US3092932A - Skeleton framework for modified hyperbolic paraboloid - Google Patents

Skeleton framework for modified hyperbolic paraboloid Download PDF

Info

Publication number
US3092932A
US3092932A US825368A US82536859A US3092932A US 3092932 A US3092932 A US 3092932A US 825368 A US825368 A US 825368A US 82536859 A US82536859 A US 82536859A US 3092932 A US3092932 A US 3092932A
Authority
US
United States
Prior art keywords
members
boundary
lattice
compression
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US825368A
Inventor
Winfred E Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US825368A priority Critical patent/US3092932A/en
Application granted granted Critical
Publication of US3092932A publication Critical patent/US3092932A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/08Vaulted roofs
    • E04B7/10Shell structures, e.g. of hyperbolic-parabolic shape; Grid-like formations acting as shell structures; Folded structures
    • E04B7/105Grid-like structures

Definitions

  • the present invention relates to roofs and specifically to a method and means for forming a roof structure wherein the structural framing may be constructed or fabricated in a shop remote from the actual place of use for the roof structure; a roof structure which economically spans large areas and eliminates the need for separate ceilings as well as permitting the use of various materials for its fabrication.
  • hyperbolic paraboloid type roof structures have been expensive to produce as it required the forming of a roof slab of double curvature which characterizes this geometrical shape.
  • An object or" my invention is to provide a roof system which solves the forming problem in a simple, easy and inexpensive manner and which places the roof structure of my invention in a favorable competitive position.
  • One of the basic concepts of my invention is the provision of a light lattice member support system wherein the individual lattice members in their final position in the structure conform closely to the lines of principal stress. Further the lattice members may be shop fabricated in a flat or single plane condition, collapsed for shipment to the site, and then expanded into a doubly curved shape between previously erected boundary members. Since the lattice members are designed to carry the principal stresses directly to the boundary members, the remaining roof elements supported from these lattice members are of secondary stress importance, thus permitting their selection from a Wide variety of materials.
  • a further object of my invention is to provide a novel system for securing lattice work of the roof structure to boundary members.
  • a further object is to simplify the fabrication of a roof structure and the elimination of the influence of fixity on the structure when secured to boundary members.
  • a further object is the provision of a skeleton frame for an interior structure capable of having sheeting attached thereto and used as a base for Waterproof roofing.
  • a further object is the provision of a structure which is adaptable to many uses and which is so formed and constructed as to eliminate the task of detailing and fabricating numerous special conventional connections therefor.
  • a further object is the provision of a roof structure requiring a minimum of shoring.
  • a further object is the provision of a roof structure which is particularly adaptable to school classroom buildings, commercial buildings and industrial buildings and assassz Patented June 11, 1963 which may also be used for convention and sports halls and arenas which require roof systems spanning large distances so as to eliminate objectionable interior columns.
  • the present invention relates broadly to roof shells of double curvature which are generally known as an ellipse, circle, catenary, and parabola. I chose, however, for the present invention to designate my roof structure as substantially a hyperbolic para-boloid type of shell. It is a known fact that double curved concrete shells with edges stiffened by arches or ribs have great strength due to their ability to carry any continuous load principally by direct stresses, that is, by axial compression or tension. Stresses for thin shells are relatively small compared to the compressive strength of concrete and While localized bending may occur near the edges of a shell of this character due to displacement of the edge members, for the most part the shell is free of flexural forces.
  • An anticlastic shell such as a hyperbolic paraboloid may be considered either as a surface of translation or -a warped parallelogram.
  • Surface of translation is generated by translating or moving a vertical parabola having an upward curvature over another parabola having a downward curvature, the parabola of translation lying in a plane perpendicular to the first or vertical parabola but moving parallel to it.
  • the surface may also be generated by moving along one boundary a straight line that remains parallel to the plane of the intersecting boundary member at all times but pivots so as to slide along the opposite boundary member.
  • the paraboloid may be considered as generated by a principal parabola that moves parallel to itself along an inverse principal parabola. Stresses in such a structure are of easy determination for the reason that a hyperbolic paraboloi-d shell transfers loads to supports almost entirely by direct forces so that all material in the cross section of the shell is uniformly stressed.
  • a hyperbolic paraboloi-d shell transfers loads to supports almost entirely by direct forces so that all material in the cross section of the shell is uniformly stressed.
  • An anticlastic concrete shell with stitfened edges carries any continuous load by direct stresses, that is, by axial compression or tension and for the most part the shell is free of flexural forces. Hence, it is that the edge members need not be capable of resisting lateral forces and the direct forces acting on the anticlastic shell are obtained directly from a consideration of statics alone.
  • FIGURE 1 is a fragmentary perspective view showing four quadrants of a roof structure and embodying the invention
  • FIGURE 2 is a plan view of lattice work in expanded position for one quadrant of a roof structure
  • FIGURE 3 shows the lattice work in FIGURE 2 in collapsed condition
  • FIGURE 4 is a plan view of a quadrant of the roof skeleton structure showing boundary members enclosing the lattice members such as shown in FIGURE 2;
  • FIGURE 5 is a view taken substantially on the line 55 of FIGURE 4;
  • FIGURE 6 is a view looking in the direction of the arrow 6 of FIGURE 4;
  • FIGURE 7 is an enlarged fragmentary, sectional view on the line 77' of FIGURE 1, of a connection which may be used between the boundary members and the lattice members;
  • FIGURE 8 is a fragmentary sectional view taken on the line 8-8 of FIGURE 7;
  • FIGURE 9 is an enlarged elevation of one of the members used in the connection shown in FIGURES 7 and 8;
  • FIGURE 10 is a fragmentary, partially sectional view showing a pin connection between two channel type lattice members
  • FIGURE 11 is an enlarged fragmentary, sectional view taken on the line 1111 of FIGURE 1 showing the lattice construction provided with a ceiling and with roofing material;
  • FIGURE 12 is a diagrammatic view of a single quadrant of a roof structure embodying the invention and showing mathematical notations for use in the design of said quadrant;
  • FIGURE '13 is a further diagrammatic View on line 13--13 of FIGURE 15, the view containing notations;
  • FIGURE 14 is an outline plan view of one of the quadrants of the roof structure.
  • FIGURE 15 is a section on the line 15-15 of FIG- URE 14, the said view having mathematical notations thereon.
