US3094262A - Improved yarn handling sucker gun - Google Patents

Improved yarn handling sucker gun Download PDF

Info

Publication number
US3094262A
US3094262A US71662A US7166260A US3094262A US 3094262 A US3094262 A US 3094262A US 71662 A US71662 A US 71662A US 7166260 A US7166260 A US 7166260A US 3094262 A US3094262 A US 3094262A
Authority
US
United States
Prior art keywords
air
yarn
tube
inlet tube
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US71662A
Inventor
Ashby William Cropper
Jr William Wallar Bunting
Meagher Robert
Nelson Thomas Larson
Swayne Kenneth Gilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US71662A priority Critical patent/US3094262A/en
Priority to US237990A priority patent/US3156395A/en
Application granted granted Critical
Publication of US3094262A publication Critical patent/US3094262A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/16Devices for entraining material by flow of liquids or gases, e.g. air-blast devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/28Stretching filaments in gas or steam

Definitions

  • FIG.3 IMPROVED YARN HANfiLING SUCKER GUN Filed Nov. 25, 1960 FIG.3
  • This invention relates to the field of textile yarn-ham dling or manipulating devices and, in particular, to a portable device capable of picking up a running length of yarn and maintaining the yarn under tension until it can be transferred to a yarn take-up or other winding device.
  • a still further object is to provide such an improved portable yarn-handling device incorporating these features capable of expeditiously transferring a running length of yarn under suitable tension between points separated by considerable distances.
  • Another object is the provision of an improved yarnhandling device which can apply suflicient tension to handle yarns moving at extremely high-speeds, e.g., 2,000 to 3,000 yards per minute without forming any appreciable slack or allowing tensionin the yarn to drop a significant amount.
  • Yet another object is the provision of such a yarnhandling device which can handle effectively multi-filamen-t yarns to which a finish has been applied and which are wet and tend to stick together and act like a monofilament.
  • Yet another object is the provision of an improved handling device which is simple in construction yet efficient and reliable in operation.
  • apparatus embodying features of this invention provides basically a portable yarn-handling device comprising a primary-air inlet tube; a secondary-air inlet tube; an air outlet tube; the outlet slideably mounted to form with the secondary-air inlet tube a variable annulus; the secondary-air inlet tube and the outlet tube forming a passageway for the yarn through the device the improvement comprising the combination of an annulus or orifice configuration with an improved outlet tube configuration and also a turbulence generating means mounted on the end of the secondary-air inlet tube and extending into the outlet tube.
  • FIGURES 1a and lb are longitudinal cross-sectional partial views of inlet and outlet 2 portions respectively of :a yarn handling device embodying features of the present invention.
  • FIGURE 2 is a partial longitudinal cross-sectional view of the preferred turbulence generating element taken along the line 2-2 of FIGURE 1.
  • FIGURE 3 is a longitudinal cross-sectional view of a modified yarn-handling device of this invention illustrating the composite outlet tube construction.
  • FIGURE 4A and B are respectively a partial longitudinal cross-sectional view and an end view of the inner end of the auxiliary air and yarn inlet tube showing a.
  • FIGURES 5, 5a, 5b and 5c illustrate in longitudinal cross-section a particular auxiliary air inlet restriction device for use with yarn-handling devices of this invention in the closed position and transverse cross sections taken through the device, along the lines 5a-5a, 5b5b and 5c-5c respectively.
  • FIGURE 6 is a longitudinal cross-sectional view of the device of FIGURE 5 showing it in the open position.
  • the main body of the device is formed by primary air inlet tube 2.
  • Outlet tube 4 is slideably mounted inside tube 2.
  • the secondary-air inlet tube 6 is mounted at one end in the primary-air inlet tube 2 in such a manner that its longitudinal or axial position with relation to the outlet tube 4 can be adjusted to restrict or open the orifice 32 formed between the inner ends of tubes 4 and 6.
  • Housing unit 8 is mounted at the yarn inlet end of the primary-air inlet tube 2 and functions as the tip of the device.
  • a bore in the housing unit 8 is located on the same axis as the bore of the secondaryair inlet tube 6 and functions as an extension of the inlet tube.
  • Mounted in the end of the housing 8 is a wearresistant bushing 10 which can be easily replaced when Worn.
  • a projecting element 12 which extends into the bore of the outlet tube 4 and into the flow of main inlet air moving through the orifice 32.
  • a fixed piston 14 and a fixed piston 16 On the yarn outlet end of the outlet tube 4 there is mounted a fixed piston 14 and a fixed piston 16, with piston 16 having a larger transverse cross-sectional area than piston 14.
  • a housing 18 is attached to the downstream or end of the primary-air inlet tube 2 and contains piston 16 and a mount for an adjusting screw 20. In the space between the pistons 14 and 16, the housing 18 is vented to the atmosphere by a large passage 50.
  • the cover on the housing 18 is provided with a small vent passage 51 communicating with the side of the piston opposite from that of vent passage 50.
  • Tube 22 supplies the primary air to over p.s.i.g.) to the device at housing unit 26.
  • primary air under pressure is supplied to tube 22 and passes through passageway 30, formed by the interior surface of primary-air inlet tube 2 and the exterior surface of outlet tube 4, into the annular orifice 32 formed between the inner ends of outlet tube 4 and the secondary-air inlet tube 6 and thence down the bore of the outlet tube 4 to the yarn and air discharge end of the device which may be connected to any suitable yarn collection apparatus (not shown).
  • the high pressure air in passage 30 also exerts a pressure on piston 14 urging it toward the yarn discharge end of the device and thus urging the yarn tube 4 and the piston 16 in the same direction until the latter abuts adjusting screw 20; when the yarn tube 4 is thus pulled away from the yarn inlet tube 6, the annular orifice 32 is said to be in the open position (shown) as hereinafter discussed.
