US3140371A - Fuse constructions - Google Patents

Fuse constructions Download PDF

Info

Publication number
US3140371A
US3140371A US856768A US85676859A US3140371A US 3140371 A US3140371 A US 3140371A US 856768 A US856768 A US 856768A US 85676859 A US85676859 A US 85676859A US 3140371 A US3140371 A US 3140371A
Authority
US
United States
Prior art keywords
solder
fuse
mass
fusible conductor
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US856768A
Inventor
Johann Hans
Graf Josef
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US856768A priority Critical patent/US3140371A/en
Application granted granted Critical
Publication of US3140371A publication Critical patent/US3140371A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/10Fusible members characterised by the shape or form of the fusible member with constriction for localised fusing

Definitions

  • the present invention relates to fuse constructions in general, and, more particularly, to fuse-link constructions for fuses or fusible cutouts.
  • a general object of the present invention is to provide a fuse link having improved fusing characteristics.
  • the present invention relates to a fuse having a fusible conductor which is destroyed, upon heating, by forming an alloy, or through a chemical reaction upon attainment of the reaction temperature.
  • fuses particularly low-voltage heavy-duty fuses consist essentially of an insulating member with end ferrule contacts, the insulating member containing a filling of a' granular extinguishing medium, preferably sand, in which the fusible conductors are imbedded.
  • the fusible conductors are bandshaped and are made of an electrically good conductive metal, for example, silver, copper or an alloy of these two metals.
  • Alloy-forming substances for example, tin, which will melt upon heating, are applied upon the fusible conductors, or upon bridging members between portions of the fusible conductors and, reacting with the fusible conductors will form an alloy having a higher electrical resistance. This increase of the resistance results in the destruction of the fusible conductor due to excessive heating and the vaporization thereof, the fusing temperature at the same time being reduced.
  • These fusible conductor sections are preferably interposed between two solder strips so as to form bridging members therebetween. It is also possible to make the: inserted bridging members of reduced thickness of a.- material which promotes alloying. If this is done, it is. important, however, that those sections of the fusible conductor, which have a reduced cross-sectional area, will remain strong enough within said reduced cross-sectional. area to' prevent an interruption at said sections prior to an interruption at the normal interrupting points predetermined to respond to an occurrence of heavy fault currents.
  • the present invention offers the additional advantage of increasing, within the area designed for alloying, the ratio of the solder, or reaction agent, to the material of the fusible conductor. This consequently reduces the melting point, without introducing any difiiculties in the accommodation of the solder or the reaction agent. At the same time, the alloying velocity is increased since these weakened sections have a moderate over-temperature with respect to the applied solder or the available chemical reagent.
  • FIGURE 1 is a plan view of a fuse-link construction embodying the principles of the present invention, the fuse link being shown in its intact condition;
  • FIG. 2 is a side elevational view of the fuse-link con struction of FIG. 1;
  • FIG. 3 is a plan view of a modified form of fuse-link construction
  • FIG. 4 is a side elevational view of the modified form of fuse-link construction illustrated in FIG. 3;
  • FIG. 5 is a plan view of a further modified form of fuse-link construction
  • FIG. 6 is a side elevational view of the fuse construction illustrated in FIG. 5;
  • FIG. 7 is a plan view of a further modified form of fuse-link construction.
  • the fusible conductor includes generally two half L-shaped sections, which are connected together by means of a bridging mass 3 of soldering material, such as tin, or other metals capable of alloying with the fusible conductor sections 1.
  • the fusible conductor sections 1 are provided with small perforations 4, whereby the ratio of the solder 3 to the material of the fusible conductor 1 is increased within the region of the bridging portion 3. If the soldering bridge 3 is heated up to a temperature above the melting temperature of the solder, there will result a limited flow of solder toward the fusible conductor sections 1 due to wetting of the material. This slight flow of solder is sufficient to fill, in addition, the recesses 4 with soldering material, thereby forming an alloy having an increased electrical resistance. This increase in resistance effects the vaporization of the fusible conductor.