  • lattice members designated as 1 and 2 the lattice members, of which there are a plurality, are in overlapped or in crossed relationship and pinned together for movement at spaced points as shown at 3.
  • the pins may take the form of rivets, see FIG- URE 10, and the lattice members 1 and 2 may be of channel form as illustrated in FIGURE 10, the Web portions of said members being in juxtaposition.
  • the lattice members may be collapsed as shown in FIGURE 3 so as to occupy a small space, the lattice members when expanded, as shown in FIGURE 2 may assume various configurations.
  • the spacing between the lattice members may substantially form squares or diamonds, as is obvious.
  • the lattice members are adapted to be confined by boundary members such as shown in FIGURE 4, the members of which are designated as 4, 5, 6 and 7.
  • boundary members such as shown in FIGURE 4, the members of which are designated as 4, 5, 6 and 7.
  • the boundary or edge beams, or members may take the sectional form shown in FIGURE 7 which is to say, beams of channel form.
  • the lattice members 1 and 2 are placed within said boundary members in such a manner that the lattice members assume, together with the boundary members, the form of a hyperbolic paraboloid or substantially so.
  • the number of lattice members and their points of connection with the boundary members must be determined from a consideration of the stresses to be encountered and the size of the roof structure.
  • the boundary members are laid out to suit the desired architectural concept and the boundary members transfer the load or forces from the lattice work to the columns or other load support elements at the vertexes.
  • a circular arc is chosen such as is shown at 8 in FIGURE 4 which passes through the points 9, 10, and 11. Where the points 9 and 10 are intersections or vertexes between boundary members 6 and 7, and 4 and 5 respectively,
  • the point 11 on said circular arc lies in the plane bisecting the angle between the planes determined by 9, 12 and 10; and 9, 10 and 13 respectively, so the point 1 1 lies midway between the diagonal 91-0 and the diagonal 12-13.
  • This are then moved parallel to itself toward points 10 and 12, the arc resting at all times on the boundary members.
  • the surface thus generated is substantially that of a hyperbolic paraboloid since a relatively flat circular arc differs minutely from a paraboloid of the same span.
  • a selected module is then laid oif along the generating arc and where these points intersect the boundary members, the opposing lattice members 2 are located.
  • the lattice members may be prefabricated in fiat condition and collapsed for shipment, as shown in FIGURE 3.
  • the boundary members 4, 5, 6 and 7 of one quadrant are assembled and shored either in their final position mat a temporarily lower level to facilitate the placing of the lattice in position.
  • FIG- URE l the lattice has been expanded into position and placed on top of the boundary members 4 to 7 inclusive for one quadrant, with the boundary members secured at the vertexes to column supports 14. It will be noted in FIGURE 1 that the four quadrants are so arranged as to be symmetrical about any two intersecting boundary members; Since the members of the lattice work are relatively flat, the lattice may be sprung downwardly for connection with the boundary members.
  • connection to the boundary members may take the form shown in FIGURES 7, 8 and 9 and wherein the web 15 of each boundary member is provided with a series of spaced transverse bores 16 formed to receive a flanged disk 17, the said disk having a central slot 18, the edges bounding the said slot being on an arc or lip shaped, as shown in FIGURE 7.
  • a clip '19 of U-shape is passed through the slot 18, the bight portion 20 of which is adapted to confine a pin 21 with the pin engaging one or more washers or shims 22 on the inner surface of disk 17.
  • the legs of the said clip are riveted to and embrace overlapped ends of the lattice members 1 and 2.
  • the slot 18 is of elongated form conforming in size to the width of the clip.
  • the construction is such that the clip and the disk may be rotated in a vertical plane so that the angle of intersection of the lattice members with the boundary members may be locked in final position by driving the pin 21 into the bight portion 20 of the clip.
  • This connection provides an unlimited variation in angularity and eliminates the task of detailing and fabricating numerous special conventional connections, each difiering slightly from each other.
  • roof constructions can be fabricated economically.
  • conventional roof constructions as light steel deck, wood, or plywood sheathing can be attached and used as a base for the waterproof roofing; or permanent or temporary forming can be suspended below the lattice work and monolithic roof of gypsum or Portland cement concrete can be poured in place without the necessity of complicated shor-
  • permanent forming is illustrated by using an expanded metal lath below the lattice, plastering the ceiling with at least a scratch coat and using this for the form of a poured gypsum concrete roof. This gives a light structure, provides good insulation and results in economy.
  • This construction is illustrated in FIGURE 11, wherein the roof coat is shown at 23, the metal lath at 24 and plaster at 25.
  • My roof structure and its fabrication approximates a true hyperbolic paraboloid calculation by simple trigonometry as may be readily demonstrated for a given plan, dimensions and height, the radius and length of generating arc.
  • I show the basic quadrant as square in plane, or, the scheme may be applied equally Well to plans which are not square; i,e., rectangular.
  • sides a and b and the rise h are given, then from the diagrams and the figures thereon given: sides a, b and rise h.
  • FIGURE 12 In order to give a concrete example of the design for a single quadrant of a roof structure, reference is made to FIGURE 12 and to the notations appearing thereon, this being a single quadrant and the design to be considered is a 30 x 30 roof; i.e., the roof would have four of the quadrants of the type shown in FIGURE 12, each boundary member being substantially 15' in length.
  • the following defines the constants, roof loading, the boundary member loading, as well as other design factors. The following notations are given.
  • a skeleton frame structure of hyperbolic paraboloid configuration including: four straight, rigid boundary members, two of which are stressed axially in compression and the other two are stressed in tension, said boundary members being joined at their ends to enclose an area which when projected onto a horizontal plane assumes approximately the shape of a parallelogram, two of said boundary members lying in one plane and the other two of said boundary members lying in a second plane which intersects the first plane along a diagonal of the area enclosed, and a lattice secured to all four of the boundary members, and formed of structural tension members and structural compression members lying within the confines of the boundary members; the actual lengths of each of said tension members and of said compression members being greater than its respective projected lengths between the boundary members, each of the tension members being arranged approximately parallel to said diagonal and being curved in one plane and positioned with the concave side facing upwardly, each of said compression members being approximately parallel to the second diagonal of the area enclosed and being curved in one plane and positioned with the convex side facing upwardly, each of the tension members and the compression

