US3132927A - Wear-resistant material - Google Patents
Wear-resistant material Download PDFInfo
- Publication number
- US3132927A US3132927A US128158A US12815861A US3132927A US 3132927 A US3132927 A US 3132927A US 128158 A US128158 A US 128158A US 12815861 A US12815861 A US 12815861A US 3132927 A US3132927 A US 3132927A
- Authority
- US
- United States
- Prior art keywords
- wear
- nickel
- mica
- aluminum
- microns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 48
- 229910052782 aluminium Inorganic materials 0.000 claims description 37
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 36
- 229910052618 mica group Inorganic materials 0.000 claims description 34
- 239000010445 mica Substances 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 239000003792 electrolyte Substances 0.000 description 14
- 230000001186 cumulative effect Effects 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 5
- 239000004327 boric acid Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010723 turbine oil Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- -1 Cobalt sulfate Sodium chloride Chemical compound 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- CULWTPQTPMEUMN-UHFFFAOYSA-J [Ni](Cl)Cl.S(=O)(=O)([O-])[O-].[Ni+2] Chemical compound [Ni](Cl)Cl.S(=O)(=O)([O-])[O-].[Ni+2] CULWTPQTPMEUMN-UHFFFAOYSA-J 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052626 biotite Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052629 lepidolite Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- JRTYPQGPARWINR-UHFFFAOYSA-N palladium platinum Chemical compound [Pd].[Pt] JRTYPQGPARWINR-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 229910001737 paragonite Inorganic materials 0.000 description 1
- 229910052628 phlogopite Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- MJWMNCORAUQGIX-UHFFFAOYSA-N sodium nitric acid nitrate Chemical compound [Na+].O[N+]([O-])=O.[O-][N+]([O-])=O MJWMNCORAUQGIX-UHFFFAOYSA-N 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
- C25D15/02—Combined electrolytic and electrophoretic processes with charged materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/1266—O, S, or organic compound in metal component
Definitions
- the present invention relates to wear-resistant materials and, more particularly, to wear-resistant coatings, and a process for making said wear-resistant coatings.
- the invention also contemplates providing an irnproved process for producing wear-resistant coatings and/ or materials.
- FIGURE l is a pen andink drawing of a photomicrograph taken at a magnilication of 250'diameters (250x) of an. unetched wearresistant coating within the scope of the present invention
- FIGURE 2 is a graphical representation showing the low cumulative wear of a wear-resistant coating made in accordance with the present invention under varying bearing stresses against cast-aluminum which also had low cumulative wear; p
- FIGURE 3 is also a graph showing the higher cumulative wear of cast aluminum in contact with cast alumi# num under several bearing stresses under oil lubricated conditions;
- FIGURE 4 is a plot of cumulative wear with oil lubri- 3,132,927. Patented May l2, 1964 cation at various bearing stresses for cast aluminum contacting a hard nickel coating outside the scope of this invention;
- FIGURE 5 is a graph depicting the corresponding high cumulative wear when a coating not within the scope of the presentinvention was used.
- FIGURE 6 is, similarly, Ystill another graph illustrating the high cumulative wear versus bearing stresses when another coatingnot within the contemplation of this invention wasused; and
- a A Y FIGURE 7 is, like FIGURES 5 and 6, a graph showing the high cumulative wear versus bearing stresses when still another coating not within this inventionwas used.
- the present invention contemplateselectrodeposited materials and/or coatings having excellent resistance to wear even in the as-plated condition which coatings contain about l% to about 20% by weight of particulate mica, each of said particles having a mean major dimension of about 5 to about 45 microns, and,- advantageously, about7 to about 40 microns, with the balance essentially a continuous matrix of an electrodeposited metal having a melting point in excess of about C. and having a standard electrode potential of less than about +08 volt according to the electromotive series.
- the mica of the coating is substantially uniformly dispersed throughout the metal matrix as discrete particles having a substantially similar laminar orientation one with the other andwith the surface to be subjected to wear, i.e., the mica particles are manifestly oriented in approximately parallel' relationship, such as illustrated in FIG. l. In such an orientation, the plate-like particles of mica have predominantly similar directional relation to eachother.
- the mica of the coatings can be in the form of synthetic micas and/or natural micas, including the heptaphyllites such as muscovite and paragonite, the octophyllites suchas lepidolite, phlogopite and'biotite, the soda-micas, the lithia-micas, the magnesia-micas, the ferro-micas, the mica-like minerals such as vermiculite and combinations thereof.
- the mica is present in the coatings in amounts ranging from about '1% to about 20% by weight and advanta- Vgeously in amounts of about,2% ⁇ to 10% lby weight.
- the particle size is less than about 5 microns, substantially no improved wear resistance swobtained.