  • FIGS. 3 and 4 illustrate a modified form of the invention, wherein the fusible conductor sections 6 are provided with generally U-shaped portions 7 filled with the soldering material, or with the chemical reagents. Intermediate the generally U-shaped portions 7, as shown in FIG. 4, the fusible conductor 6 is provided with holes 4, Whose function is the same as the holes 4 illustrated in FIGS. 1 and 2 of the drawings.
  • a particularly favorable alloying ratio will be obtained due to the fact that the solder 3 will flow toward the holes 4 from two directions.
  • FIGS. 5 and 6, together with FIGS. 7 and 8, illustrate embodiments of the invention utilizing bridging members 8, 9 having reduced cross-sectional areas, the bridging members 8, 9 being respectively inserted between fusible conductor sections 11, 12.
  • the bridging members 8, 9 in these two embodiments of the invention are connected to the fusible conductor sections 11, 12 through the intermediary of the layers of solder 3.
  • the bridging members 8, 9 could be connected to the fusible conductor section 11, 12, for example, by welding when chemical reaction agents are employed.
  • the bridging members 8, 9 are made, wholly or partially of a more precious material than the fusible conductors 11, 12 to facilitate alloying.
  • the fusible conductor sections 11, 12 may be made of copper, and the interposed bridging members 8, 9 may consist of silver.
  • the fusible conductor sections 1, 6 may be advantageous to provide with capillary grooves between the holes 4 and the regions where the solder, or the chemical reagents are applied, in order to increase the creep properties of the solder, or the chemical reagents applied.
  • a fuse-link construction including means defining at least one terminal portion, an adjoining conducting portion comprised of silver and dilferent from the material of said terminal portion, a mass of solder disposed between said terminal portion and said silver portion for 4. initiating alloying action upon a predetermined rise of fuse-link temperature to assist in low overload current interruption, said silver portion being deformed to increase the ratio of the mass of solder t0 the mass of contiguous deformed silver in the reaction zone to increase the velocity of alloying reaction without decreasing the mass of the solder material.
  • a fuse-link construction including means defining terminal portions, an intermediately-disposed conducting portion connected between said terminal portions and composed of relatively high-melting-point material different from the material of the terminal portions, a portion of said conducting portion being fusible at least on relatively low overload currents and comprising a mass of solder for initiating alloying action upon a predetermined rise of fuse-link temperature, said intermediately-disposed con ducting portion being of a U-shape with each leg of the U being connected to only one of the terminal portions, said last-mentioned fusible portion being deformed to increase the ratio of the mass of solder to the mass of contiguous deformed high-melting-point fusible material in the reaction zone to increase the velocity of alloying reaction Without decreasing the mass of the solder material.
  • a fuse-link construction including a sectionalized fusible conductor having end sections comprised of one metal of a predetermined cross-sectional area, a mass of solder disposed adjacent the opposed inner ends of the fusible conductor end sections, a bridging fusible conductor section comprised of silver and different from the material of the end sections, said bridging fusible conductor section being of smaller cross-sectional area than the end sections and disposed between adjacent masses of solder and spaced from the end sections by the solder, said bridging fusible conductor section conducting the current serially through the fuse link, and the metal in the bridging conductor alloying more readily with the solder than does the metal in the end sections.
  • a fuse-link construction including a sectionalized fusible conductor having end sections comprised of one metal of a predetermined cross-sectional area, a mass of solder disposed adjacent the opposed inner ends of the fusible conductor end sections, a bridging fusible conductor section comprised of a different metal of smaller crosssectional area disposed between adjacent masses of solder for conducting the current serially through the fuse link, the bridging fusible conductor being U-shaped with each leg of the U being joined to only one of the end sections by the solder, and the metal in the bridging conductor alloying more readily with the solder than does the metal in the end sections.

