US3085029A - Flame resistant finish for textiles - Google Patents

Flame resistant finish for textiles Download PDF

Info

Publication number
US3085029A
US3085029A US79087A US7908760A US3085029A US 3085029 A US3085029 A US 3085029A US 79087 A US79087 A US 79087A US 7908760 A US7908760 A US 7908760A US 3085029 A US3085029 A US 3085029A
Authority
US
United States
Prior art keywords
fabric
apo
diammonium phosphate
percent
tris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US79087A
Inventor
Thomas D Miles
Francis A Hoffman
Merola Alfred
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US79087A priority Critical patent/US3085029A/en
Application granted granted Critical
Publication of US3085029A publication Critical patent/US3085029A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/667Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing phosphorus in the main chain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • Y10S428/921Fire or flameproofing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • Y10T442/2672Phosphorus containing
    • Y10T442/268Phosphorus and nitrogen containing compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2762Coated or impregnated natural fiber fabric [e.g., cotton, wool, silk, linen, etc.]
    • Y10T442/277Coated or impregnated cellulosic fiber fabric

Definitions

  • diammonium phosphate acts as a polymerization catalyst for the APO and enables it to form a polymer in situ on and between the fibers of the fabric, when cured above room temperature.
  • diammonium phosphate is a very inexpensive chemical
  • such a composition is more economical than a composition of THPC and APO as active ingredients.
  • Another object of our invention is an economical flame resistance imparting textile finish which in its preferred form retains its eficiency after repeated launderings.
  • a flame resistant textile finish is provided by an aqueous solution of diammonium phosphate and APO, wherein the APO is present in a proportion of at least 1 to 6 parts by weight per 1 part by weight of diammonium phosphate, the strength of the solution being at least about 5 percent APO.
  • the finish is laundry-fast if the APO concentration is at least about 15 percent.
  • the strength of the solution may be raised above 15 percent APO; however, above percent no appreciable increase in flame resistance and laundry resistance occurs.
  • the combined aqueous solution contains 5 percent (or more) diammonium phosphate and about HVUU ill-i LIN-HUI- RUUiw 3,085,029 Patented Apr. 9, 1963 2 15-20 percent (in a preferred embodiment 18.2 percent)
  • APO Padding of the fabric is effected for a substantial wet pick-up, say of the order of 5575 percent, which after drying and curing corresponds to a dry weight add-on of about 4-15 percent of APO polymer (preferably above 7 percent), depending on the strength of the solution in terms of APO contents.
  • the APO strength of the bath may be reduced to about 5 percent strength level; however, for laundry-fastness, an APO strength of about 15 percent or more is needed.
  • the fabric After the fabric is removed from the bath, it is dried and cured above room temperature by a one-step or plural-step exposure to an elevated temperature which is non-injurious to the fabric; say drying at about 250 F. and curing of the dried fabric at about 300 F. to produce the APO polymer in situ. Obviously, these two steps can be combined, e.g., by drying and curing step at about 250-300" F.
  • EXAMPLE 1 Fifty yards of 8.5 oz. cotton sateen cloth (Military Specification MIL-012095) was padded through a bath containing 5% diammonium phosphate and 18.2% APO in the following bath formulation:
  • the wet pick-up was The fabric was dried at 250 F. for two minutes and cured at 300 F. for five minutes.
  • the weight of the treated fabric, including the resin finish formed in situ thereon was 10% above the weight of the untreated fabric.
  • the treated fabric was subdivided into several identical lengths, some of these identical samples were submitted to laundering at predetermined numbers of cycles.
  • the flame resistance and tear resistance of the treated fabric (unlaundered and laundered) were determined by a standard method, using a vertical Bunsen burner in accordance with Textile Testing Method 5902 ⁇ Federal Specification CCC-T- 191b, Textile Test Methods, dated May 15, 1951). Afterfiame and after-glow were measured in seconds, and the char length in inches.
  • the following table summarizes the results obtained:
  • Example 2 Example 3
  • Example 4 Example 5 159; APO 15% APO 15% APO 15% APO 15% APO 2/z'% DA? 5% DAP DAP DAP Wot pickup percent resin 63.0 63. 5 6S. 3 66. 0 Add-on (dry weight) 7. 6 10. 5 14.8 13. 7
  • the same type of cotton fabric was then immersed in a bath containing 5% radioactive diarnmoniurn phosphate and 18% APO.
  • the fabric was oven dried at 100 C. and cured for five minutes at 140 C. After four cold water rinses the fabric was found by the betaparticle counter to contain 43.6% of the original radioactive diamrnoniurn phosphate.
  • the fabric was then given four hot water rinses and was found by the same technique to contain 40.5% of the original radioactive diarnmoniurn phosphate. After boiling for one-half hour in soap and soda ash (2% soap and .l% soda ash), the fabric was found by the same technique to have retained 36.6% of the original radioactive diammonium phosphate.
  • a fiame-resistance-imparting textile finishing composition for fibrous organic fabrics comprising an aqueous solution of diammonium phosphate and tris-l-aziridinyl phosphine oxide, said tris-l-aziridinyl phosphine oxide being present in at least about 5 percent strength and a proportion of about 1 to 6 parts by weight per 1 part by weight of diammonium phosphate.
  • Method for rendering a fibrous organic fabric flameresistant comprising impregnating said fabric with an aqueous solution according to claim 5, and curing said impregnated fabric above room temperature until a poly mer of tris-l-aziridinyl phosphine oxide is formed in situ thereon.
  • Method for rendering a fibrous organic fabric flame-resistant after repeated launderings comprising jmpregnating said fabric with an aqueous solution according to claim 6, and curing said impregnated fabric above room temperature until a polymer of tris-l-aziridinyl phosphine oxide is formed in situ thereon.
  • Method for rendering a cotton fabric flame-resistant after repeated launderings comprising impregnating said cotton fabric with an aqueous solution of at least about 5 percent diammonium phosphate and at least 10 oxide.