  • valve 24 admits air under pressure to the right side of piston 16 (the area of which is appreciably larger than that of piston 14) thus causing pistons 14 and 16 as well as the yarn tube to move to the left, in effect making the cross-sectional area of the annular orifice 32 smaller (not shown); in this situation the annular orifice 32 is said to be in the restricted condition.
  • valve 24 admits high pressure air to the space to the right of piston 16, a minute amount of air will escape to the atmosphere through hole 51; however, the pressure on piston -16 remains ample to overcome the pressure on piston 14.
  • the function of hole 51 is to permit the high pressure air to bleed down, after valve 24 is closed, thus permitting piston 14 to move yarn tube 4 to the right.
  • the pressure in the zone adjacent the orifice 32 will be reduced by virtue of Bernoullis principle which, in brief, states that minimum pressure occurs when kinetic energy is maximum.
  • the high velocity air through the orifice 32 creates a low pressure at the inner end of the secondary-air inlet tube 6 and causes secondary air to flow into the bore of housing 8 and the bore of secondary air inlet tube 6 from the surrounding atmosphere.
  • the configuration of the orifice is in effect a converging-diverging nozzle capable of producing supersonic flow conditions at the supply pressures used.
  • the bore of the outlet tube 4 is substantially constant, but diverging slightly to maintain nearly constant air velocity in the tube and accommodate growth of the boundary layer along the wall surface.
  • this tube serves to prevent a substantial decrease in the kinetic energy of the moving air, a continuing pressure drop is maintained along its length.
  • the total included angle of this bore must be between about minutes and about 1 with the preferred angle of from to 45'.
  • the optimum angle of divergence is somewhat larger.
  • the secondary-air which is caused to flow from the atmosphere into and through housing 8 and secondary-air inlet tube 6 causes a yarn line 34, when placed close to bushing 10, to be drawn into the inlet tube and down the outlet tube.
  • the combined action of the flow of the secondary-air and the fiow of the primary air through the outlet tube 4 maintains the yarn moving although under a low tension.
  • the annular orifice 32 is brought to its open condition, by releasing push button 28, whereupon high velocity air in the tube 4 will exert tension on the yam 34. Under this condition the pressure in the region of the annular orifice 32 is higher; i.e., suction is at a minimum.
  • the device may be manually transported to bring the yarn into proximity with other apparatus for the purpose of transferring the yarn to that apparatus.
  • FIG- URES 5A, 5B, 5C and 6 show a tube 59, intended for use on the free end of the housing unit 8, which tube 59 contains two generally cylindrical members 60 and 61.
  • the members 60 and 61 are cut on a matching bias or miter and are provided, respectively, with longitudinal V shaped slots 62 and 63 such that when the mitered ends of the members 60 and 61 are in abutment the V slots are apart.
  • the member 60 is firmly secured to the inside of the tube 59 while the member 61 is free to slide axially inside the tube being backstopped, however, by the internal flange 59a as shown in FIGURE 6.
  • the annular orifice of the device When the annular orifice of the device is in the restricted position, atmospheric pressure or suction caused by flow of air through the device will push the member 61 against the flange 59a thus opening a comparatively large flow passage through the Vs 62, 63 (FIGURE 6); when the annular orifice of the device of this invention is in the open position, super-atmospheric pressure inside the device will cause air flow to be reversed in the air and yarn inlet tube to push member 61 into abutment with member 60 (FIG- URE 5A) thus efiectively reducing the flow area to the adjoining roots of the Vs 62, 63 as shown in FIGURE 5A and reducing leakage back through the air and yarn inlet tube.
  • Adjustments for obtaining optimum performance of the device are made sequentially.
  • the annular orifice 32 is first placed in the restricted, or yarn string-up, condition whereupon the inlet tube 6 is axially adjusted, by means of the screw threads provided, until the velocity of the secondary inlet air reaches a maximum.
  • the pressure at the inner end of the inlet tube 6 is sub-atmospheric.
  • the inlet tube 6 is locked in position by means of the jam nut that is provided.
  • the device is shifted to the open condition (by release of push button 28) whereupon the yarn tube 4 is adjusted axially, by means of the screw 20, until a maximum yarn tension condition is reached with a moving threadline. Thereafter, it is only necessary to manipulate the push button 28 to cause the yarn tube to shift to either of the desired positions.
  • the tension that can be applied to the yarn can be expressed by the Newton equation where C is a characteristic drag coefiicient, D is the mass density, V is the relative velocity, and A is the area of contact. It will be seen from this equation that in handling a specific multi-filament yarn, four factors affect the tension applied to a yarn; length of the yarn exposed to the high velocity air, velocity of the air stream, effective surface area of contact of air stream and yarn, and the mass density of the fluid.
  • the air flow is believed to reach supersonic conditions and is maintained in the very high velocity condition substantially throughout the length of the outlet tube to give a maximum average air stream velocity and maintain it in contact with the yarn for a maximum distance.
  • the insertion of a small tab element 12 or some other device to create an extremely turbulent condition or a very high degree of agitation in the fluid stream just beyond the annulus 32 greatly increases the tension on the yarn 34 when all other conditions are kept the same.
  • the greatly agitated fluid stream is characterized by the existence of a high degree of turbulence, severe velocity gradients, eddies, vortices, and the like and may be characterized further by rotation of the fluid stream in whole or in part.
  • This tab element is not fully understood. However, it is believed that the turbulence generator or tab element may cause the 'multi-filament yarn to oscillate or vibrate laterally and thus to open up and somewhat entangle and thus present a substantially larger effective area for the air to operate upon. This is quite important with wet yarns moving at a high velocity and which have usually a tendency to adhere together and act like a monofilament yarn. It is important that the yarn guiding surfaces within the bushing and the auxiliary air and yarn inlet tube be arranged to direct the yarn into the vicinity of the tab in the orifice.