Landscapes

  • Fuses (AREA)

Description

July 7, 964 H.IJOHANN ETAL FUSE CONSTRUCTIONS Filed Dec. 2, 1959 5 *3? Fig.|.
I 2 3 g I) r 11h? J Fig.2.
C5 if CY) Fig.3.
6 2 3 2 r l Fig.4.
II a u I' I i i Fig.5.
a "m H F Q F F|g.6.
/ Fig.7.
:2 9 l2 t fifizi Fig 8,
WITNESSES v INVENTORS Hons Johann 8 W1 V flw 2 :22:?
ATTORNEY United States Patent i 3,140,371 FUSE CONSTRUCTIONS Hans Johann and Josef Graf, Amberg, Germany, assignors to Siemens-Schuckertwerke Aktiengesellschaft, Erlangen, Germany, a corporation of Germany Filed Dec. 2, 1959, Ser. No. 856,768 5 Claims. (Cl. 200-135) The present invention relates to fuse constructions in general, and, more particularly, to fuse-link constructions for fuses or fusible cutouts.
A general object of the present invention is to provide a fuse link having improved fusing characteristics.
More particularly, the present invention relates to a fuse having a fusible conductor which is destroyed, upon heating, by forming an alloy, or through a chemical reaction upon attainment of the reaction temperature. Generally, fuses, particularly low-voltage heavy-duty fuses consist essentially of an insulating member with end ferrule contacts, the insulating member containing a filling of a' granular extinguishing medium, preferably sand, in which the fusible conductors are imbedded.
In most instances, the fusible conductors are bandshaped and are made of an electrically good conductive metal, for example, silver, copper or an alloy of these two metals. Alloy-forming substances, for example, tin, which will melt upon heating, are applied upon the fusible conductors, or upon bridging members between portions of the fusible conductors and, reacting with the fusible conductors will form an alloy having a higher electrical resistance. This increase of the resistance results in the destruction of the fusible conductor due to excessive heating and the vaporization thereof, the fusing temperature at the same time being reduced.
There are also known fusible cutouts utilizing chemical reagents, instead of a coating of solder, said chemical reagents being adapted to form compounds with the fusible conductor at a certain temperature. In most cases, these compounds are either poor conductors or nonconductors, thereby increasing the resistance of the fusible conductor within the region in which such chemical reaction takes place. This increase of the resistance results in a quick destruction of the fusible conductor.
Other known fusible conductors are provided with sections having a reduced cross-sectional area obtained, for example, by means of perforations, such sections functioning as interruption points upon the occurrence of high fault currents.
It has been discovered that the formation of alloys, or the chemical reaction, occurs before the temperature required for a fusion has been reached. This results in an increase of the resistance of the alloyed sections, or the sections where a chemical reaction takes place, so that the temperature will continue to rise gradually until the melting point of the alloy, or the temperature region for the chemical reaction is reached. Only then will the fusible conductor be interrupted.
The duration of this alloying action and the degree of the final fusing temperature depends upon the local proportions of the alloying components and the temperature of the chemical coating materials, respectively. Particularly in connection with fusesrated for the higher currents, it is generally difficult and sometimes even impossible to apply the solder or the chemical reaction agents upon the fusible conductor and in. intimate contact therewith in quantities as would be required to obtain a sufiiciently low fusing temperature. L
It is, therefore, aprimary object of the present invention to obtain a maximum ratio of applied solder to the basic material, that is the fusible conductor, in order to reduce the fusing temperature, and on the other hand, to increase the reaction velocity.
3,140,371 Patented July 7, 1964 One solution to the problem would be an increase in quantity of the effective material, that is, either the solder or the chemical reaction agent,'in excess of the usual quantity used. This has, however, considerable disadvantages, and, in particular, would impair the shortcircuit interrupting ability of the fuse. An increase in quantity of the applied solder results in an increased vapor pressure, and this is true, on a smaller scale, also with respect to chemical reaction agents. As a result, the interruption during short-circuit conditions is renderedextremely difficult especially if the vapor has a high metallic content.
