US3105821A - Electrostatic printing - Google Patents

Electrostatic printing Download PDF

Info

Publication number
US3105821A
US3105821A US6633A US663360A US3105821A US 3105821 A US3105821 A US 3105821A US 6633 A US6633 A US 6633A US 663360 A US663360 A US 663360A US 3105821 A US3105821 A US 3105821A
Authority
US
United States
Prior art keywords
developer
particles
weight
color
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US6633A
Inventor
Johnson Sigurd William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US6633A priority Critical patent/US3105821A/en
Priority to US203721A priority patent/US3150976A/en
Application granted granted Critical
Publication of US3105821A publication Critical patent/US3105821A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • G03G9/132Developers with toner particles in liquid developer mixtures characterised by polymer components obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/125Developers with toner particles in liquid developer mixtures characterised by the liquid

Definitions

  • This invention relates generally to electrostatic printing. More particularly, it relates to improved materials and methods for developing electrostatic images.
  • electrostatic images are produced on an insulating surface. Such images comprise a pattern of electrostatic charges on the surface. Visible images are commonly produced therefrom by cascading across the surface a dry mixture of finelydivided developer particles and substantially larger carrier particles. When the developer particles are triboelectrically charged in the opposite polarity to the electrostatic charges, they deposit in charged areas to produce a visible image in substantial configuration with the pattern of charges. When the developer particles have the same polarity as the electrostatic charges, a visible image is produced in reversed configuration with respect to the pattern of charges.
  • hydrocarbon liquid developer compositions are suitable for many purposes, their use in repetitive processes such as are employed in color printing presents diificulties.
  • One such difficulty is encountered when images are developed on a photoconductive coating such as is described in the Young and Greig publication op. cit.
  • Most hydrocarbons are solvents for the binder materials commonly used in such coatings and when a hydrocarbon dispersion is applied to the coating a portion thereof is removed or softened.
  • Most hydrocarbon liquids are also solvent for developer powders which include resins, waxes, or organic pigments. When solvent action is severe, no useful result can be obtained. Even when the solvent action is less severe, or absent altogether, difliculties are encountered in producing an image having proper resolution, saturation of colors, and mixing of colors.
  • the tacky developer particles will tend to smear during handling. Fixing may be accomplished with a fixative spray or, when thermoplastic developer particles are employed, by heating. When hydrocarbon carrier liquids are employed, heating can be extremely dangerous in view of the fire hazard involved. In addition to the fire hazard, whether heated or not, most hydrocarbon liquids have an objectionable odor and the vapors thereof are generally toxic.
  • developer dispersions are known which obviate most of the disadvantages attendant the use of hydrocarbon dispersions.
  • One is a dispersion of developer particles in trichlorotrifluoroethane.
  • Another is a dispersion of developer particles in dimethylpolysi-loxane. Both of the latter dispersions provide improved results and many advantages over hydrocarbon dispersions.
  • development must be accomplished in a short time, under some circumstances.
  • the ethane fluid when images are to be devel oped on electrophotognaphic paper having thereon a coating of photoconductive zinc oxide in a resinous silicone binder, the ethane fluid will tend to soften the binder when in contact'therewith for more than about one second and will tend to remove portions of the binder when in contact therewith for more than about five seconds. While images can be readily produced within such times, there are, of course, applications wherein longer development times are desirable. Polysiloxane dispersions, while very advantageous for most applications, are not quick drying as are the ethane dispersions. Also, the polysiloxane liquid does not appear to be as electronegative as does the ethane liquid and, hence, requires somewhat longer development times particularly with electropositive developer particles.
  • -It is a further object of this invention to provide improved developer compositions for use with a photoconductive coating which includes an organic binder.
  • the foregoing objects and other advantages are accomplished in accordance with this invention which provides improved dispersion of developer particles in an electrically-insulating liquid.
  • Appropriately colored electroscopic developer particles are dispersed in a carrier solution comprising about 48 to 58 volume percent trichlorotrifluoroethane and about 52 to 42 volume percent dimethylpolysiloxane.
  • the electroscopic developer particles may comprise, for example, up to 6% by weight. Very low concentrations of developer particles are best suited for use in automatic developing apparatus whereas higher concentrations are best suited for hand processing in developer trays.
  • Also contemplated is a method wherein the ethane liquid and polysiloxane liquid are mixed together to provide a carrier solution.
  • Appropriately colored electroscopic developer particles are mixed into the carrier solution to form a developer dispersion. The developer dispersion is then applied to an electrostatic image on an insulating surface to develop thereon a visible image.
  • An unusual feature of the developer compositions of this invention is that the improved results provided thereby are only obtained when the constituents of the carrier solution are mixed substantially in the narrow range of proportions specified. Maximum improvement is attained when the carrier solution is prepared with about 53 volume percent trichlorotrifluoroethane and about 47 volume percent dimethyl polysiloxane. Improved results are particularly evident when images are developed on photoconductive coatings comprising photoconductive zinc oxide dispersed in a resinous binder such as, for example, resinous polysiloxane (silicone resin). When less than 48% ethane liquid is employed, image intensity is objectionably decreased and, when more than 58% is employed, resolution of the image is quite seriously impaired.
  • results obtained with the developer dispersions of this invention indicate that the carrier solution set forth above embodies the best features of both of the ethane and polysiloxane liquids.
  • Development time is equivalent to that required for an ethane dispersion.
  • the solvent power of the ethane liquid appears to be considerably reduced resulting in substantially less softening of resin binders in a photoconductive coating.
  • some resin softening still occurs and, surprisingly enough, produces beneficial results.