  • Outlet tube 4 length 18", divergent angle 30 minutes, ID. of bore .250", radius of curvature forming the CD. of annulus 32, .03" to .09”; secondary-air inlet tube: bore .140", total included angle on tip forming the ID. of annulus 32, 40; metal tab: length .25", width .093", thickness .032.
  • FIGURES 4A and 4B A modified form of turbulence generating means is shown in FIGURES 4A and 4B.
  • Suitable turbulence levels can be created by the use of an auxiliary air and yarn inlet tube 140 having its inner end provided with scalloped portions 144 circumferentially spaced around the edge. As shown, all but one of the scalloped portions are turned outwardly, the remaining one is turned inwardly to obtain the desired results.
  • the preferred yarn-handling device of this invention utilizes in the maximum tension condition a supersonic air flow and also includes a small turbulence generating structure which contributes to the greatly improved tension levels which are needed in the yarn at high yarn speeds.
  • a convenient and rapid means has been provided to shift the gun between the maximum auxiliary air inlet velocity and the maximum tension conditions of operation.
  • FIGURE 3 shows a desirable composite outlet tube construction.
  • the composite outlet tube 4' comprises an outer sleeve or casing 4a formed of metal, and an inner liner member 4b formed of suitable moldable or castable plastic material such as, for example, an epoxy resin. If desired the plastic material may be suit ably reinforced, e.g., with glass fibers, and the outer casing eliminated.
  • the construction of the inner mem ber of such cast or molded plastic material provides a simple, economical way to form the desired nozzle configuration and tapered outlet tube contour without expensive machining operations.
  • such a liner provides optimum wear and frictional characteristics for the yarn and air passing therethrough.
  • a yarn-handling device comprising an air inlet tube, an air outlet tube having an outer exit end and an inner end, a passageway between said inlet and said outlet tubes, the outer exit end of said outlet tube provided with an elongated section of substantially constant cross-sectional area, an auxiliary air and yarn inlet tube having an outer end and an inner end, one of said air outlet and auxiliary air and yarn inlet tubes mounted for movement relative to the other, said inner end of said air and yarn inlet tube mounted to form in cooperation with the inner end of said outlet tube, a variable annular orifice, said orifice forming, in one condition of its variation and in cooperation with said elongated section, a convergingdiverging nozzle, said device further comprising a conduit connecting said air inlet tube to a source of high pressure air, the pressure of the air in the inlet tube during operation of the device, the contour of said nozzle, and the elongated section each cooperating to produce supersonic air flow in said nozzle and maintain extremely high air flow velocities substantially throughout
  • the improved device of claim 1 which further comprises a variable means cooperating with said auxiliary air and yarn inlet tube for restricting the flow of air through said auxiliary air and yarn inlet tube.
  • said means for creating a zone of agitation in the flowing air comprises a plurality of scallops formed in the inner end of said auxiliary air and yarn inlet tube.
  • variable means comprises first and second transversely positioned abutment elements positioned in said auxiliary air and yarn inlet tube, each abutment element provided with an axially extending yarn guiding groove diametrically opposed to the groove of said other element, said elements mounted in said tube for relative movement with respect to each other in an axial direction between a first arrangement in which said elements are spaced a given distance apart and a second arrangement in which said elements are substantially in abutting relationship such that the diametrically opposed grooves form a restricted orifice permitting passage of the yarn along the length of both elements.
  • An improved yarn-handling device comprising in combination an air inlet tube, an air and yarn outlet tube having an inlet end and an outlet end, a passageway connecting said inlet and outlet tubes, the outlet tube provided between its ends with an elongated section of substantially constant cross-sectional area, an auxiliary air and yarn inlet tube mounted in alignment with said outlet tube, and in cooperative association with, and for relative motion with respect to the inlet end of said outlet tube to form a variable annular orifice, the outlet end of said auxiliary inlet tube and the inlet end of said outlet tube cooperating to form in one given condition of its variation a converging-diverging nozzle arrangement, a conduit member connecting said air inlet tube to a source of high pressure air, the pressure of the air in the inlet tube during operation of the device, the configuration of the converging-diverging nozzle arrangement, and the elongated section of the outlet tube each cooperating to produce supersonic air flow at the nozzle arrangement and maintain extremely high air flow velocities substantially throughout the elongated section
  • the improved device of claim 5 which further comprises a manually actuatable pneumatic means for rapidly and selectively varying the relative longitudinal positions of the inlet end of the outlet tube and the outlet end of the auxiliary inlet tube to vary the annular orifice opening between a maximum opening maximum yarn tension position and a minimum opening maximum auxiliary air velocity position.
  • a yarn-handling device comprising an air inlet tube, an air outlet tube having an outer exit end and an inner end, a passageway between said inlet and said outlet tubes, the outer exit end of said outlet tube provided with an elongated section of substantially constant crosssectional area, an auxiliary air and yarn inlet tube having an outer end and an inner end, one of said air outlet and auxiliary air and yarn inlet tubes movable relative to the other, the inner end of said inlet tube mounted to form in cooperation with the inner end of said outlet tube, and in further cooperation with said elongated section, a variable annular orifice, said orifice forming in one condition of its variation a converging-diverging nozzle, said device further comprising a conduit connecting said air inlet tube to a source of high pressure air, the pressure of the air in the inlet tube during operation of the device, the contour of said nozzle, and the elongated section each cooperating to produce supersonic air flow in said nozzle and maintain extremely high air flow velocitiessubstantially throughout the