These disadvantages are overcome by the present invention, according to which the mass of the total materialin the reaction zone is decreased without decreasing the mass of the solder material, and the electrical resistance is simultaneously increased. This is achieved, for example, by weakening thefusible conductor in the immediate proximity of the coating of the reaction medium or the solder by means of small recesses. Instead of providing such recesses, or in addition thereto, there may also be used fusible conductor sections of reduced thickness: and/ or width.
These fusible conductor sections are preferably interposed between two solder strips so as to form bridging members therebetween. It is also possible to make the: inserted bridging members of reduced thickness of a.- material which promotes alloying. If this is done, it is. important, however, that those sections of the fusible conductor, which have a reduced cross-sectional area, will remain strong enough within said reduced cross-sectional. area to' prevent an interruption at said sections prior to an interruption at the normal interrupting points predetermined to respond to an occurrence of heavy fault currents.
The present invention offers the additional advantage of increasing, within the area designed for alloying, the ratio of the solder, or reaction agent, to the material of the fusible conductor. This consequently reduces the melting point, without introducing any difiiculties in the accommodation of the solder or the reaction agent. At the same time, the alloying velocity is increased since these weakened sections have a moderate over-temperature with respect to the applied solder or the available chemical reagent.
Accordingly, it is a further object of the present invention to improve upon the configuration and shape of fuse-link sections so as to obtain an improved fuse-link construction.
Other objects and advantages will readily become apparent upon reading the following specification, taken in conjunction with the drawing, in which:
, FIGURE 1 is a plan view of a fuse-link construction embodying the principles of the present invention, the fuse link being shown in its intact condition;
FIG. 2 is a side elevational view of the fuse-link con struction of FIG. 1;
FIG. 3 is a plan view of a modified form of fuse-link construction;
FIG. 4 is a side elevational view of the modified form of fuse-link construction illustrated in FIG. 3;
FIG. 5 is a plan view of a further modified form of fuse-link construction;
FIG. 6 is a side elevational view of the fuse construction illustrated in FIG. 5;
. FIG. 7 is a plan view of a further modified form of fuse-link construction; and,
place during the occurrence of heavy fault currents. As shown, the fusible conductor includes generally two half L-shaped sections, which are connected together by means of a bridging mass 3 of soldering material, such as tin, or other metals capable of alloying with the fusible conductor sections 1.
Immediately adjacent to the solder bridge 3, the fusible conductor sections 1 are provided with small perforations 4, whereby the ratio of the solder 3 to the material of the fusible conductor 1 is increased within the region of the bridging portion 3. If the soldering bridge 3 is heated up to a temperature above the melting temperature of the solder, there will result a limited flow of solder toward the fusible conductor sections 1 due to wetting of the material. This slight flow of solder is sufficient to fill, in addition, the recesses 4 with soldering material, thereby forming an alloy having an increased electrical resistance. This increase in resistance effects the vaporization of the fusible conductor.
FIGS. 3 and 4 illustrate a modified form of the invention, wherein the fusible conductor sections 6 are provided with generally U-shaped portions 7 filled with the soldering material, or with the chemical reagents. Intermediate the generally U-shaped portions 7, as shown in FIG. 4, the fusible conductor 6 is provided with holes 4, Whose function is the same as the holes 4 illustrated in FIGS. 1 and 2 of the drawings. In the modification of the invention illustrated in FIGS. 3 and 4, a particularly favorable alloying ratio will be obtained due to the fact that the solder 3 will flow toward the holes 4 from two directions.
FIGS. 5 and 6, together with FIGS. 7 and 8, illustrate embodiments of the invention utilizing bridging members 8, 9 having reduced cross-sectional areas, the bridging members 8, 9 being respectively inserted between fusible conductor sections 11, 12. For the sake of simplicity, the bridging members 8, 9 in these two embodiments of the invention are connected to the fusible conductor sections 11, 12 through the intermediary of the layers of solder 3. It is to be understood, of course, that the bridging members 8, 9 could be connected to the fusible conductor section 11, 12, for example, by welding when chemical reaction agents are employed. Preferably, the bridging members 8, 9 are made, wholly or partially of a more precious material than the fusible conductors 11, 12 to facilitate alloying. For example, the fusible conductor sections 11, 12 may be made of copper, and the interposed bridging members 8, 9 may consist of silver.