  • the developer compositions of this invention provide for enhanced color saturation, color mixing and improved resolution. It is believed that these advantages result from a slight, well controlled, softening of the surface of the binder-photoconductor coating whereby developer particles attracted thereto sink into that surface. When this result is achieved substantially no electrical masking is apparent when one color is overprinted on another. Also, color mixing is more easily and more intimately accomplished.
  • the ethane liquid is a very selective solvent which will not dissolve most resins and waxes and which will only slowly dissolve binder materials such as, for example, resinous polysiloxanes.
  • the ethane liquid has a viscosity of about 0.69 centipoise at room temperature and has an evaporation rate substantially in excess of that of toluene. It is far less toxic than materialssuch as gasoline or carbon tetrachloride, or almost any organic sol vent. It has a flash point in exces of 650 C. Because of its low toxicity and high flash point, it can be handled in ordinary room atmosphere with practically no danger to health and without fire hazard.
  • Dimethyl polysiloxanes have the following structural formula:
  • n may vary from to 2000 and even higher.
  • viscosity may vary from as low as 0.65 centistoke to as high as 1,000,000 centistokes, but for the purpose of the present invention, it is preferred to use only those members of the family of mixtures thereof having a viscosity up to about 3 centistokes at room temperature.
  • This family of liquids comprise poor solvents for organic plastics. They also have relatively high flash points, for example: a dimethyl polysiloxane having a viscosity of 2 centisokes, has a flash point of 175 F. and one of 3 centistokes a flash point of 2-15" F.
  • the solution of ethane liquid and polyisloxane will of course have acdnsiderably higher flash point.
  • the polysiloxanes like the ethane liquid are practically ordorless, nontoxic, hydrophobic, and have excellent dielectric properties.
  • concentrates containing the electroscopic developer particles are useful to first formulate concentrates containing the electroscopic developer particles. These generally comprise 5 to 40 parts by weight of developer particles in about 200 parts by weight of dimethyl polysiloxane having a' viscosity of about 0.6 to about 3 centistokes. This ratio is a convenient one for preparing a concentrate which is to be stored for an extended period or which is to be pro vided to the ultimate user. property of dimethyl polyisloxane evidences itself when An important advantageous developer concentrates are stored for extended periods. Developer particles comprising thermoplastic material,
  • examples of which are provided hereinafter, may be diS-.
  • the concentrate is mixed into the trichlorotrifiuoroethane-dimethyl polysiloxane solution in an amount to provide a concentration of developer particles in the composition of up to about 6% by weight.
  • developer particles are included therein in an amount such as, for example, 0.005 or less part by weight.
  • a composition such as, for example, 'one having therein about 0.2, to 6 parts by Weight of developer particles.
  • developer material suitable for dis persion in dimethyl polysiloxane to form a concentrate or for dispersing in the trichlorotrifluoroethane polysiloxane carrier solution to form developer compositions are as follows:
  • Example 1 BLACK DEVELOPER PARTICLES l
  • a black pigment is prepared by making two solutions; solution one comprises:
  • the mixture is filtered and the filter cake allowed'to dry.
  • the dried filter cake is broken up and dispersed in dimethyl polysiloxane liquid having a viscosity of about 2
  • Example 11 BLACK DEVELOPER PARTICLES 200 parts by weight of Piccolastic Resin 4358A (an elastic thermoplastic resin composed of polymers of styrene,
  • This developer material is prepared by melting the resin and mixing in the other materials. When a uniform mix is obtained, it is cooled, ground to a fine powder and classified to obtain a desired particle size. A convenient particle size is one obtained by screening through a 200 mesh which provides a maximum particle diameter of about 74 microns.
  • This developer material may be dispersed in dimethyl polysiloxane by any of the commonly known techniques to provide a concentrate.
  • Example 111 BLACK DEVELOPER PARTICLES
  • a low-melting point (120 C.) developer material suitable for dispersion in a dimethyl polyslloxane may be prepared as follows:
  • Acrawax C (a synthetic wax, octadecenamide), The Glycol Products Co., Brooklyn, N.Y., melting point between 133 and 140 C.
  • Carnauba wax melting point about 80 C.
  • Polymekon wax (a commercially modified microcrystalline wax of the Warwick Wax Co., N.Y.), melting point about 93 to 127 C.
  • Ultracera amber wax a microcrystalline petroleum wax of the Bareco Wax Co., Barnsdall, Oklahoma, melting point between about 108 and 112 C.
  • Be Square wax white a microcrystalline petroleum wax of the Bareco Wax Co., Barnsdall, Oklahoma, melting point between about 105 and 109 C.
  • Petronauba D wax a microcrystalline petroleum wax of the Bareco Wax Co., melting point about 103 C.
  • Piccolyte S-135 a thermoplastic hydrocarbon of the Pennsylvania Industrial Chemical Co., Clairton, Pa, melting point about 135 C.
  • Colored developer particles will generally include from 0.2 to 12 parts by. weight of a coloring agent for each 100 parts by weight of devel oper particles.
  • Suitable coloring agents include the following:
  • thermoplastic developer materials which comprise coated particles may also be conveniently employed in color printing in accordance with this invention. It is preferred in such cases to incorporate in the particles a core material made up of zinc oxide.
  • the zinc oxide comprises one having a value of surface photoconductivity of at least 10* ohm /square/watt/crn. when subjected to light of a wavelength of about 3900 A.
  • coated zinc oxide developer materials are convenient for use in color processes wherein one color is overprinted over another to provide for color mixing.
  • particles of too large a diameter and which are insulating in character are deposited on an electrostatic image to produce a first color, such particles will inhibit overprinting thereon with another color.
  • developer particles are produced which, when fused to a surface, permit o-verprinting of a'color with another and therefore provide for color mixing.
  • coated zinc oxide particles provide for overprinting.
  • the coating material melts to form a continuous layer adhering to the surface.- After fusing, at least the topmost particles of zinc oxide are left protruding above the layer.
  • photoconductive zinc oxide particles are employed, an image surface is produced which can be charged, exposed and overprinted as easily as an original photoconductive surface.
  • photoconductive developer particles can be very advantageous.
  • Suitable material for color printing include the following:
  • Example IV WHITE DEVELOPER PARTICLES 1 part by weight carnauba wax 2 parts by weight photoconductive zinc oxide The wax is melted and particles of zinc oxide having a particle size from 0.25 to .5 micron mean diameter are added to the melt. Particle size and shape of'the zinc oxide determine to some extent the ratio of the zinc oxide to the coating material. Continuous: stirring of the melt from 15 to 20 minutes is sufiicient to disperse the zinc oxide in the wax if the batch weighs about grams. The mixture is allowed to cool, after which it is reduced to a fine powder and classified as to particle size. A concentrate is then prepared or the powder dispersed in acarrier solution and used directly.
  • Example V BLUE DEVELOPER PARTICLES 20 parts by weight Acrawax C (a synthetic wax, octadecenamide, of the Glyco Products Co., Brooklyn, New York) 30 parts by weight photoconductive zinc oxide 0.3 part by weight calcium stearate (pigment wetting agent) .4 parts by weight Sudan 3 Red, Color Index No. 26,100
  • Wax and silicone resin are melted together. First the zinc oxide and then the coloring agents are stirred into the melt. After a uniform dispersion is obtained, the mixture is cooled, ball milled, and classified as to particle size.
  • PIGMENTS It is also possible to provide concentrates which consist of organic pigments dispersed in dimethyl polysiloxane liquid or developer compositions of the organic pigments in the trichlorotrifiuoroethane polysiloxane solutions.
  • the concentrates comprise up to about 20 parts by weight of pigment the remainder being liquid and compositions up to 6 parts by weight of pigment.
  • the term pigment as employed herein is intended to include coloring agents which are sometimes referred to as dyes but which nevertheless are insoluble in the ethane liquid or the polysiloxane. When used as taught herein these so-called dyes have all the properties and attributes of pigments. Suitable pigments for such purposes include the following:
  • a surfactant solution may be prepared by dispersing 10 grams of Nalcarnine G-14 in grams of toluene and, while mixing, heating the dispersion to dissolve the Nalcamine G-14 in the toluene.
  • Nalcamine 6-14 is a chemical of the type I-(Z-hydroxyethyl) 2 hydrogenated ta1low-2- imidazoline (National Aluminate Corp., Chicago, Illinois).
  • the Nalcamine G-14 solution is added to pigment dispersions before they are ball milled in the polysiloxane to form concentrates.
  • Such a surfactant when applied, for example, to a red pyrazalone pigment substantially enhances the electropositive nature thereof.
  • any of the foregoing developer compositions may be applied to an electrostatic image consisting of a pattern of negative electrostatic charges. Particles suspended in the carrier liquid are attracted by the negative charges and deposited on the pattern of such charges. In such a process, these compositions therefore constitute direct developer compositions.
  • compositions When the compositions are employed to develop electrostatic images consisting of patterns of positive electrostatic charges they will be repelled by the charges and will deposit in non-charged areas of the electrostatic image to produce a reverse visible image and hence can be called reverse developer compositions in such processes.
  • REVERSAL TYPE POWDERS This invention also provides a developer composition which is capable of producing reverse images. By this is meant that when the composition is applied to an electrostatic image consisting of a pattern of negative electrostatic charges, the developer material will adhere in non-charged areas of the image rather than in the charged areas thereof.
  • a developer composition may be prepared by dispersing a pigment in a binder material such as one which is predominantly comprised of polyvinyl chloride.
  • Example VII BLACK REVERSAL PARTICLES 4 grams carbon black 8 30 grams dimethyl polysiloxane, viscosity about 2 centistokes The carbon black is dispersed in the polysiloxane and the dispersion ball milled in a 2 ounce glass jar with steel balls for about 40 hours.
  • the reversal type developer composition is then made up as follows:
  • Color dispersions may be prepared in a like manner employing most of the pigments discussed heretofore- This mixture is bfll milled for about 32 hours.
  • Example IX YELLOW REVERSAL PARTICLES 14 grams Vinylite VYNV 2 grams Hansa Yellow G 40 grams dimethyl polysiloxane, viscosity about 2 centistokes Preparation the same as for Example VIII.
  • Example X BLUE REVERSAL PARTICLES 12 grams Vinylite VYNV" 2 grams Patent Blue 30 grams dimethyl polysiloxane, viscosity about 2 centistokes Preparation the same as in Example VIII.
  • the methods comprise applying the developer composition to the electrostatic image by such means as, for example, flowing across the image, spraying, application with a roller or by immersing the image in a tray containing the liquid composition, by electrophotographically producing a plurality of successive electrostatic images and developing with different colored particle compositions a composite color image is produced.
  • the permanence of the final print may be enhanced by a fixing procedure.
  • Thermoplastic developer particles can be fused to the surface of the photoconductive material by heat.
  • a fixative may be applied to the print. polyisobutyl methacrylate dissolved in trichlorotrifiuoroethane. The fixative can be applied in any known manner. 1
  • a liquid carrier capable of having dispersed therein a finely-divided developer substance to provide a developer composition for electrostatic printing; said carrier consisting essentially of a solution of about 48 to 58% by volume trichlorotrifluoroethane and about 52 to 42% by volume dimethyl polysiloxane, the latter having a viscosity of from about 0.6 to about 3.0 ccntistokes.
  • liquid carrier of claim 1 consisting essentially of about 53% by volume trichlorotrifluoroethane and about 47% by volume of dimethyl polysiloxane.
  • a convenient fixative comprises 3.
  • a developer composition for electrostatic printing comprising a dispersion of electroscopic particles having a diameter not greater than about 24 microns in a liquid carrier solution consisting essentially of about 48 to 58% by volume of trichlorotrifiuoroethane and about 52 to 42% by volume of dimethyl polysiloxane the latter having a viscosity of between about 0.6 and 3 oentistokes, the concentration of said particles in said composition being up to about 6.0% by weight.
  • composition of claim 3 wherein said particles comprise pigmented thermoplastic material.
  • composition of claim 3 wherein said carrier solution consists essentially of about 53% by volume of trichlorotrifluoroethane and about 47% by volume of dimethylpolysiloxane.
  • a developer composition for electrostatic printing comprising a dispersion of electroscopic particles in a liquid carrier solution, each said particle comprising a core material of photoconductive zinc oxide coated with a pigmented electroscopic resinous material, said solution consisting essentially of about 48 to 58% by volume of trichlorotrifluoroethane and about 52 to 42% by volume of dimethyl polysiloxane having a viscosity of from about 0.6 to about 3.0 centistokes, said particles comprising up to about 6.0% by weight of said composition.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Developers In Electrophotography (AREA)