Description

June 8, 1963 w. c. ASHBY ET AL 3,094,262
IMPROVED YARN HANDLING SUCKER 'GUN Filed NOV. 25, 1960 2 Sheets-Sheet 1 Q E I;
fig
l iii 6 u WILLIAM CRO PER ASHBY 3 WILLIAM WALLAR BUNTING, JRI
Lg ROBERT MEAGHER THOMAS LARSON NELS KENNETH GILBERT SWA E J1me 1963v w. c. ASHBY ETAL 3,094,262
IMPROVED YARN HANfiLING SUCKER GUN Filed Nov. 25, 1960 FIG.3
2 Sheets-Sheet 2 FIG-4a 62 INVENTORS 59 wn. M CROPPER ASHBY WIL M wALLaERRBuNTlNG, JR.
0 60 1B3BERT MEAG OMAS LARSON NRELSON ENNETH 2 55M SWAYNE United States Patent Ofiice 3,094,262 Patented June 18, 1963 IMPROVED YARN HANDLING SUCKER GUN William Cropper Ashby and William Wallar Bunting, Jr.,
Wilmington, Del., Robert Meagher, Wallingford, Pa.,
and Thomas Larson Nelson, Newark, and Kenneth Gilbert Swayne, Hockessin, Del., assignors to E. I. du Pont de Nemours and Company, Wilmington, Del., a corporation of Delaware Filed Nov. 25, 1960, Ser. No. 71,662 8 Claims. (Cl. 226-97) This invention relates to the field of textile yarn-ham dling or manipulating devices and, in particular, to a portable device capable of picking up a running length of yarn and maintaining the yarn under tension until it can be transferred to a yarn take-up or other winding device.
In handling threads of either natural or synthetic origin, it is frequently desirable that the thread be collected temporarily by an auxiliary device rather than by the regular collecting or windup apparatus. For example, US Patent No. 2,667,964, to Miller describes such a conventional yarn-handling device. This invention is considered to be an improvement over the Miller device.
It is an object of this invention to provide an improved efiicient yarn-handling device capable of quickly picking up a running length of yarn and maintaining the yarn under high tension until it has been transferred to a yarn take-up or winding device.
It is a further object of this invention to supply an improved yarn-handling device capable of providing a high inlet air velocity for very rapid picking up of a running length of yarn and thereafter producing and maintaining a desired high level tension on the yarn until the yarn line has been transferred to a suitable take-up device.
A still further object is to provide such an improved portable yarn-handling device incorporating these features capable of expeditiously transferring a running length of yarn under suitable tension between points separated by considerable distances.
Another object is the provision of an improved yarnhandling device which can apply suflicient tension to handle yarns moving at extremely high-speeds, e.g., 2,000 to 3,000 yards per minute without forming any appreciable slack or allowing tensionin the yarn to drop a significant amount.
Yet another object is the provision of such a yarnhandling device which can handle effectively multi-filamen-t yarns to which a finish has been applied and which are wet and tend to stick together and act like a monofilament.
Yet another object is the provision of an improved handling device which is simple in construction yet efficient and reliable in operation. Other objects will become apparent from the description hereinafter.
The aforementioned objects are accomplished by apparatus embodying features of this invention, which apparatus provides basically a portable yarn-handling device comprising a primary-air inlet tube; a secondary-air inlet tube; an air outlet tube; the outlet slideably mounted to form with the secondary-air inlet tube a variable annulus; the secondary-air inlet tube and the outlet tube forming a passageway for the yarn through the device the improvement comprising the combination of an annulus or orifice configuration with an improved outlet tube configuration and also a turbulence generating means mounted on the end of the secondary-air inlet tube and extending into the outlet tube.
In the drawings, FIGURES 1a and lb are longitudinal cross-sectional partial views of inlet and outlet 2 portions respectively of :a yarn handling device embodying features of the present invention.
FIGURE 2 is a partial longitudinal cross-sectional view of the preferred turbulence generating element taken along the line 2-2 of FIGURE 1.
FIGURE 3 is a longitudinal cross-sectional view of a modified yarn-handling device of this invention illustrating the composite outlet tube construction.
FIGURE 4A and B are respectively a partial longitudinal cross-sectional view and an end view of the inner end of the auxiliary air and yarn inlet tube showing a.
modified form of the turbulence generating means.
FIGURES 5, 5a, 5b and 5c illustrate in longitudinal cross-section a particular auxiliary air inlet restriction device for use with yarn-handling devices of this invention in the closed position and transverse cross sections taken through the device, along the lines 5a-5a, 5b5b and 5c-5c respectively.
FIGURE 6 is a longitudinal cross-sectional view of the device of FIGURE 5 showing it in the open position.
As shown in FIGURE 1, the main body of the device is formed by primary air inlet tube 2. Outlet tube 4 is slideably mounted inside tube 2. The secondary-air inlet tube 6 is mounted at one end in the primary-air inlet tube 2 in such a manner that its longitudinal or axial position with relation to the outlet tube 4 can be adjusted to restrict or open the orifice 32 formed between the inner ends of tubes 4 and 6. Housing unit 8 is mounted at the yarn inlet end of the primary-air inlet tube 2 and functions as the tip of the device. A bore in the housing unit 8 is located on the same axis as the bore of the secondaryair inlet tube 6 and functions as an extension of the inlet tube. Mounted in the end of the housing 8 is a wearresistant bushing 10 which can be easily replaced when Worn. Mounted on the end of the secondary-air inlet tube -6 is a projecting element 12, which extends into the bore of the outlet tube 4 and into the flow of main inlet air moving through the orifice 32. On the yarn outlet end of the outlet tube 4 there is mounted a fixed piston 14 and a fixed piston 16, with piston 16 having a larger transverse cross-sectional area than piston 14. A housing 18 is attached to the downstream or end of the primary-air inlet tube 2 and contains piston 16 and a mount for an adjusting screw 20. In the space between the pistons 14 and 16, the housing 18 is vented to the atmosphere by a large passage 50. The cover on the housing 18 is provided with a small vent passage 51 communicating with the side of the piston opposite from that of vent passage 50. Tube 22 supplies the primary air to over p.s.i.g.) to the device at housing unit 26. Valve 24, mounted in housing 26 and operated by push button 28, or other suitable device, controls the air supply to piston '16 via an auxiliary tube 36. In operation primary air under pressure is supplied to tube 22 and passes through passageway 30, formed by the interior surface of primary-air inlet tube 2 and the exterior surface of outlet tube 4, into the annular orifice 32 formed between the inner ends of outlet tube 4 and the secondary-air inlet tube 6 and thence down the bore of the outlet tube 4 to the yarn and air discharge end of the device which may be connected to any suitable yarn collection apparatus (not shown). The high pressure air in passage 30 also exerts a pressure on piston 14 urging it toward the yarn discharge end of the device and thus urging the yarn tube 4 and the piston 16 in the same direction until the latter abuts adjusting screw 20; when the yarn tube 4 is thus pulled away from the yarn inlet tube 6, the annular orifice 32 is said to be in the open position (shown) as hereinafter discussed. When push button 28 is depressed, valve 24 admits air under pressure to the right side of piston 16 (the area of which is appreciably larger than that of piston 14) thus causing pistons 14 and 16 as well as the yarn tube to move to the left, in effect making the cross-sectional area of the annular orifice 32 smaller (not shown); in this situation the annular orifice 32 is said to be in the restricted condition. When valve 24 admits high pressure air to the space to the right of piston 16, a minute amount of air will escape to the atmosphere through hole 51; however, the pressure on piston -16 remains ample to overcome the pressure on piston 14. The function of hole 51 is to permit the high pressure air to bleed down, after valve 24 is closed, thus permitting piston 14 to move yarn tube 4 to the right.