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Description

June 11, 1963 w. E. WILSON 3,092,932
SKELETON FRAMEWORK FOR MODIFIED HYPERBOLIC PARABOLOID Filed July 6, 1959 4 Sheets-Sheet 1 F l 6. 2. INVENTOR,
MNFREO E. h/Il-SONJ BY ATTORNEY June 11, 1963 w. E. WILSON 3,092,932
SKELETON FRAMEWORK FOR MODIFIED HYPERBOLIC PARABOLOID Filed July 6, 1959 4 Sheets-Sheet 2 INVENTOR, MNFRED E. W/Lso/v;
/ ATTORNEY,
June 11, 1963 w. E. WILSON 3, 2
SKELETON FRAMEWORK FOR MODIFIED HYPERBOLIC PARABOLOID Filed July 6, 1959 4 Sheets-Sheet 3 Ha/O.
INVENTOR G. M ED E. MLS 0N BY A ATTORNEX June 11, 1963 w. E. WILSON 3,092,932
SKELETON FRAMEWORK FDR MODIFIED HYPERBOLIC PARABOLOID Filed July 6, 1959 4 Sheets-Sheet 4 INVENTOR) [VIA/FEED f. M//. $0M,- BY
United States Patent 3,092,932 SKELETON FRAMEWORK FOR MODHED HYPERBOLIC PARABOLOID Winfred E. Wilson, 2602 N. Figueroa, Los Angeles, Calif. Filed July 6, 1959, Ser. No. 825,368 2 Claims. (Cl. 55-52) The present invention relates to roofs and specifically to a method and means for forming a roof structure wherein the structural framing may be constructed or fabricated in a shop remote from the actual place of use for the roof structure; a roof structure which economically spans large areas and eliminates the need for separate ceilings as well as permitting the use of various materials for its fabrication.
During recent years, the most prominent advance in the science of spanning roofs over large areas without the use of interior columns has been the development of thin shell construction, usually monolithic concrete.
I have found that a roof structure of the hyperbolic paraboloid type has striking architectural characteristics and ofiers many advantages both as to cost of such a structure and the use of a time saving space frame without sacrificing any of the desired architectural flexibility.
As a rule, hyperbolic paraboloid type roof structures have been expensive to produce as it required the forming of a roof slab of double curvature which characterizes this geometrical shape.
An object or" my invention is to provide a roof system which solves the forming problem in a simple, easy and inexpensive manner and which places the roof structure of my invention in a favorable competitive position.
One of the basic concepts of my invention is the provision of a light lattice member support system wherein the individual lattice members in their final position in the structure conform closely to the lines of principal stress. Further the lattice members may be shop fabricated in a flat or single plane condition, collapsed for shipment to the site, and then expanded into a doubly curved shape between previously erected boundary members. Since the lattice members are designed to carry the principal stresses directly to the boundary members, the remaining roof elements supported from these lattice members are of secondary stress importance, thus permitting their selection from a Wide variety of materials.
A further object of my invention is to provide a novel system for securing lattice work of the roof structure to boundary members.
A further object is to simplify the fabrication of a roof structure and the elimination of the influence of fixity on the structure when secured to boundary members.
A further object is the provision of a skeleton frame for an interior structure capable of having sheeting attached thereto and used as a base for Waterproof roofing.
A further object is the provision of a structure which is adaptable to many uses and which is so formed and constructed as to eliminate the task of detailing and fabricating numerous special conventional connections therefor.
A further object is the provision of a roof structure requiring a minimum of shoring.
A further object is the provision of a roof structure which is particularly adaptable to school classroom buildings, commercial buildings and industrial buildings and assassz Patented June 11, 1963 which may also be used for convention and sports halls and arenas which require roof systems spanning large distances so as to eliminate objectionable interior columns. I
Primarily the present invention relates broadly to roof shells of double curvature which are generally known as an ellipse, circle, catenary, and parabola. I chose, however, for the present invention to designate my roof structure as substantially a hyperbolic para-boloid type of shell. It is a known fact that double curved concrete shells with edges stiffened by arches or ribs have great strength due to their ability to carry any continuous load principally by direct stresses, that is, by axial compression or tension. Stresses for thin shells are relatively small compared to the compressive strength of concrete and While localized bending may occur near the edges of a shell of this character due to displacement of the edge members, for the most part the shell is free of flexural forces. The direct forces acting in a doubly curved shell are easily :determined by the cartesian system. An anticlastic shell such as a hyperbolic paraboloid may be considered either as a surface of translation or -a warped parallelogram. Surface of translation is generated by translating or moving a vertical parabola having an upward curvature over another parabola having a downward curvature, the parabola of translation lying in a plane perpendicular to the first or vertical parabola but moving parallel to it. The surface may also be generated by moving along one boundary a straight line that remains parallel to the plane of the intersecting boundary member at all times but pivots so as to slide along the opposite boundary member. 