In some instances it may be advantageous to provide the fusible conductor sections 1, 6 with capillary grooves between the holes 4 and the regions where the solder, or the chemical reagents are applied, in order to increase the creep properties of the solder, or the chemical reagents applied.
From the foregoing description it will be apparent that there is provided a novel fuse-link construction in which the reaction time is reduced with the fuse-link adapted for effective and consistent operation. It will be observed that a number of alternate arrangements are possible utilizing the principles set forth above.
Although several fuse-link constructions have been illustrated and described, it is to be clearly understood that the same were merely for the purpose of illustration, and that changes and modifications may readily be made therein by those skilled in the art without departing from the spirit and scope of the invention.
We claim:
1. A fuse-link construction including means defining at least one terminal portion, an adjoining conducting portion comprised of silver and dilferent from the material of said terminal portion, a mass of solder disposed between said terminal portion and said silver portion for 4. initiating alloying action upon a predetermined rise of fuse-link temperature to assist in low overload current interruption, said silver portion being deformed to increase the ratio of the mass of solder t0 the mass of contiguous deformed silver in the reaction zone to increase the velocity of alloying reaction without decreasing the mass of the solder material.
2. A fuse-link construction including means defining terminal portions, an intermediately-disposed conducting portion connected between said terminal portions and composed of relatively high-melting-point material different from the material of the terminal portions, a portion of said conducting portion being fusible at least on relatively low overload currents and comprising a mass of solder for initiating alloying action upon a predetermined rise of fuse-link temperature, said intermediately-disposed con ducting portion being of a U-shape with each leg of the U being connected to only one of the terminal portions, said last-mentioned fusible portion being deformed to increase the ratio of the mass of solder to the mass of contiguous deformed high-melting-point fusible material in the reaction zone to increase the velocity of alloying reaction Without decreasing the mass of the solder material.
3. A fuse-link construction including a sectionalized fusible conductor having end sections comprised of one metal of a predetermined cross-sectional area, a mass of solder disposed adjacent the opposed inner ends of the fusible conductor end sections, a bridging fusible conductor section comprised of silver and different from the material of the end sections, said bridging fusible conductor section being of smaller cross-sectional area than the end sections and disposed between adjacent masses of solder and spaced from the end sections by the solder, said bridging fusible conductor section conducting the current serially through the fuse link, and the metal in the bridging conductor alloying more readily with the solder than does the metal in the end sections.
4. A fuse-link construction including a sectionalized fusible conductor having end sections comprised of one metal of a predetermined cross-sectional area, a mass of solder disposed adjacent the opposed inner ends of the fusible conductor end sections, a bridging fusible conductor section comprised of a different metal of smaller crosssectional area disposed between adjacent masses of solder for conducting the current serially through the fuse link, the bridging fusible conductor being U-shaped with each leg of the U being joined to only one of the end sections by the solder, and the metal in the bridging conductor alloying more readily with the solder than does the metal in the end sections.
5. The fuse-link construction of claim 3, wherein the end sections are comprised of copper.
References Cited in the file of this patent UNITED STATES PATENTS 569,803 Scott Oct. 20, 1896 713,831 Badeau Nov. 18, 1902 1,231,036 McDonald June 26, 1917 1,473,284 Feldkamp Nov. 6, 1923 1,660,828 Bird Feb. 28, 1928 1,770,196 Bussman July 8, 1930 2,111,628 Hoban Mar. 22, 1938 2,816,989 Sugden Dec. 17, 1957 2,827,532 Kozacka Mar. 18, 1958 2,858,396 Sugden Oct. 28, 1958 2,876,312 Frederick Mar. 3, 1959 2,988,620 Kozacka June 13, 1961 FOREIGN PATENTS 439,517 Great Britain Dec. 9, 1935 635,089 Germany Sept. 9, 1936 571,298 Great Britain Aug. 17, 1945