- the coating is rough and is only weakly adherent.
- the mica is advantageously present in amounts ranging from about 2% to about 10% by weight and its mean particle size lies between about 7 microns and 40 microns.
- the matrix is a metal selected from the group consisting of nickel, cobalt,'iron and copper. More advantageously, the matrix metal is nickel because of its remarkable compatibilitywhen used in accordance with the invention with most materials, its excellent corrosion-resistance characteristics and its ease of high quality electrodeposition. Other metals having a melting point in excess of 150 AC. and a standard electrode potential of less than about-10.8 vol-t canl if the particle size is greaterl the metals which are included as those itemized in Table I:
- the present invention also contemplates a process for producing the Wear-resistant materials and/or coatings of the present invention lhaving compositions both within the broad and advantageous ranges.
- an electrically conductive surface is made the cathode of an electrolytic cell and is immersed in an electrolyte containing ions of a metal as described hereinbefore, i.e., a metal having a standard electrode potential of less than about +08 volt at 25 C.
- the electrolyte can be any available electrolyte which will deposit lthe matrix metal.
- the metal is advantageously selected from the group consisting of nickel, cobalt, copper, iron and combinations thereof.
- the electrodeposited matrix metal is more 'advantageously nickel.
- the plating baths and/ or electrolytes for use in depositing a nickel electroplate con-taining mica in accordance with the invention include those which are listed compositionally in the following Table II:
- levelling agents such as coumarin, etc.
- antipitting agents such as sodium lauryl sulfate, etc.
- nickel plating baths or electrolytes can also be used.
- compositions of the present inventions can be electrodeposited onto various basis metals such as aluminum, iron, stainless steel, brass, copper, nickel, etc.
- the materials can be electrodeposited onto a base then stripped off, e.g., onto a suitable stainless steel surface or a graphitized surface.
- the mica in order to assure that the mica is suspended in the electrolyte solution and does not settle out (otherwise little of the mica will be codeposited with the metal) the electrolyte should be agitated as by vibration, circulation, rotation of cathode, etc., as those skilled in the art readily understand, to provide a dispersed system of mica in the electrolyte in contact with the cathode.
- Example A cast aluminum article, containing about 3% copper, about 9% silicon, with the balance essentially aluminum, 2.352 inches in diameter by 0.394 inch wide was cleaned in alkali to blacken it.
- the article was then dipped in a solution containing nitric acid and hydrofluoric acid, water rinsed-and placed in a bath containing Zinc oxide in caustic soda. Thereafter, the aluminum article was rinsed in water and then in a 5% solution of sulfuric acid.
- the article was then again rinsed in water and made the cathode in a hard nickel bath containing about 40 ounces of nickel sulfamate and about 4 ounces of boric acid per gallon of water.
- the pH of the electrolyte was determined electrometrically to be about 4.
- Mica having a particle size of between about 7 microns and about 40 microns was then suspended in the electrolyte so that it comprised about 2% by volume of the bath.
- the bath was then provided with a nickel anode and it was then heated to about 140 F. and maintained at that temperature throughout the plating operation.
- the cathode was rotated at about 0.5 surface foot per minute.
- a cathode current density of 40 amperes per square foot (asf.) was applied to the electrolyte and was continued for about 3 hours. The cathode was then removed from the bath and it was determined that the coating was about 6 mils thick.
- the unetched coated aluminum cathode was then observed under a microscope at a magnication of 250 showing, as illustrated by FIGURE 1 (a pen and ink drawing of the photomicrcgraph), a coating 11 containing a nickel matrix 12 and lamellae of particulate mica 13 substan- 6 tially uniformly dispersed throughout the nickel matrix. It is to be observed that the preponderance of discrete mica particles have similar directional orientation to each other and to the article surface 14.
- this coated aluminum article was tested in air using an Amsler wear tester which is described in detail in an article entitled Some Important Variables Encountered in Wear Testson Cast Iron, by D. E. Ackerman, published by the American Society for Testing Materials, 1937, page 24 et seq.
- the machine has two parallel shafts on which'were placed the coated aluminum article and another aluminum d-isc having the samecomposition and dimensions as the aluminum article which was coated in the manner hereinbefore set forth. The peripheries of the coated aluminum article and disc were made to contact each other.
- the gearing was set for this example, and for the other tests hereinafter set forth, so that one shaft turned at 440 revolutions per minute (r.p.m.), while the other turned in the same direction at 400 r.p.m.
- the aluminum article and disc were operated under conditions of slip with respect to' each other at the Wearing surfaces, i.e., equivalent tov a speed of travel of about 512 feet per minute.