'In other words, the paraboloid may be considered as generated by a principal parabola that moves parallel to itself along an inverse principal parabola. Stresses in such a structure are of easy determination for the reason that a hyperbolic paraboloi-d shell transfers loads to supports almost entirely by direct forces so that all material in the cross section of the shell is uniformly stressed. To those interested in a mathematical consideration of stresses in hyperbolic paraboloid concrete shells, reference is made to many excellent articles on the subject as Well as in text books and specifically an article published by the Portland Cement Association entitled Elementary Analysis of Hyperbolic Paraboloid Concrete Shells; to the Journal of the American Concrete Institute, vol. 26, No. 5, January 1955, an article entitled Structural Application of Hyperbolic Paraboloidical Shells, page 397; and to an article appearing in vol. 82, No. ST 5, September 1956, of the Journal of the Structural Division of the American Society of Civil Engineers, entitled Hyperbolic Panaboloids and Other Shells of double Curvature.
An anticlastic concrete shell with stitfened edges carries any continuous load by direct stresses, that is, by axial compression or tension and for the most part the shell is free of flexural forces. Hence, it is that the edge members need not be capable of resisting lateral forces and the direct forces acting on the anticlastic shell are obtained directly from a consideration of statics alone.
In the drawings:
FIGURE 1 is a fragmentary perspective view showing four quadrants of a roof structure and embodying the invention;
FIGURE 2 is a plan view of lattice work in expanded position for one quadrant of a roof structure;
FIGURE 3 shows the lattice work in FIGURE 2 in collapsed condition;
FIGURE 4 is a plan view of a quadrant of the roof skeleton structure showing boundary members enclosing the lattice members such as shown in FIGURE 2;
FIGURE 5 is a view taken substantially on the line 55 of FIGURE 4;
FIGURE 6 is a view looking in the direction of the arrow 6 of FIGURE 4;
FIGURE 7 is an enlarged fragmentary, sectional view on the line 77' of FIGURE 1, of a connection which may be used between the boundary members and the lattice members;
FIGURE 8 is a fragmentary sectional view taken on the line 8-8 of FIGURE 7;
FIGURE 9 is an enlarged elevation of one of the members used in the connection shown in FIGURES 7 and 8;
FIGURE 10 is a fragmentary, partially sectional view showing a pin connection between two channel type lattice members;
FIGURE 11 is an enlarged fragmentary, sectional view taken on the line 1111 of FIGURE 1 showing the lattice construction provided with a ceiling and with roofing material;
FIGURE 12 is a diagrammatic view of a single quadrant of a roof structure embodying the invention and showing mathematical notations for use in the design of said quadrant;
FIGURE '13 is a further diagrammatic View on line 13--13 of FIGURE 15, the view containing notations;
FIGURE 14 is an outline plan view of one of the quadrants of the roof structure; and,
FIGURE 15 is a section on the line 15-15 of FIG- URE 14, the said view having mathematical notations thereon.
Referring now to the drawings and specifically to FIG- URES 2 and 3, I have shown lattice members designated as 1 and 2, the lattice members, of which there are a plurality, are in overlapped or in crossed relationship and pinned together for movement at spaced points as shown at 3. The pins may take the form of rivets, see FIG- URE 10, and the lattice members 1 and 2 may be of channel form as illustrated in FIGURE 10, the Web portions of said members being in juxtaposition. While the lattice members may be collapsed as shown in FIGURE 3 so as to occupy a small space, the lattice members when expanded, as shown in FIGURE 2 may assume various configurations. Thus the spacing between the lattice members may substantially form squares or diamonds, as is obvious. The lattice members are adapted to be confined by boundary members such as shown in FIGURE 4, the members of which are designated as 4, 5, 6 and 7. In FIGURE 4 the boundary or edge beams, or members may take the sectional form shown in FIGURE 7 which is to say, beams of channel form.
Assuming that I have chosen a quadrant for a roof structure of square form so far as the boundary members are concerned, the lattice members 1 and 2 are placed within said boundary members in such a manner that the lattice members assume, together with the boundary members, the form of a hyperbolic paraboloid or substantially so. The number of lattice members and their points of connection with the boundary members must be determined from a consideration of the stresses to be encountered and the size of the roof structure. The boundary members are laid out to suit the desired architectural concept and the boundary members transfer the load or forces from the lattice work to the columns or other load support elements at the vertexes.
Indetermining the shape of the lattice members, a circular arc is chosen such as is shown at 8 in FIGURE 4 which passes through the points 9, 10, and 11. Where the points 9 and 10 are intersections or vertexes between boundary members 6 and 7, and 4 and 5 respectively,
