US3120738A - Ignition system for monopropellant combustion devices - Google Patents

Ignition system for monopropellant combustion devices Download PDF

Info

Publication number
US3120738A
US3120738A US180391A US18039162A US3120738A US 3120738 A US3120738 A US 3120738A US 180391 A US180391 A US 180391A US 18039162 A US18039162 A US 18039162A US 3120738 A US3120738 A US 3120738A
Authority
US
United States
Prior art keywords
oxidizer
monopropellant
pressure
catalyst bed
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US180391A
Inventor
James E Webb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US180391A priority Critical patent/US3120738A/en
Application granted granted Critical
Publication of US3120738A publication Critical patent/US3120738A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/95Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by starting or ignition means or arrangements

Definitions

  • Monopropellant devices such as rocket motors, utilize a porous catalyst bed suitably supported in the rocket motor chamber.
  • a monopropellant is forced into the catalyst bed, and when ignited, continues to decompose and generate a pressure until the supply is terminated.
  • This invention is directed to ignition systems for effecting ignition and decomposition of the monopropellant and included in the object of this invention are:
  • FIGURE 1 is a diagrammatical view showing a conventional monopropellant rocket motor, and monopropellant supply and indicating diagrammatically the ignition means in association therewith.
  • FIGURE 2 is an enlarged, substantially diagrammatical, partially sectional, partially elevation view of the ignition means taken through 22 of FIG. 1.
  • FIGURE 3 is a further enlarged fragmentary sectional view of the pinch tube taken through 33 of FIG. 2.
  • a monopropellant device is a rocket motor 1, having a cylindrical motor chamber 2, a nozzle 3 at the aft end thereof, and a closed head 4 at its forward end.
  • a porous catalyst bed Suitably supported in the chamber 2 is a porous catalyst bed.
  • a conventional catalyst bed is prepared from small porous cylinders of alumina (A1 and equimolal solutions of the nitrates of iron (Fe(NO -9H O) nickel (Ni(NO -6H O), and cobalt (CO(NO3)2'6H20) impregnating and coating the cylinders. The solution is evaporated to dryness and heated until evolution of nitrogen dioxide (N0 is terminated leaving oxides of the iron, nickel and cobalt.
  • the head 4 is provided with one or more nozzles 5 connected through a control valve 6 to a supply line 7.
  • the supply line is connected with a monopropellant supply tank 8, filled with a monopropellant such as hydrozene (NJ-I
  • the monopropellant is pressurized by an inert pressure gas such as nitrogen (N supplied from a pressure tank, not shown, through a supply line 9 and pressure regulator 10.
  • the hydrazine reacts with the oxides of iron, nickel and cobalt so that they are reduced to free metals.
  • an oxidizer nozzle 11 Fitted in the head 4 is an oxidizer nozzle 11 connected with an oxidizer tube 12 through a control valve 13.
  • oxidizer tube is dimensioned to receive a predetermined charge of an oxidizer, such as nitrogen tetroxide, chlorine trifiuoride or nitric acid.
  • the amount of oxidizer contained in the tube 12 is calculated to afford positive ignition of the catalyst bed when discharged into the rocket motor chamber 2.
  • the extended end of the tube 12 is joined to a flange plate 14 which caps an end wall 15 'of a pressure vessel 16.
  • the confronting sides of the plate 14 and the end wall 15 have confronting conical cavities 17 and 18.
  • a rupture diaphragm 19 Interposed between the cavities and clamped between the flange plate 14 and end wall 15 is a rupture diaphragm 19.
  • the cavity 17 communicates with the tube 12; whereas, the cavity 18 communicates with the interior of the pressure vessel 16 through an orifice 19.
  • a small tube 20 communicates initially between the interior of the pressure vessel 16 and a radial passage 21 communicating with the cavity 17 and oxidizer tube 12.
  • the tube 21) is adapted to be sealed by being pinched or flattened as indicated by 22 in FIG. 3.
  • a charge of oxidizer is introduced into the tube 12, for example a supply port, not shown, similar to the passage 21 in the plate 14.
  • the pressure vessel 16 is charged with an inert gas such as nitrogen. The gas pressurizes the tube 12 also so that the pressure on opposite sides of the rupture diaphragm 19 is equalized.
  • the connecting tube is sealed by being flattened as indicated by 22.
  • the supply tank 8 and supply line 7 are filled with a monopropellant, and are pressurized to a pressure determined by the regnlator It).
  • the control valves d and 13 which may be solenoid operated, are opened.
  • the monopropellant flows from the supply tank under a constant pressure determined by the regulator 1h.
  • the opening of the valve 13 first bleeds the small quantity of inert pressure gas sufficiently to cause the diaphragm to rupture whereupon the inert gas in the pressure vessel functions to drive the oxidizer forcibly into the motor chamber.
  • the oxidizer on entering the motor chamber, ignites the catalyst and causes the monopropellant to decompose. Once started, the monopropellant continues to decompose as long as the supply lasts.
  • An ignition means for monopropellant devices having a catalyst bed, and means for introducing on command, a monopropellant therein, said ignition means comprising: a pressure container for a charge of an oxidizer; a pressure vessel for a charge of inert propelling gas; a rupture diaphragm for separating said vessel and container; means for initially equalizing pressures in said vessel and container to provide an initial condition of zero pressure differential across said diaphragm; means for introducing said oxidizer into said catalyst bed; and a valve interposed between said introducing means and pressure container, operable on opening to reduce the pressure in said oxidizer container thereby to cause rupture of said diaphragm and propulsion of said oxidizer into said catalyst bed.
  • An ignition means for monopropellant devices having a chamber containing a catalyst bed, and valve means for introducing a monopropellant therein, said ignition means comprising: valve means for controlling introduction of an oxidizer into said catalyst bed chamber; means defining a compartment initially closed by said valve for receiving a pressurized charge of oxidizer; means defining a chamber for an inert pressure gas, said oxidizer and inert gas being pressurized to essentially the same pressure; means initially isolating said oxidizer compartment and inert gas chamber, said means being operable on opening of said valve means to release said inert gas into said oxidizer compartmentthereby to drive said oxidizer from said compartment into said catalyst bed chamber.
  • An ignition means for monopropellant devices having a chamber containing a catalyst bed, and valve means for introducing a monopropellant therein, said ignition means comprising: valve means for controlling introduction of an oxidizer into said catalyst bed chamber; means defining a compartment intially closed by said valve for receiving a charge of oxidizer; means defining a chamber for an inert pressure gas; a rupture diaphragm initially isolating said oxidizer compartment and inert gas chamber; an equalizer tube initially bypassing said diaphragm whereby on pressurizing said chamber with inert gas, said compartment is likewise pressurized to equalize the pressure across said diaphragm; said diaphragm adapted on opening of said valve means to rupture, thereby to cause said inert gas to propel said oxidizer into said catalyst bed chamber.
  • a monopropellant rocket motor comprising: a rocket motor having a motor chamber and nozzle; a catalyst bed in said motor chamber; a first means containing a pressurized supply of mcnopropellant; a first valve means responsive to remote command for connecting said first means with said motor chamber to introduce said monopropellant therein; a second means containing a pressurized charge of oxidizer; an inert gas pressure vessel; a rupture diaphragm initially isolating said second means and pressure vessel; and a second valve responsive to remote command for opening said second means to said motor chamber thereby to reduce the pressure therein and cause said diaphragm to rupture, whereby said inert gas propels said oxidizer into said motor chamber.