Description

3,085,029 FLAME RESISTANT FINISH FOR TEXTILES Thomas D. Miles, Fayville, Francis A. Hofiman, Millis,
and Alfred Merola, Needham, Mass., assignors to the United States of America as represented by the Secretary of the Army No Drawing. Filed Dec. 28, 1960, Ser. No. 79,087
Claims. (Cl. 117-137) (Granted under Title 35, US. Code (1952), see. 266) droxymethyl phosphonium chloride THPCFBT 'odi fiame-resistance imparting properties for cotton fabrics and other textiles. It is also known that a combination of 'IHPC and tris-l-aziridinyl phosphine oxide (APO) renders cotton or other fabrics flame resistant.
- APO, by itself, when applied to a fabric in an aqueous bath, does not improve the flame resistance of the fabric.
We attribute this to the fact that monomeric APO does not sufliciently polymerize. Inasmuch as THPC is a relatively expensive chemical, we have endeavored to develop a flame resistant textile finishing composition which does not contain THPC.
We have now discovered that an aqueous solution of APO when applied to a cotton or other fabric in the presence of diammonium phosphate (DAP) in certain specified proportions, results in a flame resistant fabric which retains its flame resistance even after repeated launde'rings. Without limiting ourselves to any particular theory underlying this unexpected result, we presently believe that the diammonium phosphate acts as a polymerization catalyst for the APO and enables it to form a polymer in situ on and between the fibers of the fabric, when cured above room temperature.
Inasmuch as diammonium phosphate is a very inexpensive chemical, such a composition is more economical than a composition of THPC and APO as active ingredients.
It is accordingly an object of our invention to provide an economical and efiicient flame resistance imparting treatment for fabrics, which can be carried out with conventional textile padding and curing equipment, without noxious fumes and without the need for specially trained personnel.
Another object of our invention is an economical flame resistance imparting textile finish which in its preferred form retains its eficiency after repeated launderings.
Other objects and advantages of our invention will readily occur to the expert from the following description of several preferred methods and compositions for carrying our invention into practice.
Our research has shown that a flame resistant textile finish is provided by an aqueous solution of diammonium phosphate and APO, wherein the APO is present in a proportion of at least 1 to 6 parts by weight per 1 part by weight of diammonium phosphate, the strength of the solution being at least about 5 percent APO. The finish is laundry-fast if the APO concentration is at least about 15 percent. The strength of the solution may be raised above 15 percent APO; however, above percent no appreciable increase in flame resistance and laundry resistance occurs. In a presently preferred embodiment of our invention, the combined aqueous solution contains 5 percent (or more) diammonium phosphate and about HVUU ill-i LIN-HUI- RUUiw 3,085,029 Patented Apr. 9, 1963 2 15-20 percent (in a preferred embodiment 18.2 percent) APO Padding of the fabric is effected for a substantial wet pick-up, say of the order of 5575 percent, which after drying and curing corresponds to a dry weight add-on of about 4-15 percent of APO polymer (preferably above 7 percent), depending on the strength of the solution in terms of APO contents.
Where laundry resistance is not of the essence, the APO strength of the bath may be reduced to about 5 percent strength level; however, for laundry-fastness, an APO strength of about 15 percent or more is needed.
It is neither necessary nor desirable that the diammonium phosphate be present in the solution in an amount exceeding that of the APO. To facilitate wet pick-up, a small amount of a commercial Wetting agent, as for instance Triton X-l00 may be added to the solution; however, this is optional.
After the fabric is removed from the bath, it is dried and cured above room temperature by a one-step or plural-step exposure to an elevated temperature which is non-injurious to the fabric; say drying at about 250 F. and curing of the dried fabric at about 300 F. to produce the APO polymer in situ. Obviously, these two steps can be combined, e.g., by drying and curing step at about 250-300" F.