In the restricted condition of the annular orifice 32, the pressure in the zone adjacent the orifice will be reduced by virtue of Bernoullis principle which, in brief, states that minimum pressure occurs when kinetic energy is maximum. Thus the high velocity air through the orifice 32 creates a low pressure at the inner end of the secondary-air inlet tube 6 and causes secondary air to flow into the bore of housing 8 and the bore of secondary air inlet tube 6 from the surrounding atmosphere. In the open condition of orifice 32 the configuration of the orifice is in effect a converging-diverging nozzle capable of producing supersonic flow conditions at the supply pressures used. The bore of the outlet tube 4 is substantially constant, but diverging slightly to maintain nearly constant air velocity in the tube and accommodate growth of the boundary layer along the wall surface. The characteristics of this tube constitute an important aspect of the invention. This tube serves to prevent a substantial decrease in the kinetic energy of the moving air, a continuing pressure drop is maintained along its length. In order to function properly, it has been found that at the high pressures of 90# p.s.i.g. and above required for the desired high yarn of velocities and tensions, the total included angle of this bore must be between about minutes and about 1 with the preferred angle of from to 45'. For supply pressures higher than about 90# p.s.i.g., the optimum angle of divergence is somewhat larger.
In operation, with the orifice 32 in its restricted condition, the secondary-air which is caused to flow from the atmosphere into and through housing 8 and secondary-air inlet tube 6 causes a yarn line 34, when placed close to bushing 10, to be drawn into the inlet tube and down the outlet tube. The combined action of the flow of the secondary-air and the fiow of the primary air through the outlet tube 4 maintains the yarn moving although under a low tension.
Once the yarn is moving through the device it is highly desirable to apply forces such that the yarn will be brought to a high tension level in as short a period of time as possible; to this end, the annular orifice 32 is brought to its open condition, by releasing push button 28, whereupon high velocity air in the tube 4 will exert tension on the yam 34. Under this condition the pressure in the region of the annular orifice 32 is higher; i.e., suction is at a minimum. When the yarn 34 has been brought to an appreciable tension level, the device may be manually transported to bring the yarn into proximity with other apparatus for the purpose of transferring the yarn to that apparatus.
When the annular orifice 32 is in its open condition the pressure in the region of the orifice is super-atmospheric; therefore, a flow of air exists through tube 6 countercurrent to the direction of yarn movement. If an adequate supply of high pressure primary air is available in the region of the annular orifice 32, the rate of air flow and hence the air velocity in the outlet tube 4 will be unaffected by the existence of any countercurrent flow in tube 6 hence such flow is not deleterious to the operation of the device. However, in terms of air consumption, more economical operation may be achieved if such flow is minimized; this may be accomplished by the use of an adjustable restriction in the tube 6 or, preferably, in the bore of the housing 8 by means of the apparatus such as that shown in FIGURES 5, 5A, 5B, 5C and 6. FIG- URES 5A, 5B, 5C and 6 show a tube 59, intended for use on the free end of the housing unit 8, which tube 59 contains two generally cylindrical members 60 and 61. The members 60 and 61 are cut on a matching bias or miter and are provided, respectively, with longitudinal V shaped slots 62 and 63 such that when the mitered ends of the members 60 and 61 are in abutment the V slots are apart. The member 60 is firmly secured to the inside of the tube 59 while the member 61 is free to slide axially inside the tube being backstopped, however, by the internal flange 59a as shown in FIGURE 6. When the annular orifice of the device is in the restricted position, atmospheric pressure or suction caused by flow of air through the device will push the member 61 against the flange 59a thus opening a comparatively large flow passage through the Vs 62, 63 (FIGURE 6); when the annular orifice of the device of this invention is in the open position, super-atmospheric pressure inside the device will cause air flow to be reversed in the air and yarn inlet tube to push member 61 into abutment with member 60 (FIG- URE 5A) thus efiectively reducing the flow area to the adjoining roots of the Vs 62, 63 as shown in FIGURE 5A and reducing leakage back through the air and yarn inlet tube. The device of FIGURES 5 and 6 is thus automatic.
Adjustments for obtaining optimum performance of the device are made sequentially. The annular orifice 32 is first placed in the restricted, or yarn string-up, condition whereupon the inlet tube 6 is axially adjusted, by means of the screw threads provided, until the velocity of the secondary inlet air reaches a maximum. In this condition, of course, the pressure at the inner end of the inlet tube 6 is sub-atmospheric. When the best setting has been achieved, the inlet tube 6 is locked in position by means of the jam nut that is provided. Next, the device is shifted to the open condition (by release of push button 28) whereupon the yarn tube 4 is adjusted axially, by means of the screw 20, until a maximum yarn tension condition is reached with a moving threadline. Thereafter, it is only necessary to manipulate the push button 28 to cause the yarn tube to shift to either of the desired positions.
The tension that can be applied to the yarn can be expressed by the Newton equation where C is a characteristic drag coefiicient, D is the mass density, V is the relative velocity, and A is the area of contact. It will be seen from this equation that in handling a specific multi-filament yarn, four factors affect the tension applied to a yarn; length of the yarn exposed to the high velocity air, velocity of the air stream, effective surface area of contact of air stream and yarn, and the mass density of the fluid.
In the improved yarn-handling device embodying the principles of the present invention, during the maximum tension condition the air flow is believed to reach supersonic conditions and is maintained in the very high velocity condition substantially throughout the length of the outlet tube to give a maximum average air stream velocity and maintain it in contact with the yarn for a maximum distance. Also, it has been found, and an example will be given below, that the insertion of a small tab element 12 or some other device to create an extremely turbulent condition or a very high degree of agitation in the fluid stream just beyond the annulus 32 greatly increases the tension on the yarn 34 when all other conditions are kept the same. The greatly agitated fluid stream is characterized by the existence of a high degree of turbulence, severe velocity gradients, eddies, vortices, and the like and may be characterized further by rotation of the fluid stream in whole or in part. The operation and function of this tab element is not fully understood. However, it is believed that the turbulence generator or tab element may cause the 'multi-filament yarn to oscillate or vibrate laterally and thus to open up and somewhat entangle and thus present a substantially larger effective area for the air to operate upon. This is quite important with wet yarns moving at a high velocity and which have usually a tendency to adhere together and act like a monofilament yarn. It is important that the yarn guiding surfaces within the bushing and the auxiliary air and yarn inlet tube be arranged to direct the yarn into the vicinity of the tab in the orifice.
In one application of the principles of this invention to a yarn-handling device a yarn string-up device with the following dimensions was run with and without a metal tab. Outlet tube 4: length 18", divergent angle 30 minutes, ID. of bore .250", radius of curvature forming the CD. of annulus 32, .03" to .09"; secondary-air inlet tube: bore .140", total included angle on tip forming the ID. of annulus 32, 40; metal tab: length .25", width .093", thickness .032.
Table I Tension, grams Primary Air Flow in s.c.f.rn. (Supply pressure at 90 p. s. 1.) Without With Tab Tab This test was run with 70-34 polyester fiber yarn with a finish running at 3,000 yards per minute.
The following demonstrates the critical aspects of the diverging angle of the bore of the outlet tube 4. A device, with a metal tab 12, as described above, was used, all conditions except this angle being held constant.
Total included Yarn tension,