Description

United States Patent 3,iii5,82i ELECTROSEA'HC ransrmc Sigurd William Eohnson, Oairiyn, N.J., assignor to Radio Corporation of America, a corporation of Delaware No Drawing. Filed Feb. 4, 1964), Ser. No. 6,633 19 Claims. (Cl. 252.62.l)
This invention relates generally to electrostatic printing. More particularly, it relates to improved materials and methods for developing electrostatic images.
In the art of electrostatic printing, electrostatic images are produced on an insulating surface. Such images comprise a pattern of electrostatic charges on the surface. Visible images are commonly produced therefrom by cascading across the surface a dry mixture of finelydivided developer particles and substantially larger carrier particles. When the developer particles are triboelectrically charged in the opposite polarity to the electrostatic charges, they deposit in charged areas to produce a visible image in substantial configuration with the pattern of charges. When the developer particles have the same polarity as the electrostatic charges, a visible image is produced in reversed configuration with respect to the pattern of charges.
The foregoing method of developing electrostatic images is described in Electrofax Direct Electrophotographic Printing on Paper, by C. J. Young and H. G. Greig, RCA Review, December 1954, vol. XV, No. 4. Also described in that publication are other types of development such as: powder cloud, liquid mist and magnetic brush types.
Recently, a so-called liquid process for developing electrostatic images has been proposed in which the solid developer particles are suspended in an insulating hydrocarbon carrier liquid. Deposition of the developer particles on the charge image is an example of the phenomenon known as electrophoresis or catephoresis. A liquid developer process for charge images is described in greater detail by K. A. Metcalfe and R. J. Wright in a paper entitled Xerography, published in the Journal of the Oil and Colour Chemists Association, November 1956, volume 39, No. 11, London, England.
Although the above-mentioned hydrocarbon liquid developer compositions are suitable for many purposes, their use in repetitive processes such as are employed in color printing presents diificulties. One such difficulty is encountered when images are developed on a photoconductive coating such as is described in the Young and Greig publication op. cit. Most hydrocarbons are solvents for the binder materials commonly used in such coatings and when a hydrocarbon dispersion is applied to the coating a portion thereof is removed or softened. Most hydrocarbon liquids are also solvent for developer powders which include resins, waxes, or organic pigments. When solvent action is severe, no useful result can be obtained. Even when the solvent action is less severe, or absent altogether, difliculties are encountered in producing an image having proper resolution, saturation of colors, and mixing of colors. Also, unless the image developed with such a hydrocarbon dispersion is fixed in some manner, the tacky developer particles will tend to smear during handling. Fixing may be accomplished with a fixative spray or, when thermoplastic developer particles are employed, by heating. When hydrocarbon carrier liquids are employed, heating can be extremely dangerous in view of the fire hazard involved. In addition to the fire hazard, whether heated or not, most hydrocarbon liquids have an objectionable odor and the vapors thereof are generally toxic.
Other developer dispersions are known which obviate most of the disadvantages attendant the use of hydrocarbon dispersions. One is a dispersion of developer particles in trichlorotrifluoroethane. Another is a dispersion of developer particles in dimethylpolysi-loxane. Both of the latter dispersions provide improved results and many advantages over hydrocarbon dispersions. However, with respect to the ethane liquid, development must be accomplished in a short time, under some circumstances. For example, when images are to be devel oped on electrophotognaphic paper having thereon a coating of photoconductive zinc oxide in a resinous silicone binder, the ethane fluid will tend to soften the binder when in contact'therewith for more than about one second and will tend to remove portions of the binder when in contact therewith for more than about five seconds. While images can be readily produced within such times, there are, of course, applications wherein longer development times are desirable. Polysiloxane dispersions, while very advantageous for most applications, are not quick drying as are the ethane dispersions. Also, the polysiloxane liquid does not appear to be as electronegative as does the ethane liquid and, hence, requires somewhat longer development times particularly with electropositive developer particles.
Accordingly, it is a general object of this invention to provide improved compositions of matter for developing electrostatic images.
It is a further object of this invention to provide improved relatively non-toxic and non-inflammable developer compositions.
-It is a further object of this invention to provide improved developer compositions for use with a photoconductive coating which includes an organic binder.
It is another object of this invention to provide improved developer compositions which when used with a photoconductive coating which includes an organic binder, produces a slight controlled softening of the exposed surface of the coating resulting in enhanced picture quality.
It is a still further object of this invention to provide improved developer compositions which, in the development of electrostatic image, will provide visible color images of improved resolution, color saturation and color mixing.
It is yet another object of this invention to provide an improved developer composition which will produce a visible image when applied to a negative electrostatic image, said visible image being in reverse configuration with respect to the negative electrostatic image.
It is still a further object of this invention to provide improved methods for developing electrostatic images.
The foregoing objects and other advantages are accomplished in accordance with this invention which provides improved dispersion of developer particles in an electrically-insulating liquid. Appropriately colored electroscopic developer particles are dispersed in a carrier solution comprising about 48 to 58 volume percent trichlorotrifluoroethane and about 52 to 42 volume percent dimethylpolysiloxane. In the developer dispersion or composition the electroscopic developer particles may comprise, for example, up to 6% by weight. Very low concentrations of developer particles are best suited for use in automatic developing apparatus whereas higher concentrations are best suited for hand processing in developer trays. Also contemplated is a method wherein the ethane liquid and polysiloxane liquid are mixed together to provide a carrier solution. Appropriately colored electroscopic developer particles are mixed into the carrier solution to form a developer dispersion. The developer dispersion is then applied to an electrostatic image on an insulating surface to develop thereon a visible image.
An unusual feature of the developer compositions of this invention is that the improved results provided thereby are only obtained when the constituents of the carrier solution are mixed substantially in the narrow range of proportions specified. Maximum improvement is attained when the carrier solution is prepared with about 53 volume percent trichlorotrifluoroethane and about 47 volume percent dimethyl polysiloxane. Improved results are particularly evident when images are developed on photoconductive coatings comprising photoconductive zinc oxide dispersed in a resinous binder such as, for example, resinous polysiloxane (silicone resin). When less than 48% ethane liquid is employed, image intensity is objectionably decreased and, when more than 58% is employed, resolution of the image is quite seriously impaired.
Results obtained with the developer dispersions of this invention indicate that the carrier solution set forth above embodies the best features of both of the ethane and polysiloxane liquids. Development time is equivalent to that required for an ethane dispersion. The solvent power of the ethane liquid appears to be considerably reduced resulting in substantially less softening of resin binders in a photoconductive coating. However, it is believed that some resin softening still occurs and, surprisingly enough, produces beneficial results. As mentioned heretofore, the developer compositions of this invention provide for enhanced color saturation, color mixing and improved resolution. It is believed that these advantages result from a slight, well controlled, softening of the surface of the binder-photoconductor coating whereby developer particles attracted thereto sink into that surface. When this result is achieved substantially no electrical masking is apparent when one color is overprinted on another. Also, color mixing is more easily and more intimately accomplished.
Specific examples and additional advantages of the de veloper compositions and of the improved methods of developing electrostatic images in accordance with this invention are included in the detailed description which follows.
CARRIER LIQUIDS An important feature of this invention is the provision.