We now proceed .to illustrate the practice of our invention by giving several examples.
EXAMPLE 1 Fifty yards of 8.5 oz. cotton sateen cloth (Military Specification MIL-012095) was padded through a bath containing 5% diammonium phosphate and 18.2% APO in the following bath formulation:
The wet pick-up was The fabric was dried at 250 F. for two minutes and cured at 300 F. for five minutes. The weight of the treated fabric, including the resin finish formed in situ thereon was 10% above the weight of the untreated fabric. The treated fabric was subdivided into several identical lengths, some of these identical samples were submitted to laundering at predetermined numbers of cycles. The flame resistance and tear resistance of the treated fabric (unlaundered and laundered) were determined by a standard method, using a vertical Bunsen burner in accordance with Textile Testing Method 5902 {Federal Specification CCC-T- 191b, Textile Test Methods, dated May 15, 1951). Afterfiame and after-glow were measured in seconds, and the char length in inches. The following table summarizes the results obtained:
Table 1 After- Atter- Char Treated Fabric flame glow Length (Seconds) (Seconds) (Inches) Initial 0 1- 2 3. 9 Laundered:
1 cycle 0 1 4. 3 0 l 4. 9 0 l 4. 6 0 l 4. 8 0 1 4. 7 15 cycles 0 2 4. 9
EXAMPLES 2-6 The following examples illustrate a number of variations of the treatment of Example 1.
Table 2 Example 2 Example 3 Example 4 Example 5 159; APO 15% APO 15% APO 15% APO 2/z'% DA? 5% DAP DAP DAP Wot pickup percent resin 63.0 63. 5 6S. 3 66. 0 Add-on (dry weight) 7. 6 10. 5 14.8 13. 7
AF AG CL AF AG CL AF AG CL AF AG CL 0 1 4. 2 0 1 3. 8 0 1 3. 9 0 1 2, 7 0 2 4.7 0 1 3.9 0 1 4.0 0 1.7 3.1 G 1.3 4.5 0 1 3.3 0 1 4.4 0 1.1 4.0 0 1. 2 5. 3 0 1 4. 5 0 1 4. 7 0 1 4. 3 0 1.2 5.0 0 1 4.5 0 1 4.7 0 1.4 4.1 (l 2.1 6.0 0 1 4.4 0 1 4.4 0 1.0 4.0 15 cycles- 0 l L2 4.3 0 l 4.4 0 1.7 '1. 4 0 1.2 3.7
AF Aiterflame (seconds).
AG Afterglow (seconds).
CL Char length (inches).
In a run with a solution of 10% APO and 10% diammonium phosphate for a wet pick-up of 65.5% and a resin add-on (dry weight) of the finished fabric of 10.5%, fiarne resistance was imparted as follows: after-flame 0 seconds, after-glow 1 second, char length 3.9. This is quiet acceptable. However, after repeated launderings (3 cycles) the flame resistance was lost. A similar result was obtained with a solution containing 10% APO and 5% diarnmonium phosphate (dry add-on 7%).
In two control experiments with 5% APO, and 5 and 10% diammonium phosphate, respectively (resin add-on dry weight, 4.4 and 6.7%, respectively), initial flame resistance was similar to that imparted by the just-described bath containing 10% APO but the flame resistance did not survive a one-cycle laundering.
While the foregoing examples are in terms of cotton fabrics, the invention can also be practiced with other cellulosic or non-cellulosic fibrous materials such as rayon, wool and the like, to reduce their flammability.
In order to substantiate the synergistic effect of our fabric finishing composition, and to determine whether diammonium phosphate is retained therein before and after laundering, we have applied the same with the use of diammonium phosphate, containing radioactive phosphorus (P An 8.5 oz. cotton sateen fabric was immersed in a bath containing 5% diarnmonium phosphate only, the phosphorus component of which was radioactive P The fabric was squeezed, oven dried at 100 C. (212 PI), and cured for five minutes at 140 C. (284 F). Using a beta-particle counter, it was found that only 6.95% of the radio active diammonium phosphate was retained after four cold water rinses.
The same type of cotton fabric was then immersed in a bath containing 5% radioactive diarnmoniurn phosphate and 18% APO. The fabric was oven dried at 100 C. and cured for five minutes at 140 C. After four cold water rinses the fabric was found by the betaparticle counter to contain 43.6% of the original radioactive diamrnoniurn phosphate. The fabric was then given four hot water rinses and was found by the same technique to contain 40.5% of the original radioactive diarnmoniurn phosphate. After boiling for one-half hour in soap and soda ash (2% soap and .l% soda ash), the fabric was found by the same technique to have retained 36.6% of the original radioactive diammonium phosphate.
