1106965B (en) * 1957-02-12 1961-05-18 Siemens Ag Process for the production of densely sintered molded bodies from silver composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686456A (en) * 1970-04-09 1972-08-22 Gen Electric Contact structure for an electric circuit breaker
US3863337A (en) * 1971-09-01 1975-02-04 Siemens Ag Powder metallurgy method for making an electric contact and the resulting contact
US3864827A (en) * 1971-09-01 1975-02-11 Siemens Ag Method for making an electric contact by powder metallurgy and the resulting contact
US4147909A (en) * 1976-05-03 1979-04-03 Siemens Aktiengesellschaft Sintered composite material as contact material for medium-voltage vacuum power circuit breakers
US4803322A (en) * 1984-05-19 1989-02-07 Chugai Denki Kogyo K.K. Electrical contacts for electric breakers
US4591951A (en) * 1984-07-24 1986-05-27 Matsushita Electric Industrial Co., Ltd. Mounting arrangement for electronic components
US4922068A (en) * 1988-05-26 1990-05-01 Bangs Edmund R Densified braided switch contact
EP0702039A1 (en) 1994-08-17 1996-03-20 Bayer Ag Isocyanate prepolymers, their preparation process and their use

Also Published As

Publication number Publication date
GB1032519A (en) 1966-06-08
DE1248303B (en) 1967-08-24
AT252366B (en) 1967-02-27

Similar Documents

Publication Publication Date Title
US3360348A (en) Composite structure of inter-bonded metals for heavy-duty electrical switch contacts
US3359623A (en) Method for making refractory metal contacts having integral welding surfaces thereon
US3385677A (en) Sintered composition material
US3143626A (en) Sintered electric contact of high contact-fusing resistance
US4067379A (en) Method for the manufacture of multilayered contacts for medium-voltage vacuum power circuit breakers
US2671955A (en) Composite metal-ceramic body and method of making the same
US4153755A (en) Impregnated sintered material for electrical contacts and method for its production
US3489531A (en) Multilayer sintered contact body
US3864827A (en) Method for making an electric contact by powder metallurgy and the resulting contact
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
US3226517A (en) Electrical contact device
US4014659A (en) Impregnated compound metal as contact material for vacuum switches and method for its manufacture
US2706759A (en) Refractory contacts
US3721550A (en) Process for producing a heterogenous penetration-bonded metal
US3985512A (en) Telluride containing impregnated electric contact material
EP0042152A1 (en) Vacuum circuit breaker
US3863337A (en) Powder metallurgy method for making an electric contact and the resulting contact
US3199176A (en) Method of manufacturing electrical contacts
US3305324A (en) Tungsten powder bodies infiltrated with copper-titanium-bismuth or copper-titanium-tin
US4056365A (en) Silver electrical contact materials and method of making
US2360522A (en) Manufacture of electric contacts
DE1187333B (en) Electrical contact with high welding reliability, high erosion resistance and good adhesive strength of the contact layer on the contact carrier
DE2102996A1 (en) Method for producing a two-layer sintered contact piece
JPH05177379A (en) Flux-containing al brazing sheet
DE2446634B1 (en) 2-Layer contact for (low-voltage) electric switches - with support of metal dispersion-hardened with refractory metal oxide or carbide