Description

Feb. '11, 1964 J. E. WEBB, ADMINISTRATOR OF THE 3,120,733
- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION IGNITION SYSTEM FOR HONOPROPELLANT COMBUSTION DEVICES Filed March 3, 1962 FIG.
PRESSURE GAS (N2) I PRESSURE FIG. 2
REGULATOR SUPPLY TANK (N2H4) FIG. 3
INVENTOR. JOHN J. CHILENSKI ATTORNEY United States Patent Ofiice 3,12,738 Patented Feb. 11, 1964 IGNITION SYSTEM FOR MONOPROPELLANT COMBUSTION DEVICES James E. Webb, administrator of the National Aeronautics and Space Administration, with respect to an invention of John J. Chilenski Filed Mar. 3, 1962, Ser. No. 180,391 4 Claims. (Cl. fill-35.6)
Monopropellant devices, such as rocket motors, utilize a porous catalyst bed suitably supported in the rocket motor chamber. A monopropellant is forced into the catalyst bed, and when ignited, continues to decompose and generate a pressure until the supply is terminated. This invention is directed to ignition systems for effecting ignition and decomposition of the monopropellant and included in the object of this invention are:
First, to provide an ignition system for monopropellant devices wherein a predetermined charge of an oxidizer is introduced into the combustion chamber of the devicx: simultaneously with initial introduction of the monopropellant to produce a hypergolic action which instantly ignites the catalyst bed so as to ignite and sustain decomposition of the monopropellant.
Second, to provide an ignition system of this class which is lightweight and free of moving parts, except for valves, thereby providing an ignition system which is particularly adapted for use in rocket vehicles.
Third, to provide an ignition system of this class which is capable of operation irrespective of gravity conditions or atmospheric pressure, including conditions of zero gravity and zero pressure.
With the above and other objects in view as may appear hereinafter, reference is directed to the accompanying drawings, in which:
FIGURE 1 is a diagrammatical view showing a conventional monopropellant rocket motor, and monopropellant supply and indicating diagrammatically the ignition means in association therewith.
FIGURE 2 is an enlarged, substantially diagrammatical, partially sectional, partially elevation view of the ignition means taken through 22 of FIG. 1.
FIGURE 3 is a further enlarged fragmentary sectional view of the pinch tube taken through 33 of FIG. 2.
Illustrative of a monopropellant device is a rocket motor 1, having a cylindrical motor chamber 2, a nozzle 3 at the aft end thereof, and a closed head 4 at its forward end. Suitably supported in the chamber 2 is a porous catalyst bed. A conventional catalyst bed is prepared from small porous cylinders of alumina (A1 and equimolal solutions of the nitrates of iron (Fe(NO -9H O) nickel (Ni(NO -6H O), and cobalt (CO(NO3)2'6H20) impregnating and coating the cylinders. The solution is evaporated to dryness and heated until evolution of nitrogen dioxide (N0 is terminated leaving oxides of the iron, nickel and cobalt.
The head 4 is provided with one or more nozzles 5 connected through a control valve 6 to a supply line 7. The supply line is connected with a monopropellant supply tank 8, filled with a monopropellant such as hydrozene (NJ-I The monopropellant is pressurized by an inert pressure gas such as nitrogen (N supplied from a pressure tank, not shown, through a supply line 9 and pressure regulator 10. The structure thus far described may be considered as conventional.
The hydrazine reacts with the oxides of iron, nickel and cobalt so that they are reduced to free metals.
Fitted in the head 4 is an oxidizer nozzle 11 connected with an oxidizer tube 12 through a control valve 13. The
oxidizer tube is dimensioned to receive a predetermined charge of an oxidizer, such as nitrogen tetroxide, chlorine trifiuoride or nitric acid. The amount of oxidizer contained in the tube 12 is calculated to afford positive ignition of the catalyst bed when discharged into the rocket motor chamber 2. The extended end of the tube 12 is joined to a flange plate 14 which caps an end wall 15 'of a pressure vessel 16. The confronting sides of the plate 14 and the end wall 15 have confronting conical cavities 17 and 18. Interposed between the cavities and clamped between the flange plate 14 and end wall 15 is a rupture diaphragm 19. The cavity 17 communicates with the tube 12; whereas, the cavity 18 communicates with the interior of the pressure vessel 16 through an orifice 19.
A small tube 20 communicates initially between the interior of the pressure vessel 16 and a radial passage 21 communicating with the cavity 17 and oxidizer tube 12. The tube 21) is adapted to be sealed by being pinched or flattened as indicated by 22 in FIG. 3.
Operation of the ignition device is as follows:
With the control valve 13 closed, a charge of oxidizer is introduced into the tube 12, for example a supply port, not shown, similar to the passage 21 in the plate 14. While the valve 13 remains closed, but with the connecting tube 20 open, the pressure vessel 16 is charged with an inert gas such as nitrogen. The gas pressurizes the tube 12 also so that the pressure on opposite sides of the rupture diaphragm 19 is equalized. After the pressure vessel is charged, the connecting tube is sealed by being flattened as indicated by 22.
The supply tank 8 and supply line 7 are filled with a monopropellant, and are pressurized to a pressure determined by the regnlator It). On command, the control valves d and 13, which may be solenoid operated, are opened. The monopropellant flows from the supply tank under a constant pressure determined by the regulator 1h. The opening of the valve 13 first bleeds the small quantity of inert pressure gas sufficiently to cause the diaphragm to rupture whereupon the inert gas in the pressure vessel functions to drive the oxidizer forcibly into the motor chamber. The oxidizer, on entering the motor chamber, ignites the catalyst and causes the monopropellant to decompose. Once started, the monopropellant continues to decompose as long as the supply lasts.
It will be observed that flow of the oxidizer is not de pendent upon gravitational forces, nor is it affected by external pressures. Consequently, the oxidizer may be depended upon to be discharged instantaneously on command into the rocket motor chamber irrespectively of these conditions.
Although I have shown and described a particular embodiment of my invention by way of illustration, the invention is not limited thereto, but includes the constructions, combinations, and arrangements set forth in the appended claims.
I claim:
1. An ignition means for monopropellant devices, having a catalyst bed, and means for introducing on command, a monopropellant therein, said ignition means comprising: a pressure container for a charge of an oxidizer; a pressure vessel for a charge of inert propelling gas; a rupture diaphragm for separating said vessel and container; means for initially equalizing pressures in said vessel and container to provide an initial condition of zero pressure differential across said diaphragm; means for introducing said oxidizer into said catalyst bed; and a valve interposed between said introducing means and pressure container, operable on opening to reduce the pressure in said oxidizer container thereby to cause rupture of said diaphragm and propulsion of said oxidizer into said catalyst bed.
2. An ignition means for monopropellant devices having a chamber containing a catalyst bed, and valve means for introducing a monopropellant therein, said ignition means comprising: valve means for controlling introduction of an oxidizer into said catalyst bed chamber; means defining a compartment initially closed by said valve for receiving a pressurized charge of oxidizer; means defining a chamber for an inert pressure gas, said oxidizer and inert gas being pressurized to essentially the same pressure; means initially isolating said oxidizer compartment and inert gas chamber, said means being operable on opening of said valve means to release said inert gas into said oxidizer compartmentthereby to drive said oxidizer from said compartment into said catalyst bed chamber.
3. An ignition means for monopropellant devices having a chamber containing a catalyst bed, and valve means for introducing a monopropellant therein, said ignition means comprising: valve means for controlling introduction of an oxidizer into said catalyst bed chamber; means defining a compartment intially closed by said valve for receiving a charge of oxidizer; means defining a chamber for an inert pressure gas; a rupture diaphragm initially isolating said oxidizer compartment and inert gas chamber; an equalizer tube initially bypassing said diaphragm whereby on pressurizing said chamber with inert gas, said compartment is likewise pressurized to equalize the pressure across said diaphragm; said diaphragm adapted on opening of said valve means to rupture, thereby to cause said inert gas to propel said oxidizer into said catalyst bed chamber.
4. A monopropellant rocket motor, comprising: a rocket motor having a motor chamber and nozzle; a catalyst bed in said motor chamber; a first means containing a pressurized supply of mcnopropellant; a first valve means responsive to remote command for connecting said first means with said motor chamber to introduce said monopropellant therein; a second means containing a pressurized charge of oxidizer; an inert gas pressure vessel; a rupture diaphragm initially isolating said second means and pressure vessel; and a second valve responsive to remote command for opening said second means to said motor chamber thereby to reduce the pressure therein and cause said diaphragm to rupture, whereby said inert gas propels said oxidizer into said motor chamber.
Malick May 1, 1956 Allen Feb. 21, 1961