of a carrier solution obtained by mixing trichlorotrifiuoroethane and dimethyl polysiloxane. In such a combination, the ethane liquid is a very selective solvent which will not dissolve most resins and waxes and which will only slowly dissolve binder materials such as, for example, resinous polysiloxanes. The ethane liquid has a viscosity of about 0.69 centipoise at room temperature and has an evaporation rate substantially in excess of that of toluene. It is far less toxic than materialssuch as gasoline or carbon tetrachloride, or almost any organic sol vent. It has a flash point in exces of 650 C. Because of its low toxicity and high flash point, it can be handled in ordinary room atmosphere with practically no danger to health and without fire hazard.
Dimethyl polysiloxanes have the following structural formula:
where n may vary from to 2000 and even higher. The higher the value of n, the higher the viscosity of the liquid at a given temperature. At room temperature, viscosity may vary from as low as 0.65 centistoke to as high as 1,000,000 centistokes, but for the purpose of the present invention, it is preferred to use only those members of the family of mixtures thereof having a viscosity up to about 3 centistokes at room temperature. This family of liquids comprise poor solvents for organic plastics. They also have relatively high flash points, for example: a dimethyl polysiloxane having a viscosity of 2 centisokes, has a flash point of 175 F. and one of 3 centistokes a flash point of 2-15" F. The solution of ethane liquid and polyisloxane will of course have acdnsiderably higher flash point. In addition to the foregoing, the polysiloxanes like the ethane liquid are practically ordorless, nontoxic, hydrophobic, and have excellent dielectric properties.
DEVELOPER COM-POSITIONS 'In the preparation of developer compositions, it is useful to first formulate concentrates containing the electroscopic developer particles. These generally comprise 5 to 40 parts by weight of developer particles in about 200 parts by weight of dimethyl polysiloxane having a' viscosity of about 0.6 to about 3 centistokes. This ratio is a convenient one for preparing a concentrate which is to be stored for an extended period or which is to be pro vided to the ultimate user. property of dimethyl polyisloxane evidences itself when An important advantageous developer concentrates are stored for extended periods. Developer particles comprising thermoplastic material,
examples of which are provided hereinafter, may be diS-.
persed in such liquids and stored practically indefinitely" without agglomerating.
him to use, the concentrate is mixed into the trichlorotrifiuoroethane-dimethyl polysiloxane solution in an amount to provide a concentration of developer particles in the composition of up to about 6% by weight. For a developer composition which is to be employed in automatic developing apparatus, developer particles are included therein in an amount such as, for example, 0.005 or less part by weight. In the production of color maps it has been found that with only about .005 part of de-' veloper particles in 10 ounces of compostiom sufficient composition is provided for developing images in one color on over 126 square feet of electrophotographic surface. For tray development it is preferred to employ a a composition such as, for example, 'one having therein about 0.2, to 6 parts by Weight of developer particles.
DEVELOPER PARTICES Specific examples of developer material suitable for dis persion in dimethyl polysiloxane to form a concentrate or for dispersing in the trichlorotrifluoroethane polysiloxane carrier solution to form developer compositions are as follows:
Example 1 BLACK DEVELOPER PARTICLES l A black pigment is prepared by making two solutions; solution one comprises:
6 grams Iosol Black (C.I. Solvent Black 13) 400 grams methanol solution two comprises:
9 grams Spirit Nigrosine (C.I. 50,415) 400 to 600 grams methanol Solution one is poured into solution two with continuous stirring- Once the solutions have been thoroughly mixed,
and a black relatively insoluble pigment is precipitated,
the mixture is filtered and the filter cake allowed'to dry.
The dried filter cake is broken up and dispersed in dimethyl polysiloxane liquid having a viscosity of about 2 Example 11 BLACK DEVELOPER PARTICLES 200 parts by weight of Piccolastic Resin 4358A (an elastic thermoplastic resin composed of polymers of styrene,
Examples I and 11.
substituted styrene and its homologs of the Pennsylvania Industrial Chemical Corp, Clairton, Pennsyl- Vania) 12 parts by weight carbon black 12 parts by weight Nigrosine $813, Color Index No. 50,415 8 parts by weight Iosol Black, Color Index Solvent Black This developer material is prepared by melting the resin and mixing in the other materials. When a uniform mix is obtained, it is cooled, ground to a fine powder and classified to obtain a desired particle size. A convenient particle size is one obtained by screening through a 200 mesh which provides a maximum particle diameter of about 74 microns. This developer material may be dispersed in dimethyl polysiloxane by any of the commonly known techniques to provide a concentrate.
Example 111 BLACK DEVELOPER PARTICLES A low-melting point (120 C.) developer material suitable for dispersion in a dimethyl polyslloxane may be prepared as follows:
60 parts by weight Piccolastic D100 40 parts by weight Piccolastic C-125 9 parts by weight carbon black These materials are mixed together in powder form, then melted and mixed again to obtain a homogenous dispersion. The melt is then cooled, ground and classified to obtain the desired particle size. It has been found that even with a low-melting toner of this character, which has a tendency to cake with storage, a stable noncaking dispersion is obtained in a dimethyl polysiloxane having a viscosity of about 2 centistokes.
OTHER THERMOPLASTIC MATERIALS In the foregoing examples many organic resins and waxes may be substituted for those described. Some of these are the following:
Acrawax C (a synthetic wax, octadecenamide), The Glycol Products Co., Brooklyn, N.Y., melting point between 133 and 140 C.
Carnauba wax, melting point about 80 C.
Polymekon wax (a commercially modified microcrystalline wax of the Warwick Wax Co., N.Y.), melting point about 93 to 127 C.
Ultracera amber wax, a microcrystalline petroleum wax of the Bareco Wax Co., Barnsdall, Oklahoma, melting point between about 108 and 112 C.
Be Square wax white, a microcrystalline petroleum wax of the Bareco Wax Co., Barnsdall, Oklahoma, melting point between about 105 and 109 C.
Petronauba D wax, a microcrystalline petroleum wax of the Bareco Wax Co., melting point about 103 C.
Piccolyte S-135, a thermoplastic hydrocarbon of the Pennsylvania Industrial Chemical Co., Clairton, Pa, melting point about 135 C.
Various coloring agents may be employed, singly or in combination, in the foregoing compositions in place of the black pigments or dyes specifically set forth in Colored developer particles will generally include from 0.2 to 12 parts by. weight of a coloring agent for each 100 parts by weight of devel oper particles. Suitable coloring agents include the following:
(1) Cyan Blue Toner GT (described in US. Patent 2,486,351 to R. H. Wiswall, Jr.)
(2) Benzidine Yellow (3) Brilliant Oil Blue BMA, Color Index No. 61,555
(4) Sudan Ill Red, Color Index No. 26,100
(5) Oil Yellow 26, Color Index No. 11,020
(6) Hansa Yellow G, Color Index No. 11,680
6 COATED ZINC OXIDE PARTICLES Various thermoplastic developer materials which comprise coated particles may also be conveniently employed in color printing in accordance with this invention. It is preferred in such cases to incorporate in the particles a core material made up of zinc oxide. The zinc oxide comprises one having a value of surface photoconductivity of at least 10* ohm /square/watt/crn. when subjected to light of a wavelength of about 3900 A. These coated zinc oxide developer materials are convenient for use in color processes wherein one color is overprinted over another to provide for color mixing. When particles of too large a diameter and which are insulating in character are deposited on an electrostatic image to produce a first color, such particles will inhibit overprinting thereon with another color. By providing a photoconductive zinc oxide core coated with a low-melting thermoplastic coating, developer particles are produced which, when fused to a surface, permit o-verprinting of a'color with another and therefore provide for color mixing.
The process by which coated zinc oxide particles provide for overprinting is unique. When the particles are fused to a surface, the coating material melts to form a continuous layer adhering to the surface.- After fusing, at least the topmost particles of zinc oxide are left protruding above the layer. When photoconductive zinc oxide particles are employed, an image surface is produced which can be charged, exposed and overprinted as easily as an original photoconductive surface. Thus, in some applications such as those wherein fusing between steps is not objectionable, the use of photoconductive developer particles can be very advantageous.
Examples of suitable material for color printing include the following:
Example IV WHITE DEVELOPER PARTICLES 1 part by weight carnauba wax 2 parts by weight photoconductive zinc oxide The wax is melted and particles of zinc oxide having a particle size from 0.25 to .5 micron mean diameter are added to the melt. Particle size and shape of'the zinc oxide determine to some extent the ratio of the zinc oxide to the coating material. Continuous: stirring of the melt from 15 to 20 minutes is sufiicient to disperse the zinc oxide in the wax if the batch weighs about grams. The mixture is allowed to cool, after which it is reduced to a fine powder and classified as to particle size. A concentrate is then prepared or the powder dispersed in acarrier solution and used directly.
Example V BLUE DEVELOPER PARTICLES 20 parts by weight Acrawax C (a synthetic wax, octadecenamide, of the Glyco Products Co., Brooklyn, New York) 30 parts by weight photoconductive zinc oxide 0.3 part by weight calcium stearate (pigment wetting agent) .4 parts by weight Sudan 3 Red, Color Index No. 26,100
2 parts by weight Oil Yellow 2G Color Index No. 11,020
The Wax and silicone resin are melted together. First the zinc oxide and then the coloring agents are stirred into the melt. After a uniform dispersion is obtained, the mixture is cooled, ball milled, and classified as to particle size.
PIGMENTS It is also possible to provide concentrates which consist of organic pigments dispersed in dimethyl polysiloxane liquid or developer compositions of the organic pigments in the trichlorotrifiuoroethane polysiloxane solutions. Preferably the concentrates comprise up to about 20 parts by weight of pigment the remainder being liquid and compositions up to 6 parts by weight of pigment. The term pigment as employed herein is intended to include coloring agents which are sometimes referred to as dyes but which nevertheless are insoluble in the ethane liquid or the polysiloxane. When used as taught herein these so-called dyes have all the properties and attributes of pigments. Suitable pigments for such purposes include the following:
(1) Cyan Blue Toner GT (described in U.S. Patent 2,486,351 to Richard H. Wiswall, Ir.)
(2) Benzidine Yellow (Color Index No. 21,090)
(3) Brilliant Oil Blue BMA (Color 'Index No. 61,555)
(4) Sudan 3 Red (Color Index No. 26,100)
(5) Oil Yellow 2G (Color Index No. 11,020)
(6) Pyrazalone pigment (such as CH. 21,080 C.I. Pigment Red 39) (7) Hansa Yellow G (Color Index No. 11,680)
In many of the foregoing dispersions it is convenient to provide a surfactant (surface active agent) to enhance the electrical properties of a selected pigment. A surfactant solution may be prepared by dispersing 10 grams of Nalcarnine G-14 in grams of toluene and, while mixing, heating the dispersion to dissolve the Nalcamine G-14 in the toluene. Nalcamine 6-14 is a chemical of the type I-(Z-hydroxyethyl) 2 hydrogenated ta1low-2- imidazoline (National Aluminate Corp., Chicago, Illinois). The Nalcamine G-14 solution is added to pigment dispersions before they are ball milled in the polysiloxane to form concentrates. Such a surfactant when applied, for example, to a red pyrazalone pigment substantially enhances the electropositive nature thereof.
Any of the foregoing developer compositions may be applied to an electrostatic image consisting of a pattern of negative electrostatic charges. Particles suspended in the carrier liquid are attracted by the negative charges and deposited on the pattern of such charges. In such a process, these compositions therefore constitute direct developer compositions.
When the compositions are employed to develop electrostatic images consisting of patterns of positive electrostatic charges they will be repelled by the charges and will deposit in non-charged areas of the electrostatic image to produce a reverse visible image and hence can be called reverse developer compositions in such processes.
REVERSAL TYPE POWDERS This invention also provides a developer composition which is capable of producing reverse images. By this is meant that when the composition is applied to an electrostatic image consisting of a pattern of negative electrostatic charges, the developer material will adhere in non-charged areas of the image rather than in the charged areas thereof. Such a developer composition may be prepared by dispersing a pigment in a binder material such as one which is predominantly comprised of polyvinyl chloride.
Example VII BLACK REVERSAL PARTICLES 4 grams carbon black 8 30 grams dimethyl polysiloxane, viscosity about 2 centistokes The carbon black is dispersed in the polysiloxane and the dispersion ball milled in a 2 ounce glass jar with steel balls for about 40 hours. The reversal type developer composition is then made up as follows:
3 grams carbon black dispersion in polysiloxane 5 grams of Vinylite VYNW (96% polyvinyl chloride,
4% polyvinyl acetate) 30 grams dimethyl polysiloxane This mixture is again ball milled for about 16 to 40 hours,
to provide a concentrate.
Color dispersions may be prepared in a like manner employing most of the pigments discussed heretofore- This mixture is bfll milled for about 32 hours.
Example IX YELLOW REVERSAL PARTICLES 14 grams Vinylite VYNV 2 grams Hansa Yellow G 40 grams dimethyl polysiloxane, viscosity about 2 centistokes Preparation the same as for Example VIII.
Example X BLUE REVERSAL PARTICLES 12 grams Vinylite VYNV" 2 grams Patent Blue 30 grams dimethyl polysiloxane, viscosity about 2 centistokes Preparation the same as in Example VIII.
IMAGE DEVELOPMENT Use of any of the above-described developer compositions in electrostatic printing processes as contemplated in this invention provides for new and substantially iin proved results. In accordance with this invention, the methods comprise applying the developer composition to the electrostatic image by such means as, for example, flowing across the image, spraying, application with a roller or by immersing the image in a tray containing the liquid composition, by electrophotographically producing a plurality of successive electrostatic images and developing with different colored particle compositions a composite color image is produced.
If desired, the permanence of the final print may be enhanced by a fixing procedure. Thermoplastic developer particles can be fused to the surface of the photoconductive material by heat. Alternatively, a fixative may be applied to the print. polyisobutyl methacrylate dissolved in trichlorotrifiuoroethane. The fixative can be applied in any known manner. 1
What is claimed is:
l. A liquid carrier capable of having dispersed therein a finely-divided developer substance to provide a developer composition for electrostatic printing; said carrier consisting essentially of a solution of about 48 to 58% by volume trichlorotrifluoroethane and about 52 to 42% by volume dimethyl polysiloxane, the latter having a viscosity of from about 0.6 to about 3.0 ccntistokes.
2. The liquid carrier of claim 1 consisting essentially of about 53% by volume trichlorotrifluoroethane and about 47% by volume of dimethyl polysiloxane.
A convenient fixative comprises 3. A developer composition for electrostatic printing comprising a dispersion of electroscopic particles having a diameter not greater than about 24 microns in a liquid carrier solution consisting essentially of about 48 to 58% by volume of trichlorotrifiuoroethane and about 52 to 42% by volume of dimethyl polysiloxane the latter having a viscosity of between about 0.6 and 3 oentistokes, the concentration of said particles in said composition being up to about 6.0% by weight.
4. The composition of claim 3 wherein said particles comprise a color pigment material.
5. The composition of claim 3 wherein said particles comprise pigmented thermoplastic material.
6. The composition of claim 3 wherein said carrier solution consists essentially of about 53% by volume of trichlorotrifluoroethane and about 47% by volume of dimethylpolysiloxane.
7. A developer composition for electrostatic printing comprising a dispersion of electroscopic particles in a liquid carrier solution, each said particle comprising a core material of photoconductive zinc oxide coated with a pigmented electroscopic resinous material, said solution consisting essentially of about 48 to 58% by volume of trichlorotrifluoroethane and about 52 to 42% by volume of dimethyl polysiloxane having a viscosity of from about 0.6 to about 3.0 centistokes, said particles comprising up to about 6.0% by weight of said composition.
8. The developer composition of claim 7 wherein said 10 liquid carrier solution consists essentially of about 53% by volume of trichlorotrifluoroethane and about 47% by volume of dimethyl polysiloxane.
9. The developer composition of claim 7 wherein said zinc oxide is coated with a pigmented resinous material the major proportion of which is polyvinyl chloride.
10. The developer composition of claim 9 wherein said resinous material consists essentially of about 96% by weight of polyvinyl chloride and about 4% by weight of polyvinyl acetate.
References Cited in the file of this patent UNITED STATES PATENTS 2,381,753 Irion Aug. 7, 1945 2,462,242 Webb et al. Feb. 22, 1949 2,523,065 Sage Sept. 19, 1950 2,735,785 Greig Feb. 26, 1956 2,793,197 Brown May 21, 1957 2,874,135 DeMonterey Feb. 17, 1959 2,890,174 Mayer June 9, 1959 2,891,911 Mayer et al. June 23, 1959 2,907,674 Metcalf et al. Oct. 6, 1959 2,965,482 Dessauer et al. Dec. 20, 1960 2,976,144 Rose Mar. 21, 1961 OTHER REFERENCES Dow Corning SiliconNotebook, Fluid Series No. 3,
September 1948, pp. 3, 11, 18 and 19.