the point 11 on said circular arc lies in the plane bisecting the angle between the planes determined by 9, 12 and 10; and 9, 10 and 13 respectively, so the point 1 1 lies midway between the diagonal 91-0 and the diagonal 12-13. This are is then moved parallel to itself toward points 10 and 12, the arc resting at all times on the boundary members. The surface thus generated is substantially that of a hyperbolic paraboloid since a relatively flat circular arc differs minutely from a paraboloid of the same span. A selected module is then laid oif along the generating arc and where these points intersect the boundary members, the opposing lattice members 2 are located. i' i If now the two elevations shown in FIGURES 5 and 6 are examined, it will be seen that the lattice members 2 are in compression and bow upwardly while the tension members 1 how downwardly thus satisfying the hyperbolic paraboloid stress requirements, with the lattice members 1 and 2 lying along the line of principal stresses.
Since the compression members of lattice 2 intersect the tension members of the lattice 1 at equally spaced distances and are pin connected as by rivets 3 shown in FIGURE 10, the lattice members may be prefabricated in fiat condition and collapsed for shipment, as shown in FIGURE 3.
In erecting the structure, the boundary members 4, 5, 6 and 7 of one quadrant are assembled and shored either in their final position mat a temporarily lower level to facilitate the placing of the lattice in position. In FIG- URE l the lattice has been expanded into position and placed on top of the boundary members 4 to 7 inclusive for one quadrant, with the boundary members secured at the vertexes to column supports 14. It will be noted in FIGURE 1 that the four quadrants are so arranged as to be symmetrical about any two intersecting boundary members; Since the members of the lattice work are relatively flat, the lattice may be sprung downwardly for connection with the boundary members. The connections to the boundary members may take the form shown in FIGURES 7, 8 and 9 and wherein the web 15 of each boundary member is provided with a series of spaced transverse bores 16 formed to receive a flanged disk 17, the said disk having a central slot 18, the edges bounding the said slot being on an arc or lip shaped, as shown in FIGURE 7. A clip '19 of U-shape is passed through the slot 18, the bight portion 20 of which is adapted to confine a pin 21 with the pin engaging one or more washers or shims 22 on the inner surface of disk 17. The legs of the said clip are riveted to and embrace overlapped ends of the lattice members 1 and 2. As shown in FIGURE 9, the slot 18 is of elongated form conforming in size to the width of the clip. The construction is such that the clip and the disk may be rotated in a vertical plane so that the angle of intersection of the lattice members with the boundary members may be locked in final position by driving the pin 21 into the bight portion 20 of the clip. This connection provides an unlimited variation in angularity and eliminates the task of detailing and fabricating numerous special conventional connections, each difiering slightly from each other.
One of the advantages of this invention is that a wide variety of roof constructions can be fabricated economically. Once the skeleton framework is in place, such conventional roof constructions as light steel deck, wood, or plywood sheathing can be attached and used as a base for the waterproof roofing; or permanent or temporary forming can be suspended below the lattice work and monolithic roof of gypsum or Portland cement concrete can be poured in place without the necessity of complicated shor- Furthermore, one advantage of the permanent forming is illustrated by using an expanded metal lath below the lattice, plastering the ceiling with at least a scratch coat and using this for the form of a poured gypsum concrete roof. This gives a light structure, provides good insulation and results in economy. This construction is illustrated in FIGURE 11, wherein the roof coat is shown at 23, the metal lath at 24 and plaster at 25.
The operation, uses and advantages of the invention are as follows.
In order to understand the invention and the particular design by which quadrants of the roof structure are fabricated and the stresses determined, I might say initially that the number of lattice members are determined much in the same manner'that the spacing of rafters in a building are determined, in view of the material to be used; i.e., plywood, concrete, etc. Also, it is convenient to assume that the rise of the roof structure is usually about one-third of the dimension of a boundary member. Further, the lattice work members lie on or close to the line of principal stress.
My roof structure and its fabrication approximates a true hyperbolic paraboloid calculation by simple trigonometry as may be readily demonstrated for a given plan, dimensions and height, the radius and length of generating arc. In the general case which I have given in FIGURE 14, I show the basic quadrant as square in plane, or, the scheme may be applied equally Well to plans which are not square; i,e., rectangular. For instance, referring to FIG- URES 13, 14 and 15, if the sides a and b and the rise h are given, then from the diagrams and the figures thereon given: sides a, b and rise h.
c=a sin 45=b sin 45 Tan a=hl2c=tan B=h/c= ..a and B are known Length of are L21rR( In the general equations, it may be shown that for a specific case, the rise at any point along the vertical projection of the general generating are for the hyperbolic paraboloid shape very closely approximates the values just given in the equations.