Claims (1)

1. AN IGNITION MEANS FOR MONOPROPELLANT DEVICES, HAVING A CATALYST BED, AND MEANS FOR INTRODUCING ON COMMAND, A MONOPROPELLANT THEREIN, SAID IGNITION MEANS COMPRISING: A PRESSURE CONTAINER FOR A CHARGE OF AN OXIDIZER; A PRESSURE VESSEL FOR A CHARGE OF INERT PROPELLING GAS; A RUPTURE DIAPHRAGM FOR SEPARATING SAID VESSEL AND CONTAINER; MEANS FOR INITIALLY EQUALIZING PRESSURES IN SAID VESSEL AND CONTAINER TO PROVIDE AN INITIAL CONDITION OF ZERO PRESSURE DIFFERENTIAL ACROSS SAID DIAPHRAGM; MEANS FOR INTRODUCING SAID OXIDIZER INTO SAID CATALYST BED; AND A VALVE INTRPOSED BETWEEN SAID INTRODUCING MEANS AND PRESSURE CONTAINER, OPERABLE ON OPENING TO REDUCE THE PRESSURE IN SAID OXIDIZER CONTAINER THEREBY TO CAUSE RUPTURE OF SAID DIAPHRAGM AND PROPULSION OF SAID OXIDIZER INTO SAID CATALYST BED.
US180391A 1962-03-03 1962-03-03 Ignition system for monopropellant combustion devices Expired - Lifetime US3120738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US180391A US3120738A (en) 1962-03-03 1962-03-03 Ignition system for monopropellant combustion devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US180391A US3120738A (en) 1962-03-03 1962-03-03 Ignition system for monopropellant combustion devices

Publications (1)

Publication Number Publication Date
US3120738A true US3120738A (en) 1964-02-11

Family

ID=22660282

Family Applications (1)

Application Number Title Priority Date Filing Date
US180391A Expired - Lifetime US3120738A (en) 1962-03-03 1962-03-03 Ignition system for monopropellant combustion devices