- the aluminum article and disc were rst run in dynamic contact with each other at a bearing stress of 10,000 pounds per square inch'(p.s.i.) for 24 hours, which is equivalent to a surface travel of about 737,000 feet.
- a nickel coating containing 18% silicon carbide having a particle size o f between about 7 microns and about 40 microns was electrodeposited on aluminum.
- the testing of this sample against aluminum was conducted under identical conditions as the example except that the blocks were turbine oil lubricated. The results are reported in FIG. 6. For bearing loads in excess of about 40,000 pounds, the aluminum Wore excessively as illustrated in FIG. 6. In addition, visual examination showed scoring of the aluminum.
- the coating of the present invention has superior Wear characteristics when compared with other coatings as demonstrated by the :foregoing tests and as illustrated in FIGS. 2 to 7 inclusive.
- the electrodeposited coatings of the present invention range in thickness from very thin, eg., at least about 1 mil, to very thick, eg., about 1 inch or even 11/2 inches.
- the present invention is particularly applicable to the electroplating and/ or electroforming of articles which are to be subjected to extensive wear, e.g., bearings, bearing surfaces, etc.
- the present invention is most advantageously applicable to the formation of coatings which are subjected to wear by dynamic contact with aluminum articles, eg., pistons, piston rings and/ or cylmajor dimension of about 5 microns to about 45 microns inder walls in engines.
- the present invention is applicable to a variety of other uses, c g., film guide for photographicV equipment, etc.'
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE620811D BE620811A (en)) | 1961-07-31 | ||
US128158A US3132927A (en) | 1961-07-31 | 1961-07-31 | Wear-resistant material |
GB26868/62A GB953506A (en) | 1961-07-31 | 1962-07-12 | Improvements relating to electrodeposited wear-resistant materials and coatings |
SE8351/62A SE301575B (en)) | 1961-07-31 | 1962-07-30 | |
FR905540A FR1335223A (fr) | 1961-07-31 | 1962-07-30 | Perfectionnements relatifs aux matériaux et revêtements résistant à l'usure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US128158A US3132927A (en) | 1961-07-31 | 1961-07-31 | Wear-resistant material |
Publications (1)
Publication Number | Publication Date |
---|---|
US3132927A true US3132927A (en) | 1964-05-12 |
Family
ID=22433923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US128158A Expired - Lifetime US3132927A (en) | 1961-07-31 | 1961-07-31 | Wear-resistant material |
Country Status (5)
Country | Link |
---|---|
US (1) | US3132927A (en)) |
BE (1) | BE620811A (en)) |
FR (1) | FR1335223A (en)) |
GB (1) | GB953506A (en)) |
SE (1) | SE301575B (en)) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5062136A (en)) * | 1973-10-05 | 1975-05-28 | ||
US3891542A (en) * | 1973-11-05 | 1975-06-24 | Ford Motor Co | Method for insuring high silicon carbide content in elnisil coatings |
JPS5078821U (en)) * | 1973-11-22 | 1975-07-08 | ||
US3970527A (en) * | 1972-12-18 | 1976-07-20 | Oxy Metal Industries Corporation | Electroformation of the running track of a rotary internal combustion engine |
US20030178314A1 (en) * | 2002-03-21 | 2003-09-25 | United States Steel Corporation | Stainless steel electrolytic coating |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356467A (en) * | 1964-12-28 | 1967-12-05 | Udylite Corp | Article coated with a coelectrodeposit of nickel and plastic particles, an overlayerthereon, and method of making said article |
US4219004A (en) | 1978-11-20 | 1980-08-26 | Chemet Research, Inc. | Flexible, self-supporting blade for cutting electronic crystals and substrates or the like |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2177853A (en) * | 1938-08-09 | 1939-10-31 | Chryaler Corp | Composition of matter and method of making the same |
US2504239A (en) * | 1946-04-12 | 1950-04-18 | Int Nickel Co | Nickel plating |
US2513280A (en) * | 1945-10-31 | 1950-07-04 | Udylite Corp | Electrodeposition of nickel from an acid bath |
US2673480A (en) * | 1944-09-21 | 1954-03-30 | Sk Wellman Co | Apparatus for shaping bimetallic articles |
US2763919A (en) * | 1950-07-28 | 1956-09-25 | Thompson Prod Inc | Coated refractory body |
US2775531A (en) * | 1949-05-10 | 1956-12-25 | Univ Ohio State Res Found | Method of coating a metal surface |
US2799081A (en) * | 1952-09-24 | 1957-07-16 | Gibson Electric Company | Electrical contacts |