Claims (1)

1. A FUSE-LINK CONSTRUCTION INCLUDING MEANS DEFINING AT LEAST ONE TERMINAL PORTION, AN ADJOINING CONDUCTING PORTION COMPRISED OF SILVER AND DIFFERENT FROM THE MATERIAL OF SAID TERMINAL PORTION, A MASS OF SOLDER DISPOSED BETWEEN SAID TERMINAL PORTION AND SAID SILVER PORITON FOR INITIATING ALLOYING ACTION UPON A PREDETERMINED RISE OF FUSE-LINK TEMPERATURE TO ASSIST IN LOW OVERLOAD CURRENT INTERRUPTION, SAID SILVER PORION BEING DEFORMED TO INCREASE THE RATIO OF THE MASS OF SOLDER TO THE MASS OF CONTIGUOUS DEFORMED SILVER IN THE REACTION ZONE TO INCREASE THE VELOCITY OF ALLOYING REACTION WITHOUT DECREASING THE MASS OF THE SOLDER MATERIAL.
US856768A 1959-12-02 1959-12-02 Fuse constructions Expired - Lifetime US3140371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US856768A US3140371A (en) 1959-12-02 1959-12-02 Fuse constructions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US856768A US3140371A (en) 1959-12-02 1959-12-02 Fuse constructions

Publications (1)

Publication Number Publication Date
US3140371A true US3140371A (en) 1964-07-07

Family

ID=25324461

Family Applications (1)

Application Number Title Priority Date Filing Date
US856768A Expired - Lifetime US3140371A (en) 1959-12-02 1959-12-02 Fuse constructions

Country Status (1)

Country Link
US (1) US3140371A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706951A (en) * 1970-11-30 1972-12-19 Mc Graw Edison Co Fusible element arrangement for fuse
US4134094A (en) * 1977-05-05 1979-01-09 Mcgraw-Edison Company Fuse element
DE2931832A1 (en) * 1978-08-08 1980-02-21 Gould Inc MELT LADDER FOR ELECTRICAL FUSES, THEIR PRODUCTION AND USE
US4322704A (en) * 1980-10-27 1982-03-30 Gould Inc. Electric fuse, particularly for use in connection with solid state devices
US4414526A (en) * 1979-07-30 1983-11-08 Gould Inc. Electric fuse having composite fusible element
US4635023A (en) * 1985-05-22 1987-01-06 Littelfuse, Inc. Fuse assembly having a non-sagging suspended fuse link
US5805047A (en) * 1994-08-24 1998-09-08 The Whitaker Corporation Fused car battery terminal and fuse-link therefor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US569803A (en) * 1896-10-20 Charles f
US713831A (en) * 1901-01-26 1902-11-18 Gen Electric Fuse.
US1231036A (en) * 1913-12-31 1917-06-26 Clarence T Mcdonald Refillable cartridge-fuse.
US1473284A (en) * 1921-05-17 1923-11-06 Frederick A Feldkamp Electric-fuse element
US1660828A (en) * 1922-12-01 1928-02-28 Robert M Bird Electric fuse
US1770196A (en) * 1924-11-10 1930-07-08 Henry T Bussmann Electric fuse
GB439517A (en) * 1934-06-15 1935-12-09 John Ashworth Crabtree Improvements in, or relating to, fusible electric cut-outs
DE635089C (en) * 1932-08-18 1936-09-09 Wickmann Werke Akt Ges Fusible link for electrical fuses
US2111628A (en) * 1936-01-21 1938-03-22 Henleys Telegraph Works Co Ltd Electric fuse
GB571298A (en) * 1943-12-01 1945-08-17 English Electric Co Ltd Improvements in fuse links for electric cut-outs
US2816989A (en) * 1954-05-05 1957-12-17 Parmiter Hope & Sugden Ltd Electric fuses
US2827532A (en) * 1955-10-28 1958-03-18 Frederick J Kozacka Current-limiting low impedance fuses for small current intensities
US2858396A (en) * 1955-03-08 1958-10-28 Parmiter Hope & Sugden Ltd Electric fuses
US2876312A (en) * 1956-09-17 1959-03-03 Gen Electric Fuse link for a time-lag fuse and method of constructing the link
US2988620A (en) * 1958-09-30 1961-06-13 Chase Shawmut Co Time-lag fuses