A modified form of turbulence generating means is shown in FIGURES 4A and 4B. Suitable turbulence levels can be created by the use of an auxiliary air and yarn inlet tube 140 having its inner end provided with scalloped portions 144 circumferentially spaced around the edge. As shown, all but one of the scalloped portions are turned outwardly, the remaining one is turned inwardly to obtain the desired results.
It will be seen that a novel improved arrangement for a yarn-handling device has been provided. The preferred yarn-handling device of this invention utilizes in the maximum tension condition a supersonic air flow and also includes a small turbulence generating structure which contributes to the greatly improved tension levels which are needed in the yarn at high yarn speeds. In addition, a convenient and rapid means has been provided to shift the gun between the maximum auxiliary air inlet velocity and the maximum tension conditions of operation.
A modified yarn-handling device is illustrated in FIGURE 3 which shows a desirable composite outlet tube construction. The composite outlet tube 4' comprises an outer sleeve or casing 4a formed of metal, and an inner liner member 4b formed of suitable moldable or castable plastic material such as, for example, an epoxy resin. If desired the plastic material may be suit ably reinforced, e.g., with glass fibers, and the outer casing eliminated. The construction of the inner mem ber of such cast or molded plastic material provides a simple, economical way to form the desired nozzle configuration and tapered outlet tube contour without expensive machining operations. In addition, such a liner provides optimum wear and frictional characteristics for the yarn and air passing therethrough.
In compliance with the patent statutes a preferred embodiment of this invention has been described but it is to be understood that various modifications could be made without departing from the spirit of the invention or the scope of the appended claims:
We claim:
1. A yarn-handling device comprising an air inlet tube, an air outlet tube having an outer exit end and an inner end, a passageway between said inlet and said outlet tubes, the outer exit end of said outlet tube provided with an elongated section of substantially constant cross-sectional area, an auxiliary air and yarn inlet tube having an outer end and an inner end, one of said air outlet and auxiliary air and yarn inlet tubes mounted for movement relative to the other, said inner end of said air and yarn inlet tube mounted to form in cooperation with the inner end of said outlet tube, a variable annular orifice, said orifice forming, in one condition of its variation and in cooperation with said elongated section, a convergingdiverging nozzle, said device further comprising a conduit connecting said air inlet tube to a source of high pressure air, the pressure of the air in the inlet tube during operation of the device, the contour of said nozzle, and the elongated section each cooperating to produce supersonic air flow in said nozzle and maintain extremely high air flow velocities substantially throughout the elongated section of said outlet tube, and manually actuatable pneumatic means to rapidly and selectively vary the longitudinal relative positions of said outlet tube and said auxiliary inlet tube in order to vary the annular orifice, the improved device further comprising a bafile means cooperating with said orifice for creating a zone of great agitation in the air flowing through said nozzle and said outlet tube.
2. The improved device of claim 1 which further comprises a variable means cooperating with said auxiliary air and yarn inlet tube for restricting the flow of air through said auxiliary air and yarn inlet tube.
3. The improved device of claim 1 in which said means for creating a zone of agitation in the flowing air comprises a plurality of scallops formed in the inner end of said auxiliary air and yarn inlet tube.
4. The improved device of claim 2 in which said variable means comprises first and second transversely positioned abutment elements positioned in said auxiliary air and yarn inlet tube, each abutment element provided with an axially extending yarn guiding groove diametrically opposed to the groove of said other element, said elements mounted in said tube for relative movement with respect to each other in an axial direction between a first arrangement in which said elements are spaced a given distance apart and a second arrangement in which said elements are substantially in abutting relationship such that the diametrically opposed grooves form a restricted orifice permitting passage of the yarn along the length of both elements.
5. An improved yarn-handling device comprising in combination an air inlet tube, an air and yarn outlet tube having an inlet end and an outlet end, a passageway connecting said inlet and outlet tubes, the outlet tube provided between its ends with an elongated section of substantially constant cross-sectional area, an auxiliary air and yarn inlet tube mounted in alignment with said outlet tube, and in cooperative association with, and for relative motion with respect to the inlet end of said outlet tube to form a variable annular orifice, the outlet end of said auxiliary inlet tube and the inlet end of said outlet tube cooperating to form in one given condition of its variation a converging-diverging nozzle arrangement, a conduit member connecting said air inlet tube to a source of high pressure air, the pressure of the air in the inlet tube during operation of the device, the configuration of the converging-diverging nozzle arrangement, and the elongated section of the outlet tube each cooperating to produce supersonic air flow at the nozzle arrangement and maintain extremely high air flow velocities substantially throughout the elongated section of the outlet tube to exert a high tension on a yarn line entering the auxiliary inlet tube and passing through the device to the exit end of the outlet tube, the improved device further comprising a turbulence generating element projecting into the variable orifice, said element having an effective crosssectional area of very small magnitude with respect to the cross-sectional area of the orifice.
6. The improved device of claim 5 which further comprises a manually actuatable pneumatic means for rapidly and selectively varying the relative longitudinal positions of the inlet end of the outlet tube and the outlet end of the auxiliary inlet tube to vary the annular orifice opening between a maximum opening maximum yarn tension position and a minimum opening maximum auxiliary air velocity position.
7. The improved device of claim 6 in which said elongated portion of said outlet tube is provided with a very gradually increasing inner diameter defined by side walls which represent slightly diverging conical surface along the direction of air flow having an included angle of from about fifteen to forty-five minutes in order to substantially maintain the extremely high air flow velocity undiminished and a very gradual pressure drop along its length.
8. A yarn-handling device comprising an air inlet tube, an air outlet tube having an outer exit end and an inner end, a passageway between said inlet and said outlet tubes, the outer exit end of said outlet tube provided with an elongated section of substantially constant crosssectional area, an auxiliary air and yarn inlet tube having an outer end and an inner end, one of said air outlet and auxiliary air and yarn inlet tubes movable relative to the other, the inner end of said inlet tube mounted to form in cooperation with the inner end of said outlet tube, and in further cooperation with said elongated section, a variable annular orifice, said orifice forming in one condition of its variation a converging-diverging nozzle, said device further comprising a conduit connecting said air inlet tube to a source of high pressure air, the pressure of the air in the inlet tube during operation of the device, the contour of said nozzle, and the elongated section each cooperating to produce supersonic air flow in said nozzle and maintain extremely high air flow velocitiessubstantially throughout the elongated section of said outlet tube, and reciprocating means operatively connected to said outlet tube to rapidly and selectively vary the longitudinal relative positions of said outlet tube and said auxiliary inlet tube in two directions in order to rapidly vary the annular orifice.
References Cited in the file of this patent UNITED STATES PATENTS 1,118,552 Honiss Nov. 24, 1914 2,667,964 Miller Feb. 2, 1954 2,731,262 Morrow Jan. 17, 1956 2,971,686 Paulsen 'Feb. 14, 1961 FOREIGN PATENTS 842,762 Great Britain July 27, 1960