These results indicate that phosphorus from the diammonium phosphate is firmly retained in the APO finish produced in the presence of diammonium phosphate after repeated hot water laundering, while diammonium phosphate, applied by itself, is easily rinsed out by laundermg.
Having thus described the principle of our invention,
and several methods for carrying the same into practice, we wish it to be understood that specific operating data set forth in such examples are to be taken as illustrative only and not for the purpose of limiting the scope of our invention thereto, inasmuch as a number of variations and modifications will readily ocur to the expert without departing from the spirit of our invention. We thus intend to claim our invention broadly and to that end define the same by the appended claims.
We claim:
1. A flame resistant fibrous organic fabric impregnated with tris-l-aziridinyl phosphine oxide polymerized in situ on said fabric in the presence of diammonium phosphate, said tris-l-aziridinyl phosphine oxide being in a proportion from about 1 to about 6 parts by weight per 1 part by weight of said diammonium phosphate, said tris-l-aziridinyl phosphine oxide and said diammonium phosphate being applied to said fabric from a solution containing at least about 5 percent tris-l-aziridinyl .phospbine oxide.
2. A flame resistant fabric according to claim 1, said fabric being impregnated cotton fabric.
3. Flame-resistant fabric according to claim 1, wherein said tris-l-aziridinyl phosphine oxide and said diammonium phosphate are applied to said fabric from a solution containing at least about 15 percent tris-l-aziridinyl phosphine oxide, whereby said fabric retains its flameresistance after repeated launderings.
4. A laundry-fast frameresistant fabric according to claim 3, said fabric being impregnated cotton fabric.
5. A fiame-resistance-imparting textile finishing composition for fibrous organic fabrics, comprising an aqueous solution of diammonium phosphate and tris-l-aziridinyl phosphine oxide, said tris-l-aziridinyl phosphine oxide being present in at least about 5 percent strength and a proportion of about 1 to 6 parts by weight per 1 part by weight of diammonium phosphate.
6. A laundry-fast composition according to claim 5, wherein the strength of said solution is at least about 2 /2 percent diammonium phosphate and wherein the strength of tris-l-aziridinyl phosphine oxide in said solution is at least about 15 percent.
7. A laundry-fast composition according to claim 5, wherein the strength of diammonium phosphate in said solution is at least about 5 percent and the strength of said tris-l-aziridinyl phosphine oxide in said solution is about 15-20 percent.
8. A laundry-fast composition according to claim 5, containing about 5 percent diammonium phosphate and about 18.2 percent tris-l-aziridinyl phosphine oxide.
9. Method for rendering a fibrous organic fabric flameresistant, comprising impregnating said fabric with an aqueous solution according to claim 5, and curing said impregnated fabric above room temperature until a poly mer of tris-l-aziridinyl phosphine oxide is formed in situ thereon.
' 10. Method according to claim 9, wherein said curing temperature is at least about 250 F.
'11. Method for rendering a fibrous organic fabric flame-resistant after repeated launderings, comprising jmpregnating said fabric with an aqueous solution according to claim 6, and curing said impregnated fabric above room temperature until a polymer of tris-l-aziridinyl phosphine oxide is formed in situ thereon.
12. Method according to claim 11 wherein said curing temperature is at least about 250 F.
13. Method for rendering a cotton fabric flame-resistant after repeated launderings, comprising impregnating said cotton fabric with an aqueous solution of at least about 5 percent diammonium phosphate and at least 10 oxide.
References Cited in the file of this patent UNITED STATES PATENTS 2,526,462 Edelstein Oct. 17, 1950 15 2,891,877 Chance et a1. June 23, 1959 2,901,444 Chance et al. Aug. 25, 1959 v x h e