In order to give a concrete example of the design for a single quadrant of a roof structure, reference is made to FIGURE 12 and to the notations appearing thereon, this being a single quadrant and the design to be considered is a 30 x 30 roof; i.e., the roof would have four of the quadrants of the type shown in FIGURE 12, each boundary member being substantially 15' in length. The following defines the constants, roof loading, the boundary member loading, as well as other design factors. The following notations are given.
For this ratio Allowable compression stress=5870#/sq. in. [i'=Square feet [l"=Square inches H=Axial force on horizontal boundary member T=Axial force on sloping boundary member P=Tota1 load (LL+DL) on quadrant L=Length of corner column (assumed as 10 ft.) fa=Actual compression stress in pounds/sq. inch=fc 5" C 6.7#=5" channel 6.71bs./lin. ft.
FOR LATTICE MEMBERS 2'0' O.C.-USE BAR SIZE CHANNEL 2 x X 916 1.68#/
FOR BOUNDARY MEMBERS IN COMPRESSION (CORNER COLUMNS) N= 15X 1125=16,900# horiz.
16,900 T: 0949 =l7,800# on slope Check:
Total load=15 X 15 50=11,250# P=2T sin a=2 17,800 0.316=11,250# Use 5 C 6.7:
L=15.8 A=1.95E| r =1.95
15.8X 12 an Fa=12,440#/El Tension member- 10' corner column-Use 3" std. pipe L=10 A=2.23E| r=1 .16
FOR BOUNDARY MEMBERS IN TENSION (RIDGE COLUMNS) Say minimum boundary member C 6.7 or same as for compression member-Use 5 C 6.7 Ridge columns-Use 4 std. pipe corner columns (for unbalanced LL only)-Use 3" std. pipe MATERIAL TAKE OFF FOR 30 X 30' ROOF (a) For Boundary Members in Compression (Corner Columns) 1 Lbs. I
Lattice members, 1.68 X900 1510 Boundary members, 6.7 60 4 1610 Tension members, 2.9X30'X4 350 Corner columns, 7.6 10 4 300 Sub total 3770 Details 570 Total wt. 4340 Unit wt. 4340=4.8#/|
(b) For Boundary Members in Tension (Ridge Columns) 7 Lbs. Lattice members, 1.68X900 1510 Boundary members, 6.7 60 4 1610 Ridge columns, 10.8)(15 X4 650 Corner columns, 7.6 10 4 300 Sub total 4070 Details 15% 610 Total wt. 4680 Unit wt. 4680=5.2#/[:|'
It is thought that those skilled in the art to which this invention pertains, will fully understand the design features of the present roof structure as well as the mathematics involved in its design. The present roof structure has been thoroughly tested in actual use and has been found to perform in a satisfactory manner.
I claim:
1. A skeleton frame structure of hyperbolic paraboloid configuration including: four straight, rigid boundary members, two of which are stressed axially in compression and the other two are stressed in tension, said boundary members being joined at their ends to enclose an area which when projected onto a horizontal plane assumes approximately the shape of a parallelogram, two of said boundary members lying in one plane and the other two of said boundary members lying in a second plane which intersects the first plane along a diagonal of the area enclosed, and a lattice secured to all four of the boundary members, and formed of structural tension members and structural compression members lying within the confines of the boundary members; the actual lengths of each of said tension members and of said compression members being greater than its respective projected lengths between the boundary members, each of the tension members being arranged approximately parallel to said diagonal and being curved in one plane and positioned with the concave side facing upwardly, each of said compression members being approximately parallel to the second diagonal of the area enclosed and being curved in one plane and positioned with the convex side facing upwardly, each of the tension members and the compression members being so located that the respective lines of force carried through them intersect approximately at the lines of force acting through the axes of the boundary members, and pivot means joining said tension members and said compression members at substantially all points of intersection within the confines of the four boundary members so that the lattice formed by said tension and compression members may be collapsed and later expanded into position between said boundary members, the tension and the compression members each being subject to equal direct stresses With no components normal to each other at points of intersection, whereby neither of these members tends to impose a stress on the other member at such points of intersection.
2. The structure as set forth in claim 1, said lattice being joined to the boundary members by rotative connections thus eliminating the task of detailing and fabricating numerous special conventional connections, each difiering slightly from each other being a pivotal connection whereby the lattice formed by said tension and compression members may be collapsed and later expanded into position between said boundary members.
References Cited in the file of this patent UNITED STATES PATENTS 2,052,113 Ruppel Aug. 25, 1936 2,674,252 Finlayson et a1. Apr. 6, 1954 2,697,845 Broner Dec. 28, 1954 2,912,940 Baroni Nov. 17, 1959 2,928,360 Heine Mar. 15, 1960 2,961,802 Mongan et a1 Nov. 29, 1 960 FOREIGN PATENTS 132,987 Australia June 1, 1949 450,290 Italy -1 July 12, 1949 OTHER REFERENCES Engineering News-Record, May 20, 1954, pp. 64, 65. Journal of the American Concrete Institute, January 1955, pp. 397-415, page 408 relied on.