US2898279A (en) * | 1956-06-14 | 1959-08-04 | Commw Of Australia | Coating surfaces by employing an electrostatic field |
-
0
- BE BE620811D patent/BE620811A/xx unknown
-
1961
- 1961-07-31 US US128158A patent/US3132927A/en not_active Expired - Lifetime
-
1962
- 1962-07-12 GB GB26868/62A patent/GB953506A/en not_active Expired
- 1962-07-30 SE SE8351/62A patent/SE301575B/xx unknown
- 1962-07-30 FR FR905540A patent/FR1335223A/fr not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2177853A (en) * | 1938-08-09 | 1939-10-31 | Chryaler Corp | Composition of matter and method of making the same |
US2673480A (en) * | 1944-09-21 | 1954-03-30 | Sk Wellman Co | Apparatus for shaping bimetallic articles |
US2513280A (en) * | 1945-10-31 | 1950-07-04 | Udylite Corp | Electrodeposition of nickel from an acid bath |
US2504239A (en) * | 1946-04-12 | 1950-04-18 | Int Nickel Co | Nickel plating |
US2775531A (en) * | 1949-05-10 | 1956-12-25 | Univ Ohio State Res Found | Method of coating a metal surface |
US2763919A (en) * | 1950-07-28 | 1956-09-25 | Thompson Prod Inc | Coated refractory body |
US2799081A (en) * | 1952-09-24 | 1957-07-16 | Gibson Electric Company | Electrical contacts |
US2898279A (en) * | 1956-06-14 | 1959-08-04 | Commw Of Australia | Coating surfaces by employing an electrostatic field |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3970527A (en) * | 1972-12-18 | 1976-07-20 | Oxy Metal Industries Corporation | Electroformation of the running track of a rotary internal combustion engine |
JPS5062136A (en)) * | 1973-10-05 | 1975-05-28 | ||
US3891542A (en) * | 1973-11-05 | 1975-06-24 | Ford Motor Co | Method for insuring high silicon carbide content in elnisil coatings |
JPS5078821U (en)) * | 1973-11-22 | 1975-07-08 | ||
US20030178314A1 (en) * | 2002-03-21 | 2003-09-25 | United States Steel Corporation | Stainless steel electrolytic coating |
Also Published As
Publication number | Publication date |
---|---|
FR1335223A (fr) | 1963-08-16 |
GB953506A (en) | 1964-03-25 |
SE301575B (en)) | 1968-06-10 |
BE620811A (en)) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stankovic et al. | Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles | |
Hamid et al. | Characteristics of electrodeposition of Ni-polyethylene composite coatings | |
Narasimman et al. | Wear and scratch resistance characteristics of electrodeposited nickel-nano and micro SiC composites | |
WO2012145750A2 (en) | Electroplated lubricant-hard-ductile nanocomposite coatings and their applications | |
Medelien | The influence of B4C and SiC additions on the morphological, physical, chemical and corrosion properties of Ni coatings | |
Hamid et al. | Development of electroless nickel–phosphorous composite deposits for wear resistance of 6061 aluminum alloy | |
Walsh et al. | Influence of surfactants on electrodeposition of a Ni-nanoparticulate SiC composite coating | |
KR101153048B1 (ko) | 철-인 전기 도금 전해조 및 방법 | |
Wang et al. | Tribological properties of nanostructured WC/CoNi and WC/CoNiP coatings produced by electro-deposition | |
Ved’ et al. | Functional properties of Fe− Mo and Fe− Mo− W galvanic alloys | |
US3981781A (en) | Electrolytically formed composite coatings | |
Bajwa et al. | Effect of bath ionic strength on adhesion and tribological properties of pure nickel and Ni-based nanocomposite coatings | |
US3132927A (en) | Wear-resistant material | |
Utu et al. | Corrosion and wear properties of Zn-based composite coatings | |
WO1998023444A1 (en) | Lead-free deposits for bearing surfaces | |
Metzger et al. | The deposition of dispersion hardened coatings by means of electroless nickel | |
RU2169798C1 (ru) | Способ получения композиционных покрытий на основе цинка | |
US3904490A (en) | Method of promoting the dispersion of solid particles in an electrolytic bath for composite electroplating of metals | |
Bhalla et al. | Friction and wear characteristics of electrodeposited copper composites | |
Anawe et al. | Impact of applied potential on the structural and non-lubricated wear composite coating in petrochemical industry | |
Fayomi et al. | Properties of Tic/Tib modified Zn–Tic/Tib ceramic composite coating on mild steel | |
JPH11124588A (ja) | 摺動部材 | |
Fayomi et al. | Improving the properties of mild steel by ternary multilayer composite coating via electrodeposition route | |
Sadowska-Mazur et al. | Electrodeposition and properties of tin-nickel/silicon carbide composite coatings | |
Fazel et al. | Influence of Gr and MoS2 Particles on High Temperature Tribological Properties of Ni-SiC Composite Coating |