US3084019A - Shrinkproofing wool with polyureas - Google Patents

Shrinkproofing wool with polyureas Download PDF

Info

Publication number
US3084019A
US3084019A US10047661A US3084019A US 3084019 A US3084019 A US 3084019A US 10047661 A US10047661 A US 10047661A US 3084019 A US3084019 A US 3084019A
Authority
US
United States
Prior art keywords
wool
diisocyanate
component
diamine
solutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Robert E Whitfield
Lowell A Miller
William L Wasley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10047661 priority Critical patent/US3084019A/en
Application granted granted Critical
Publication of US3084019A publication Critical patent/US3084019A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/18Grafting textile fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/916Natural fiber dyeing
    • Y10S8/917Wool or silk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31768Natural source-type polyamide [e.g., casein, gelatin, etc.]

Definitions

  • a principal object of this invention is the provision of new methods for shrinkproofing wool. Another object of the invention is the provision of the novel products so produced. Further objects and advantages of the invention will be obvious from the following description wherein parts and percentages are by weight unless otherwise specified.
  • the shrinkage properties of wool can be improved by applying to the wool fibers a high molecular weight polyamide such as polyhexamethylene adipamide or similar polyamide of the nylon type.
  • a high molecular weight polyamide such as polyhexamethylene adipamide or similar polyamide of the nylon type.
  • the selected polyamide is first converted into soluble form, for example, by forming an N-methylol derivative thereof.
  • the N-methylol derivative is applied to the wool and thetreated wool is then immersed in hydrochloric acid whereby the N-methylol polyamide is converted to the unsubstituted polyamide.
  • a primary disadvantage of this known process is that it is cumbersome and inefficient because it requires procurement of a pre-formed polyamide, conversion of this to a soluble form, and final re conversion to an insoluble form. Particular trouble is encountered in the last step where extended contact with acid is required to insolubilize the coating of N-methylol polyamide. Unless this acid treatment is complete, the polyamide will remain
  • a pre-formed polymer is not used but a polyurea is formed in situ on the woolfibers. This is accomplished by serially applying to the wool the complementary agents requ red to form the polyurea, .these agents-in the preferred modification of the invention-being dissolved in mutually-immiscible solvents.
  • the wool is first impregnated with an aqueous solution of a diamine and then impregnated with a solution of a diisocyanate in a water-immiscible solvent such as carbon tetrachloride.
  • each fibrous element is coated with two-phase system, for example, an inner layer of diamine in water and an outer layer of diisocyanate in water-immiscible solvent.
  • the diamine and diisocyanate react almost instantaneously at the interface between the phases, producing in situ on the fibers a high molecular weight, resinous polyurea which coats the fibers and renders them shrinkproof.
  • the polymer formed is insoluble so that the shrinkproofing effect is durablejit is retained even after repeated washings with soap and water or detergent and water formulations.
  • a feature of the invention is that the high molecular weight resinous polyureas are formed at ordinary (room) temperature, which is in sharp contrast to the much higher temperatures required in the conventional melt condensaice 2 tions used in preparing such polymers.
  • room temperature which is in sharp contrast to the much higher temperatures required in the conventional melt condensaice 2 tions used in preparing such polymers.
  • temperatures of over 200 C. are customarily employed.
  • the treatment in accordance with the invention renders the treated wool essentially shrinkproof so that garments produced from the treated wool may be laundered in conventional soap and water or detergent and water formulations with negligible shrinking or felting.
  • the treated wool or garments prepared therefrom are in the easy-care category in that after washing and tumble drying, they are quite free from wrinkles so that they require only a minor amount of pressing.
  • An important point to be stressed is that the shrinkproofing effect is secured without damage to the hand of the fabric. That is, the treated fabric retains its normal hand so that it is useful for all the conventional applications in fabricating garments as is untreated wool.
  • the treatment does not cause any degradation of the wool so that there is no significant loss of tensile strength, abrasion resistance, resiliency, elasticity, etc.
  • the polymer since the polymer is formed in situ on the fibers--in contrast to systems wherein polymers are spread en masse over the face of a fabricthere is substantially no loss of porosity of the fabric.
  • the treated wool may be dyed with conventional wool dyes to obtain brilliant, level dyeings.
  • a particular feature of the invention and one that emphasizes its simplicity is that no heat-curing step is required. Following application of the two solutions, the textile merely needs to be rinsed or washed. Then, after drying, it is ready for use or sale.
  • the invention is applicable to Wool in any physical form, for example, bulk fibers, slivers, rovings, yarns, felts, woven textiles, knitted textiles, or even completed garments or garment parts. 7
  • a remarkable feature of the invention is that the polymers formed on the wool fibers are not merely physical coatings; they are chemically bonded to the wool; that is, the added polymer is grafted onto the Wool.
  • the mechanism by whichthe graft polymerization occurs is believed to involve a reaction of functional groups on the diisocyanate with the free amino or hydroxy groups present in the wool molecule, these reactions giving rise to such linkages as urea or urethane which chemically unite the wool with the polymer.