Country Status (1)

Country Link
US (1) US3120738A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229463A (en) * 1963-06-26 1966-01-18 Hugh L Dryden Trajectory-correction propulsion system
US3298182A (en) * 1964-06-24 1967-01-17 James E Webb Ignition means for monopropellant
US3303651A (en) * 1963-05-29 1967-02-14 Trw Inc Nuclear isotope monopropellant hydrazine engine
US3732693A (en) * 1970-11-27 1973-05-15 Chin Chu Ju Controllable solid propulsion system
US3792669A (en) * 1972-02-02 1974-02-19 Nissan Motor Hybrid fuel burning system
US4385489A (en) * 1978-07-13 1983-05-31 British Aerospace Public Limited Company Fuel systems for gas generators
US5220110A (en) * 1989-05-09 1993-06-15 Imperial Chemical Industries Plc Catalysts
WO2012145063A1 (en) 2011-04-19 2012-10-26 Raytheon Company Closed gas generator and micro power unit including the same
EP3835569A1 (en) * 2019-12-12 2021-06-16 Centre National d'Etudes Spatiales Igniting device for rocket engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743577A (en) * 1952-06-02 1956-05-01 Phillips Petroleum Co Rocket engine control
US2972227A (en) * 1956-07-05 1961-02-21 Bristol Siddeley Engines Ltd Means for supplying a rocket motor with liquid fuel and concentrated hydrogen peroxide as propellant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743577A (en) * 1952-06-02 1956-05-01 Phillips Petroleum Co Rocket engine control
US2972227A (en) * 1956-07-05 1961-02-21 Bristol Siddeley Engines Ltd Means for supplying a rocket motor with liquid fuel and concentrated hydrogen peroxide as propellant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303651A (en) * 1963-05-29 1967-02-14 Trw Inc Nuclear isotope monopropellant hydrazine engine
US3229463A (en) * 1963-06-26 1966-01-18 Hugh L Dryden Trajectory-correction propulsion system
US3298182A (en) * 1964-06-24 1967-01-17 James E Webb Ignition means for monopropellant
US3732693A (en) * 1970-11-27 1973-05-15 Chin Chu Ju Controllable solid propulsion system
US3792669A (en) * 1972-02-02 1974-02-19 Nissan Motor Hybrid fuel burning system
US4385489A (en) * 1978-07-13 1983-05-31 British Aerospace Public Limited Company Fuel systems for gas generators
US5220110A (en) * 1989-05-09 1993-06-15 Imperial Chemical Industries Plc Catalysts
WO2012145063A1 (en) 2011-04-19 2012-10-26 Raytheon Company Closed gas generator and micro power unit including the same
EP2699780A1 (en) * 2011-04-19 2014-02-26 Raytheon Company Closed gas generator and micro power unit including the same
EP2699780A4 (en) * 2011-04-19 2014-12-10 Raytheon Co Closed gas generator and micro power unit including the same
EP3835569A1 (en) * 2019-12-12 2021-06-16 Centre National d'Etudes Spatiales Igniting device for rocket engine
FR3104647A1 (en) * 2019-12-12 2021-06-18 Centre National d'Études Spatiales Rocket engine ignition device

Similar Documents

Publication Publication Date Title
US3120738A (en) Ignition system for monopropellant combustion devices
US2927398A (en) Multiple stage rocket
US2753801A (en) Combination liquid and solid propellent rocket
US2406926A (en) System of jet propulsion
US3732693A (en) Controllable solid propulsion system
US3807657A (en) Dual thrust level monopropellant spacecraft propulsion system
US2398201A (en) Motor
US3098353A (en) Rocket engine propellant feeding and control system
US3350887A (en) Two-stage rocket propulsion system
US5640844A (en) Pressurization and control devices using high vapor pressure liquids
GB1102625A (en) Stabilisation and guidance device for sounding rockets and rocket-propelled ballistic vehicles
US5636513A (en) Two stage pressurization system for aerospace applications
DE3001270A1 (en) ROCKET ENGINE
US2872846A (en) High velocity gun
US3646597A (en) Variable thrust propulsion engine
US2789505A (en) Liquid propellent rocket
US3230704A (en) Rocket engine
US2968454A (en) Rocket control system
US3100963A (en) Control apparatus
US3842598A (en) Rocket power plant
Chilenski Ignition system for monopropellant combustion devices Patent
US5697212A (en) Rocket propellant tank self-pressurization
US3115887A (en) Missile roll control valve system
US5481869A (en) Two stage pressurization system for aerospace applications
US3231002A (en) Pulsed chamber pressurization system