Claims (1)

  1. 3. A DEVELOPER COMPOSITION FOR ELECTROSTATIC PRINTING COMPRISING A DISPERSION OF ELECTROSCOPIC PARTICLES HAVING A DIAMETER NOT GREATER THAN ABOUT 24 MICRONS IN A LIQUID CARRIER SOLUTION CONSISTING ESSENTIALLY OF ABOUT 48 TO 58% BY VOLUME OF TRICHLOROTRIFLUOROETHANE AND ABOUT 52 TO 42% BY VOLUME OF DIMETHYL POLYSILOXANE THE LATTER HAVING A VISCOSITY OF BETWEEN ABOUT 0.6 AND 3 CENTISTOKES, THE CONCENTRATION OF SAID PARTICLES IN SAID COMPOSITION BEING UP TO ABOUT 6.0% BY WEIGHT.
US6633A 1960-02-04 1960-02-04 Electrostatic printing Expired - Lifetime US3105821A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US6633A US3105821A (en) 1960-02-04 1960-02-04 Electrostatic printing
US203721A US3150976A (en) 1960-02-04 1962-06-20 Electrostatic printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6633A US3105821A (en) 1960-02-04 1960-02-04 Electrostatic printing

Publications (1)

Publication Number Publication Date
US3105821A true US3105821A (en) 1963-10-01

Family

ID=21721841

Family Applications (1)

Application Number Title Priority Date Filing Date
US6633A Expired - Lifetime US3105821A (en) 1960-02-04 1960-02-04 Electrostatic printing