Claims (1)

1. A YARN-HANDLING DEVICE COMPRISING AN AIR INLET TUBE, AN AIR OUTLET TUBE HAVING AN OUTER EXIT END AND AN INNER END, A PASSAGEWAY BETWEEN SAID INLET AND SAID OUTLET TUBES, THE OUTER EXIT END OF SAID OUTLET TUBE PROVIDED WITH AN ELONGATED SECTION OF SUBSTANTIALLY CONSTANT CROSS-SECTIONAL AREA, AN AUXILIARY AIR AND YARN INLET TUBE HAVING AN OUTER END AND AN INNER END, ONE OF SAID AIR OUTLET AND AUXILIARY AIR AND YARN INLET TUBES MOUNTED FOR MOVEMENT RELATIVE TO THE OTHER, SAID INNER END OF SAID AIR AND YARN INLET TUBE MOUNTED TO FORM IN COOPERATION WITH THE INNER END OF SAID OUTLET TUBE, A VARIABLE ANNULAR ORIFICE, SAID ORIFICE FORMING, IN ONE CONDITION OF ITS VARIATION AND IN COOPERATION WITH SAID ELONGATED SECTION, A CONVERGINGDIVERGING NOZZLE, SAID DEVICE FURTHER COMPRISING A CONDUIT CONNECTING SAID AIR INLET TUBE TO A SOURCE OF HIGH PRESSURE AIR, THE PRESSURE OF THE AIR IN THE INLET TUBE DURING OPERATION OF THE DEVICE, THE CONTOUR OF SAID NOZZLE, AND THE ELONGATED SECTION EACH COOPERATING TO PRODUCE SUPERSONIC AIR FLOW IN SAID NOZZLE AND MAINTAIN EXTREMELY HIGH AIR FLOW VELOCITIES SUBSTANTIALLY THROUGHOUT THE ELONGATED SECTION OF SAID OUTLET TUBE, AND MANUALLY ACTUATABLE PNEUMATIC MEANS TO RAPIDLY AND SELECTIVELY VARY THE LONGITUDINAL RELATIVE POSITIONS OF SAID OUTLET TUBE AND SAID AUXILIARY INLET TUBE IN ORDER TO VARY THE ANNULAR ORIFICE, THE IMPROVED DEVICE FURTHER COMPRISING A BAFFLE MEANS COOPERATING WITH SAID ORIFICE FOR CREATING A ZONE OF GREAT AGITATION IN THE AIR FLOWING THROUGH SAID NOZZLE AND SAID OUTLET TUBE.
US71662A 1960-11-25 1960-11-25 Improved yarn handling sucker gun Expired - Lifetime US3094262A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US71662A US3094262A (en) 1960-11-25 1960-11-25 Improved yarn handling sucker gun
US237990A US3156395A (en) 1960-11-25 1962-11-15 Fluid pressure method for transferring yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71662A US3094262A (en) 1960-11-25 1960-11-25 Improved yarn handling sucker gun

Publications (1)

Publication Number Publication Date
US3094262A true US3094262A (en) 1963-06-18

Family

ID=22102780

Family Applications (1)