Claims (1)

1. A FLAME RESISTANT FIBROUS ORGANIC FABRIC IMPREGNATED WITH TRIS-1-AZIRIDINYL PHOSPHINE OXIDE POLYMERIZED IN SITU ON SAID FABRIC IN THE PRESENCE OF DIAMMONIUM PHOSPHATE, SAID TRIS-ARIRIDINYL PHOSPHINE OXIDE BEING IN A PROPORTION FROM ABOUT 1 TO ABOUT 6 PARTS BY WEIGHT PER 1 PART BY WEIGHT OF SAID DIAMMONIUM PHOSPHATE, SAID TRIS-1-AZIRIDINYL PHOSPHINE OXIDE AND SAID DIAMMONIUM PHOSPHATE BEING APPLIED TO SAID FABRIC FROM A SOLUTION CONTAINING AT LEAST ABOUT 5 PERCENT TRIS-1-AZIRIDINYL PHOSPHINE OXIDE.
US79087A 1960-12-28 1960-12-28 Flame resistant finish for textiles Expired - Lifetime US3085029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US79087A US3085029A (en) 1960-12-28 1960-12-28 Flame resistant finish for textiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79087A US3085029A (en) 1960-12-28 1960-12-28 Flame resistant finish for textiles

Publications (1)

Publication Number Publication Date
US3085029A true US3085029A (en) 1963-04-09

Family

ID=22148336

Family Applications (1)

Application Number Title Priority Date Filing Date
US79087A Expired - Lifetime US3085029A (en) 1960-12-28 1960-12-28 Flame resistant finish for textiles

Country Status (1)