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US569803A (en) * 1896-10-20 Charles f
US713831A (en) * 1901-01-26 1902-11-18 Gen Electric Fuse.
US1231036A (en) * 1913-12-31 1917-06-26 Clarence T Mcdonald Refillable cartridge-fuse.
US1473284A (en) * 1921-05-17 1923-11-06 Frederick A Feldkamp Electric-fuse element
US1660828A (en) * 1922-12-01 1928-02-28 Robert M Bird Electric fuse
US1770196A (en) * 1924-11-10 1930-07-08 Henry T Bussmann Electric fuse
DE635089C (en) * 1932-08-18 1936-09-09 Wickmann Werke Akt Ges Fusible link for electrical fuses
GB439517A (en) * 1934-06-15 1935-12-09 John Ashworth Crabtree Improvements in, or relating to, fusible electric cut-outs
US2111628A (en) * 1936-01-21 1938-03-22 Henleys Telegraph Works Co Ltd Electric fuse
GB571298A (en) * 1943-12-01 1945-08-17 English Electric Co Ltd Improvements in fuse links for electric cut-outs
US2816989A (en) * 1954-05-05 1957-12-17 Parmiter Hope & Sugden Ltd Electric fuses
US2858396A (en) * 1955-03-08 1958-10-28 Parmiter Hope & Sugden Ltd Electric fuses
US2827532A (en) * 1955-10-28 1958-03-18 Frederick J Kozacka Current-limiting low impedance fuses for small current intensities
US2876312A (en) * 1956-09-17 1959-03-03 Gen Electric Fuse link for a time-lag fuse and method of constructing the link
US2988620A (en) * 1958-09-30 1961-06-13 Chase Shawmut Co Time-lag fuses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706951A (en) * 1970-11-30 1972-12-19 Mc Graw Edison Co Fusible element arrangement for fuse
US4134094A (en) * 1977-05-05 1979-01-09 Mcgraw-Edison Company Fuse element
DE2931832A1 (en) * 1978-08-08 1980-02-21 Gould Inc MELT LADDER FOR ELECTRICAL FUSES, THEIR PRODUCTION AND USE
US4414526A (en) * 1979-07-30 1983-11-08 Gould Inc. Electric fuse having composite fusible element
US4322704A (en) * 1980-10-27 1982-03-30 Gould Inc. Electric fuse, particularly for use in connection with solid state devices
US4635023A (en) * 1985-05-22 1987-01-06 Littelfuse, Inc. Fuse assembly having a non-sagging suspended fuse link
US5805047A (en) * 1994-08-24 1998-09-08 The Whitaker Corporation Fused car battery terminal and fuse-link therefor

Similar Documents

Publication Publication Date Title
US2703352A (en) Fuse and fuse link of the time lag type
US4216457A (en) Electric fuse having folded fusible element and heat dams
US3189712A (en) High interrupting capacity fuse
US3261950A (en) Time-lag fuses having high thermal efficiency
GB1387288A (en) Current limiting fuse
US6590490B2 (en) Time delay fuse
US4320374A (en) Electric fuses employing composite aluminum and cadmium fuse elements
US2809257A (en) Composite fuse links of silver and copper
US2827532A (en) Current-limiting low impedance fuses for small current intensities
US3140371A (en) Fuse constructions
US2781434A (en) Current-limiting fuses comprising fuse links of silver and copper
US2658974A (en) High current carrying capacity current-limiting fuses
US4118684A (en) One piece fusible conductor for low voltage fuses
US4300281A (en) Method of making electric fuse having folded fusible element and heat dams
US2800554A (en) Electric fuses
US2832868A (en) Fillerless one-time national electrical code fuses
US4150354A (en) Circuit protection fuse
US2688061A (en) Time lag fuse
US2557926A (en) Time-delay electric fuse
US2004191A (en) Electric fuse
US3291943A (en) Time-lag fuse with ribbon fuse link folded in longitudinal and in transverse direction
US4308514A (en) Current-limiting fuse
CA1083648A (en) Composite fuse element for a high voltage current limiting fuse
US3029328A (en) Time-lag fuses
US4227167A (en) High-interrupting capacity fuse