Claims (1)

1. A SKELETON FRAME STRUCTURE OF HYPERBOLIC PARABOLOID CONFIGURATION INCLUDING: FOUR STRAIGHT, RIGID BOUNDARY MEMBERS, TWO OF WHICH ARE STRESSED AXIALLY IN COMPRESSION AND THE OTHER TWO ARE STRESSED IN TENSION, SAID BOUNDARY MEMBERS BEING JOINED AT THEIR ENDS TO ENCLOSE AN AREA WHICH WHEN PROJECTED ONTO A HORIZONTAL PLANE ASSUMES APPROXIMATELY THE SHAPE OF A PARALLELOGRAM, TWO OF SAID BOUNDARY MEMBERS LYING IN ONE PLANE AND THE OTHER TWO OF SAID BOUNDARY MEMBERS LYING IN A SECOND PLANE WHICH INTERSECTS THE FIRST PLANE ALONG A DIAGONAL OF THE AREA ENCLOSED, AND A LATTICE SECURED TO ALL FOUR OF THE BOUNDARY MEMBERS, AND FORMED OF STRUCTURAL TENSION MEMBERS AND STRUCTURAL COMPRESSION MEMBERS LYING WITHIN THE CONFINES OF THE BOUNDARY MEMBERS; THE ACTUAL LENGTHS OF EACH OF SAID TENSION MEMBERS AND OF SAID COMPRESSION MEMBERS BEING GREATER THAN ITS RESPECTIVE PROJECTED LENGTHS BETWEEN THE BOUNDARY MEMBERS, EACH OF THE TENSION MEMBERS BEING ARRANGED APPROXIMATELY PARALLEL TO SAID DIAGONAL AND BEING CURVED IN ONE PLANE AND POSITIONED WITH THE CONCAVE SIDE FACING UPWARDLY, EACH OF SAID COMPRESSION MEMBERS BEING APPROXIMATELY PARALLEL TO THE SECOND DIAGONAL OF THE AREA ENCLOSED AND BEING CURVED IN ONE PLANE AND POSITIONED WITH THE CONVEX SIDE FACING UPWARDLY, EACH OF THE TENSION MEMBERS AND THE COMPRESSION MEMBERS BEING SO
US825368A 1959-07-06 1959-07-06 Skeleton framework for modified hyperbolic paraboloid Expired - Lifetime US3092932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US825368A US3092932A (en) 1959-07-06 1959-07-06 Skeleton framework for modified hyperbolic paraboloid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US825368A US3092932A (en) 1959-07-06 1959-07-06 Skeleton framework for modified hyperbolic paraboloid

Publications (1)

Publication Number Publication Date
US3092932A true US3092932A (en) 1963-06-11

Family

ID=25243840

Family Applications (1)

Application Number Title Priority Date Filing Date
US825368A Expired - Lifetime US3092932A (en) 1959-07-06 1959-07-06 Skeleton framework for modified hyperbolic paraboloid

Country Status (1)

Country Link
US (1) US3092932A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226892A (en) * 1963-03-20 1966-01-04 Richard A Rose Shell roof construction
US3291157A (en) * 1963-09-04 1966-12-13 Kotelly John Christopher Internally generated and internally coupled tubing and pipe extensions
US3299585A (en) * 1963-05-14 1967-01-24 Arnold H Wilkins Building construction
DE1916077B1 (en) * 1969-03-25 1970-12-03 Steffens & Noelle Ag Method for producing a roof structure or the like. and then produced roof structure or the like.
US3727356A (en) * 1968-09-17 1973-04-17 E Appenzeller Prefabricated structures
US3748804A (en) * 1971-07-16 1973-07-31 George P De Suspended ceiling system
US3925941A (en) * 1972-01-10 1975-12-16 Synestructics Inc Modular curved surface space structures
US3992830A (en) * 1973-07-26 1976-11-23 Shotwell Samuel H Structural panel
US4320603A (en) * 1980-06-16 1982-03-23 Solomon Kirschen Roof construction
USRE31565E (en) * 1977-06-16 1984-04-24 Rupp Industries, Inc. Portable shelter
US4651479A (en) * 1985-05-30 1987-03-24 Kersavage Joseph A Protective structural module and method for construction
US4685257A (en) * 1985-05-10 1987-08-11 Temcor Shelter roof structure
US6129102A (en) * 1993-04-05 2000-10-10 Carter; Mark C. Collapsible shelter with elevated canopy
US6748715B1 (en) * 1998-07-24 2004-06-15 S Black Carpenters Limited Safety unit
US20080244992A1 (en) * 2007-04-09 2008-10-09 Michael Regan Hypershelter
US20090071081A1 (en) * 2007-04-09 2009-03-19 Michael Regan Hypershelter
US20100237028A1 (en) * 2009-03-20 2010-09-23 Northen States Metals Company Support system for solar panels
US8464496B2 (en) 2009-03-20 2013-06-18 Northern States Metals Company Support system for solar panels
US8839573B2 (en) 2011-02-11 2014-09-23 Northern States Metals Company Spring clip
US9303663B2 (en) 2013-04-11 2016-04-05 Northern States Metals Company Locking rail alignment system
WO2016131152A1 (en) * 2015-02-20 2016-08-25 0798555 B.C. Ltd. Modular hyperbolic trapezoid fabric structure
AT520647A4 (en) * 2018-04-30 2019-06-15 Schade Maximilian Transportable structure
USD991490S1 (en) * 2020-12-31 2023-07-04 Sunjoy Industries Group Ltd. Gazebo
US11732496B1 (en) * 2016-06-30 2023-08-22 DLX Enterprises, LLC Shelter and hub system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2052113A (en) * 1933-06-19 1936-08-25 Frederick H Ruppel Structural fabric
US2674252A (en) * 1950-10-30 1954-04-06 Magnesium Products Of Milwauke Collapsible arch support
US2697845A (en) * 1951-06-18 1954-12-28 Paul E Broner Link structure
US2912940A (en) * 1952-08-26 1959-11-17 Baroni Giorgio Roof construction
US2928360A (en) * 1956-10-16 1960-03-15 Jr Edmund C Heine Flexural tension framing system and structural unit thereof
US2961802A (en) * 1957-02-18 1960-11-29 William T Mongan Stressed structural unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2052113A (en) * 1933-06-19 1936-08-25 Frederick H Ruppel Structural fabric
US2674252A (en) * 1950-10-30 1954-04-06 Magnesium Products Of Milwauke Collapsible arch support
US2697845A (en) * 1951-06-18 1954-12-28 Paul E Broner Link structure
US2912940A (en) * 1952-08-26 1959-11-17 Baroni Giorgio Roof construction
US2928360A (en) * 1956-10-16 1960-03-15 Jr Edmund C Heine Flexural tension framing system and structural unit thereof
US2961802A (en) * 1957-02-18 1960-11-29 William T Mongan Stressed structural unit