Country Link
US (1) US3085029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298902A (en) * 1964-06-26 1967-01-17 Chemirad Corp Process of forming cellulosic paper containing tris-(1-aziridinyl) phosphine oxide and polyethylene imine and paper thereof
US3370030A (en) * 1966-03-14 1968-02-20 American Cyanamid Co Flame-retardant compositions for plastics
US3376160A (en) * 1964-06-29 1968-04-02 Dow Chemical Co Treatment of cellulosic material with apo-thiourea flame resistance and the resulting material
US4208463A (en) * 1976-02-09 1980-06-17 Basf Wyandotte Corporation Non-durable flame-repellent finish for synthetic fabrics and synthetic-cotton blends
US4981615A (en) * 1989-08-21 1991-01-01 Fmc Corporation Process for forming a stable emulsion from a triaryl phosphate reaction mixture residue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2526462A (en) * 1946-11-19 1950-10-17 Pond Lily Company Moisture-resistant flameproofed product and method of making same
US2891877A (en) * 1956-06-05 1959-06-23 Leon H Chance Flame resistant organic textiles and method of production
US2901444A (en) * 1956-06-05 1959-08-25 Leon H Chance Polymers made from 1-aziridinyl phosphine oxides and sulfides and flame resistant organic textiles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2526462A (en) * 1946-11-19 1950-10-17 Pond Lily Company Moisture-resistant flameproofed product and method of making same
US2891877A (en) * 1956-06-05 1959-06-23 Leon H Chance Flame resistant organic textiles and method of production
US2901444A (en) * 1956-06-05 1959-08-25 Leon H Chance Polymers made from 1-aziridinyl phosphine oxides and sulfides and flame resistant organic textiles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298902A (en) * 1964-06-26 1967-01-17 Chemirad Corp Process of forming cellulosic paper containing tris-(1-aziridinyl) phosphine oxide and polyethylene imine and paper thereof
US3376160A (en) * 1964-06-29 1968-04-02 Dow Chemical Co Treatment of cellulosic material with apo-thiourea flame resistance and the resulting material
US3370030A (en) * 1966-03-14 1968-02-20 American Cyanamid Co Flame-retardant compositions for plastics
US4208463A (en) * 1976-02-09 1980-06-17 Basf Wyandotte Corporation Non-durable flame-repellent finish for synthetic fabrics and synthetic-cotton blends
US4981615A (en) * 1989-08-21 1991-01-01 Fmc Corporation Process for forming a stable emulsion from a triaryl phosphate reaction mixture residue

Similar Documents

Publication Publication Date Title
US2582961A (en) Treatment of flammable materials to impart flame resistance thereto, compositions therefor, and products thereof
US4090844A (en) Process of producing high performance durable-press cotton
US3236676A (en) Treatment of cellulose with tetrakis (hydroxymethyl) phosphonium resins
CA1290107C (en) Textile treatment
US2286726A (en) Process of flameproofing cellulosic material and products thereof
US2418525A (en) Manufacture of water-resistant uninflammable organic fibrous materials and product
US3607356A (en) Imparting flame resistance to fibrous textiles from an alkaline medium
US2526462A (en) Moisture-resistant flameproofed product and method of making same
JPH0665861A (en) Easy care finishing without formaldehyde of cellulose-containing textile material
US2828228A (en) Textile fire retardant treatment
US3085029A (en) Flame resistant finish for textiles
US3695925A (en) Process for flameproofing textiles
US3441367A (en) Method for setting finishes on cellulosic textiles with catalyst composition of magnesium halide and organic acid
US3799738A (en) Flame retardant process for cellulosics
US2520103A (en) Method of treating fibrous cellulosic materials to impart flame resistance thereto, compositions therefor, and products thereof
US3034919A (en) Fire retardant composition and cellulosic fabric treated therewith
US3323944A (en) Process and composition for improving the mechanical properties of flameproofed cellulosic textile materials
US3627556A (en) Durable press finish for wool/cellulosic fabrics (melamine/dihydroxy-imidazolidinone resins)
SU488421A3 (en) Method for flame retardant finishing of fibrous material
US3775155A (en) Flame retarding celluloscis using tetrakis (hydroxymethyl) phosphonium chloride
US3219478A (en) Flameproofing of cellulosic material
Reeves et al. Lightweight, durable-press cotton and polyester/cotton with ignition resistance
US3561916A (en) Cellulosic textile materials are cross-linked with n-methylolacrylamide using one catalyst and a single reaction step
US3436250A (en) Method for retaining flame and soil resistances to fabrics
Nielsen Fire-resistant treatment of cotton using phosphorylamide