Application Number Title Priority Date Filing Date
US71662A Expired - Lifetime US3094262A (en) 1960-11-25 1960-11-25 Improved yarn handling sucker gun

Country Status (1)

Country Link
US (1) US3094262A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272416A (en) * 1964-09-16 1966-09-13 Du Pont Yarn handling mechanism
US3373553A (en) * 1967-01-26 1968-03-19 American Cyanamid Co False-twist apparatus
US3394440A (en) * 1965-08-20 1968-07-30 American Enka Corp Continuous filament interlacing, bulking or tangling apparatus
US3433007A (en) * 1966-07-29 1969-03-18 Du Pont Slub yarn process and product
US3683732A (en) * 1970-04-16 1972-08-15 Rhodiaceta Yarn handling pneumatic device
US3750922A (en) * 1971-12-30 1973-08-07 Celanese Corp Aspirator
US3806017A (en) * 1973-06-27 1974-04-23 Du Pont Apparatus for forwarding filamentary materials
US4024698A (en) * 1976-07-16 1977-05-24 Allied Chemical Corporation Aspirator muffler
US4280260A (en) * 1978-04-21 1981-07-28 Basf Aktiengesellschaft Apparatus for threading up a texturizing nozzle
US4346504A (en) * 1980-07-11 1982-08-31 Hoechst Fibers Industries Yarn forwarding and drawing apparatus
US4593521A (en) * 1982-10-29 1986-06-10 Rieter Machine Works Limited Jet spinning device
US4964197A (en) * 1985-11-21 1990-10-23 J.H. Benecke Ag And Corovin Gmbh Apparatus for the production of non-woven material from endless filaments
US6660218B2 (en) 2001-07-31 2003-12-09 E.I. Du Pont De Nemours And Company Filament draw jet apparatus and process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1118552A (en) * 1907-05-13 1914-11-24 Beech Nut Packing Co Process of pneumatic feeding.
US2667964A (en) * 1949-04-21 1954-02-02 Du Pont Yarn handling device
US2731262A (en) * 1953-06-25 1956-01-17 United States Steel Corp Method for threading strip through a continuous strip processing line
GB842762A (en) * 1957-11-25 1960-07-27 Courtaulds Ltd Improvements in and relating to the production of bulky yarns
US2971683A (en) * 1955-03-01 1961-02-14 Du Pont Strand delivery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1118552A (en) * 1907-05-13 1914-11-24 Beech Nut Packing Co Process of pneumatic feeding.
US2667964A (en) * 1949-04-21 1954-02-02 Du Pont Yarn handling device
US2731262A (en) * 1953-06-25 1956-01-17 United States Steel Corp Method for threading strip through a continuous strip processing line
US2971683A (en) * 1955-03-01 1961-02-14 Du Pont Strand delivery
GB842762A (en) * 1957-11-25 1960-07-27 Courtaulds Ltd Improvements in and relating to the production of bulky yarns

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272416A (en) * 1964-09-16 1966-09-13 Du Pont Yarn handling mechanism
US3394440A (en) * 1965-08-20 1968-07-30 American Enka Corp Continuous filament interlacing, bulking or tangling apparatus
US3433007A (en) * 1966-07-29 1969-03-18 Du Pont Slub yarn process and product
US3373553A (en) * 1967-01-26 1968-03-19 American Cyanamid Co False-twist apparatus
US3683732A (en) * 1970-04-16 1972-08-15 Rhodiaceta Yarn handling pneumatic device
US3750922A (en) * 1971-12-30 1973-08-07 Celanese Corp Aspirator
US3806017A (en) * 1973-06-27 1974-04-23 Du Pont Apparatus for forwarding filamentary materials
US4024698A (en) * 1976-07-16 1977-05-24 Allied Chemical Corporation Aspirator muffler
US4280260A (en) * 1978-04-21 1981-07-28 Basf Aktiengesellschaft Apparatus for threading up a texturizing nozzle
US4356604A (en) * 1978-04-21 1982-11-02 Basf Farben & Fasern Ag Process for threading up a rapidly travelling thread in a texturizing nozzle
US4346504A (en) * 1980-07-11 1982-08-31 Hoechst Fibers Industries Yarn forwarding and drawing apparatus
US4593521A (en) * 1982-10-29 1986-06-10 Rieter Machine Works Limited Jet spinning device
US4964197A (en) * 1985-11-21 1990-10-23 J.H. Benecke Ag And Corovin Gmbh Apparatus for the production of non-woven material from endless filaments
US6660218B2 (en) 2001-07-31 2003-12-09 E.I. Du Pont De Nemours And Company Filament draw jet apparatus and process

Similar Documents

Publication Publication Date Title
US3094262A (en) Improved yarn handling sucker gun
US3156395A (en) Fluid pressure method for transferring yarn
US2667964A (en) Yarn handling device
US3353344A (en) Fluid jet twister
US3445995A (en) Strand twisting apparatus
US2995801A (en) Jet for fluid treatment of yarn
US3863309A (en) Yarn texturing air jet
US4367772A (en) Nozzle assembly for a weaving machine
US3423000A (en) Device for accumulating filaments during spool-change
US3683732A (en) Yarn handling pneumatic device
US2661588A (en) Thread collector
US2812850A (en) Lace-up device
DK143979B (en) PUTTING NOZZLE FOR PNEMATIC PROMOTION OF A MULTIFILAM Rope
US3175290A (en) Yarn handling apparatus
US4305245A (en) Method of forming false twisted slub yarn
US4181247A (en) Yarn-handling device
NL8103300A (en) TENSION-FREE YARN FEEDING SYSTEM.
US3559860A (en) Textile varn handling devices
GB1530252A (en) Texturing of synthetic filaments
US2548523A (en) Pneumatic rapid traverse for winding textile yarns on cones and tubes
US3465939A (en) Device for guiding a thread
US4107828A (en) Yarn treating jet
KR920005790B1 (en) Us/ fluid jet apparatus used to texture the yarn
US4259768A (en) Yarn texturing jet
US4095320A (en) Yarn texturing air jet