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226892A (en) * 1963-03-20 1966-01-04 Richard A Rose Shell roof construction
US3299585A (en) * 1963-05-14 1967-01-24 Arnold H Wilkins Building construction
US3291157A (en) * 1963-09-04 1966-12-13 Kotelly John Christopher Internally generated and internally coupled tubing and pipe extensions
US3727356A (en) * 1968-09-17 1973-04-17 E Appenzeller Prefabricated structures
DE1916077B1 (en) * 1969-03-25 1970-12-03 Steffens & Noelle Ag Method for producing a roof structure or the like. and then produced roof structure or the like.
US3748804A (en) * 1971-07-16 1973-07-31 George P De Suspended ceiling system
US3925941A (en) * 1972-01-10 1975-12-16 Synestructics Inc Modular curved surface space structures
US3992830A (en) * 1973-07-26 1976-11-23 Shotwell Samuel H Structural panel
USRE31565E (en) * 1977-06-16 1984-04-24 Rupp Industries, Inc. Portable shelter
US4320603A (en) * 1980-06-16 1982-03-23 Solomon Kirschen Roof construction
US4685257A (en) * 1985-05-10 1987-08-11 Temcor Shelter roof structure
US4651479A (en) * 1985-05-30 1987-03-24 Kersavage Joseph A Protective structural module and method for construction
US6129102A (en) * 1993-04-05 2000-10-10 Carter; Mark C. Collapsible shelter with elevated canopy
US6412507B1 (en) * 1993-04-05 2002-07-02 Mark C. Carter Collapsible shelter with elevated canopy
US6748715B1 (en) * 1998-07-24 2004-06-15 S Black Carpenters Limited Safety unit
US20090071081A1 (en) * 2007-04-09 2009-03-19 Michael Regan Hypershelter
US20080244992A1 (en) * 2007-04-09 2008-10-09 Michael Regan Hypershelter
US7908817B2 (en) * 2007-04-09 2011-03-22 Michael Regan Hypershelter
US8001732B2 (en) * 2007-04-09 2011-08-23 Michael Regan Hypershelter
US20100237028A1 (en) * 2009-03-20 2010-09-23 Northen States Metals Company Support system for solar panels
US8316590B2 (en) * 2009-03-20 2012-11-27 Northern States Metals Company Support system for solar panels
US8464496B2 (en) 2009-03-20 2013-06-18 Northern States Metals Company Support system for solar panels
US8650812B2 (en) 2009-03-20 2014-02-18 Northern States Metals Company Support system for solar panels
US8839573B2 (en) 2011-02-11 2014-09-23 Northern States Metals Company Spring clip
US9303663B2 (en) 2013-04-11 2016-04-05 Northern States Metals Company Locking rail alignment system
WO2016131152A1 (en) * 2015-02-20 2016-08-25 0798555 B.C. Ltd. Modular hyperbolic trapezoid fabric structure
US10081965B2 (en) 2015-02-20 2018-09-25 0798555 B.C. Ltd. Modular hyperbolic trapezoid fabric structure
US11732496B1 (en) * 2016-06-30 2023-08-22 DLX Enterprises, LLC Shelter and hub system
AT520647A4 (en) * 2018-04-30 2019-06-15 Schade Maximilian Transportable structure
AT520647B1 (en) * 2018-04-30 2019-06-15 Schade Maximilian Transportable structure
WO2019210342A1 (en) 2018-04-30 2019-11-07 Schade Maximilian Transportable structure
CN112041517A (en) * 2018-04-30 2020-12-04 马克西米利安·沙德 Transportable structure
CN112041517B (en) * 2018-04-30 2022-03-04 马克西米利安·沙德 Transportable structure
USD991490S1 (en) * 2020-12-31 2023-07-04 Sunjoy Industries Group Ltd. Gazebo

Similar Documents

Publication Publication Date Title
US3092932A (en) Skeleton framework for modified hyperbolic paraboloid
US2928360A (en) Flexural tension framing system and structural unit thereof
US4005556A (en) Lightweight truss-framed house
US3234699A (en) Building block assembly construction and method of erection
US3079649A (en) Beams and building components
US3800490A (en) Building structure for floors and roofs
US3381432A (en) Stressed-skin span structure
US3913286A (en) Modular building unit
US3557501A (en) Folded plate structures and components therefor
US2979169A (en) Building structure
US3380203A (en) Modular free-span curvilinear structures
US3397500A (en) Building structure with alternating structural members and panels in compression
US3757478A (en) Lightweight hyperbolic paraboloid roof structure
JP6093798B2 (en) Rafter joint structure
US3950901A (en) Domical structure with novel beam interlocking connections
US3798849A (en) Hyperbolic paraboloid roof structure
US3841038A (en) Roof construction
Whitney et al. Reinforced concrete folded plate construction
US1990838A (en) Roof construction
US3591991A (en) Cantilevered roof section
US20210254337A1 (en) Extended roof truss with outboard purlins having load supporting k-trusses at extensions
US2052113A (en) Structural fabric
US3102609A (en) Structures
US4100708A (en) Building roofing structure
US3090165A (en) Lightweight molded building slab