Country Status (1)

Country Link
US (1) US3105821A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291738A (en) * 1960-09-02 1966-12-13 Rca Corp Materials for preparing etch resists
US3507679A (en) * 1964-03-23 1970-04-21 Commw Of Australia Controlled polarity liquid developer
US3535244A (en) * 1966-04-27 1970-10-20 Dick Co Ab Liquid developer composition for electrostatic images
US3668126A (en) * 1967-01-20 1972-06-06 Fuji Photo Film Co Ltd Method of producing electrophotographic liquid developers having very fine coloring material
US4060493A (en) * 1975-07-10 1977-11-29 Ricoh Co., Ltd. Liquid electrostatic developer
US4081391A (en) * 1974-09-03 1978-03-28 Ricoh Co., Ltd. Liquid developer for use in electrophotography
US4142982A (en) * 1975-06-04 1979-03-06 Canon Kabushiki Kaisha Toner for developing electrostatic latent images comprising resin binder of polyester and solid silicone varnish
WO1994017453A1 (en) * 1993-01-22 1994-08-04 Research Laboratories Of Australia Pty. Ltd. Liquid developer including charge control agent for electrostatography

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2381753A (en) * 1941-01-03 1945-08-07 Gen Printing Ink Corp Printing ink
US2462242A (en) * 1948-04-06 1949-02-22 Paul S Webb Silicone surfaced cooking implement
US2523065A (en) * 1947-12-29 1950-09-19 Gen Electric Pigmented coating compositions containing liquid alkyl polysiloxane
US2735785A (en) * 1953-07-30 1956-02-21 Process of electrostatic printing
US2793197A (en) * 1956-01-10 1957-05-21 Gen Electric Food release composition consisting of two incompatable organopolysiloxanes
US2874135A (en) * 1959-02-17 Glass coating compositions
US2890174A (en) * 1955-02-08 1959-06-09 Gen Dynamics Corp Xerographic developer composition
US2891911A (en) * 1955-06-06 1959-06-23 Gen Dynamics Corp Developer for electrostatic printing
US2907674A (en) * 1955-12-29 1959-10-06 Commw Of Australia Process for developing electrostatic image with liquid developer
US2965482A (en) * 1955-09-08 1960-12-20 Haloid Zerox Inc Method for fixing xerographic images
US2976144A (en) * 1958-10-24 1961-03-21 Rca Corp Electrophotography

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2874135A (en) * 1959-02-17 Glass coating compositions
US2381753A (en) * 1941-01-03 1945-08-07 Gen Printing Ink Corp Printing ink
US2523065A (en) * 1947-12-29 1950-09-19 Gen Electric Pigmented coating compositions containing liquid alkyl polysiloxane
US2462242A (en) * 1948-04-06 1949-02-22 Paul S Webb Silicone surfaced cooking implement
US2735785A (en) * 1953-07-30 1956-02-21 Process of electrostatic printing
US2890174A (en) * 1955-02-08 1959-06-09 Gen Dynamics Corp Xerographic developer composition
US2891911A (en) * 1955-06-06 1959-06-23 Gen Dynamics Corp Developer for electrostatic printing
US2965482A (en) * 1955-09-08 1960-12-20 Haloid Zerox Inc Method for fixing xerographic images
US2907674A (en) * 1955-12-29 1959-10-06 Commw Of Australia Process for developing electrostatic image with liquid developer
US2793197A (en) * 1956-01-10 1957-05-21 Gen Electric Food release composition consisting of two incompatable organopolysiloxanes
US2976144A (en) * 1958-10-24 1961-03-21 Rca Corp Electrophotography

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3291738A (en) * 1960-09-02 1966-12-13 Rca Corp Materials for preparing etch resists
US3507679A (en) * 1964-03-23 1970-04-21 Commw Of Australia Controlled polarity liquid developer
US3535244A (en) * 1966-04-27 1970-10-20 Dick Co Ab Liquid developer composition for electrostatic images
US3668126A (en) * 1967-01-20 1972-06-06 Fuji Photo Film Co Ltd Method of producing electrophotographic liquid developers having very fine coloring material
US4081391A (en) * 1974-09-03 1978-03-28 Ricoh Co., Ltd. Liquid developer for use in electrophotography
US4142982A (en) * 1975-06-04 1979-03-06 Canon Kabushiki Kaisha Toner for developing electrostatic latent images comprising resin binder of polyester and solid silicone varnish
US4060493A (en) * 1975-07-10 1977-11-29 Ricoh Co., Ltd. Liquid electrostatic developer
WO1994017453A1 (en) * 1993-01-22 1994-08-04 Research Laboratories Of Australia Pty. Ltd. Liquid developer including charge control agent for electrostatography
US5591557A (en) * 1993-01-22 1997-01-07 Research Laboratories Of Australia Pty Ltd. Liquid developer including organo titanate charge control agent for electrostatography

Similar Documents

Publication Publication Date Title
US3053688A (en) Electrostatic printing
US3150976A (en) Electrostatic printing
US3079272A (en) Method of developing an electrostatic image
US2899335A (en) Process for developing electrostatic
US5554476A (en) Toner particles for use in compositions for developing latent electrostatic images and liquid composition using same
US5045425A (en) Electrophotographic liquid developer composition and novel charge directors for use therein
US2877133A (en) Electrostatic photography
US3010842A (en) Development of electrostatic images
DE2909357C2 (en)
US3565805A (en) Electrostatic developer mix
GB2176904A (en) Preparing toner particles for liquid developer compositions
US2892794A (en) Electrostatic developer and toner
US3135695A (en) Liquid developers for electrostatic photography
US3772199A (en) Liquid developer used for electrophotography
US3105821A (en) Electrostatic printing
US3647696A (en) Uniform polarity resin electrostatic toners
US4157974A (en) Electrophotographic liquid developer and process for the manufacture thereof
DE69019857T2 (en) Liquid electrostatic developer containing multiblock polymers.
US3076722A (en) Electrostatic printing
JPS6267558A (en) Toner for developing electrostatic charge image
US3535244A (en) Liquid developer composition for electrostatic images
US4526852A (en) Liquid developer for developing electrostatic charge images and process for its preparation
US5069995A (en) Stain elimination in consecutive color toning
US3909433A (en) Liquid electrophotographic developing compositions
US4147812A (en) Electrophoretic development