  • the graft polyureas can be postulated by the following idealized formulas:
  • W represents the polypeptide chain of the wool, containing prior to the reaction, free amino (NH or free hydroxy (-OH) groups.
  • R and R are bivalent organic radicals (representing in this case the residues of the diamine and diisocyanate, respectively) and n represents the number of polyurea repeating units.
  • the invention is of great latitude and versatility and can be employed for forming on and grafting to wool fibers a wide variety of condensation polymers, particularly and preferably those condensation polymers wherein the recurring structures contain at least one urea group, that is, a group of the structure-- 2 NHCl--NH- wherein Z is sulphur or oxygen.
  • Component A may be a di-amine or a mixture of different diamines and Component B may be a diisocyanate or a mixture of different diisocyanates.
  • Components A and B may be selected to form any desired type of polyurea, these components may be aptly termed as complementary organic polyurea-forming intermediates. They may further be apropriately designated as fast-reacting or direct-acting because they form the resinous polyureas rapidly and directly on contact without requiring any after-treatments, such as treatment with curing agents, oven cures, etc.
  • Component A is dissolved in water and Component B is dissolved in benzene, carbon tetrachloride, toluene, xylene, ethylene dichloride, chloroform, hexane, octane, petroleum ether or other voltaile petroleum distillate, or any other inert water-immiscible solvent.
  • the two solutions are then applied to the wool serially, that is, the wool is treated first with one solution then with the other.
  • the order of applying the solutions is not critical, Generally, the solution of Component A is applied first and the solution of Component B is applied next; however, the reverse order gives good results and it is within the ambit of the invention to. apply the solutions in either sequence.
  • the solutions may be applied to the wool in any desired way as long as they are applied serially.
  • a preferred method involves immersing the Wool in one solution, removing excess liquid as by use of squeeze rolls, immersing the wool with the second solution, again removing excess liquid, rinsing the treated fabric in water and then drying it.
  • Conventional apparatus consisting of tanks, padding rolls, squeeze rolls and the like are generally. used in applying the respective solutions.
  • the amount of each solution applied to the textile may be varied by altering the residence time in the solutions, the pressure exerted by the squeeze rolls and by varying the concentration of the active materials in the respective solutions.
  • the wool after its immersion in the first solution may be subjected to drying conditions such as a current of warm air to concentrate the solution carried by the wool.
  • the nature of the solvents is of no consequence as long as they are essentially inert and possess the above-stated property of substantial immiscibility.
  • volatile solvents are preferred as they may be removed from the treated textile by evaporation.
  • non-volatile solvents can be used, in which case they may be removed from the product by extraction with suitable volatile solvents therefor or washed out with soap and water or detergent and water formulations.
  • the ingredients of Component A are soluble in water and may thus be applied to the textile in aqueous solution.
  • the solvent for Component B may be any inert, essentially water-immiscible organic solvent. Typical illustrative examples thereof are benzene, toluene, xylene, carbon tetrachloride, ethylene dichloride, chloroform, hexane, octane, petroleum ether or other volatile petroleum fraction. It is, however, not essential that Component A be employed in aqueous solution. Thus, one may utilize a system of two essentially immiscible or ganic solvents, Component A being dispersed in one solvent and Component B in the other.
  • Component A may be dispersed in Q-bromoethyl acetate and Component B dispersed in benzene.
  • Another example involves using formamide, dimethylformamide, or diethylformamide as the solvent for Component A and using n-hexyl ether as the solvent for Component B.
  • a further example involves a system of adiponitrile as the solvent for Component A and ethyl ether as the solvent for Component B.
  • Examples of other pairs of solvents which are substantially immiscible with one another and which may be used for preparing the solutions of the respective reactants are Z-bromoethyl acetate and n-hexyl ether, ethylene glycol diacetate and n-hexyl ether, adiponitrile and n-butyl ether, adiponitrile and carbon tetrachloride, benzonitrile and formamide, n-butyl ether and formamide, di-N-propyl aniline and formamide, isoamyl sulphide and formamide, benzene and formamide, butyl acetate and formamide, benzene and nitromethane, nbutyl ether and nitromethane, carbon tetrachloride and formamide, dimethyl aniline and formamide, ethyl benzoate and formamide.
  • the solvents used for Component A may contain hydroxy groups. Because amine groups are so much more reactive than hydroxy groups, there will be little if any interference by reaction of the hydroxy groups of the solvent with the active agents of Component B, particularly if the solutions of the reactants are at ordinary temperatures.
  • solvent pairs of the following types may be employed: Diethylene glycol monomethyl ether and n-hexyl ether, diethylene glycol monoethyl ether and n-hexyl ether, 2-ethylhexanol and adiponitrile, isoamyl alcohol and adiponitrile, glycerol and acetone, capryl alcohol and formamide, ethylene glycol and benzonitrile, diacetone alcohol and di-N-propylaniline, 2-ethylhexanol and formamide, triethylene glycol and benzyl ether.
  • the concentration of active materials (Companent A and Component B) in the respective solutions is not critical and may be varied widely. Generally, it is preferred that each of the pair of solutions contains about from 1 to 20% of the respective active component.
  • enough of the respective solutions are applied to the wool to give a polymer deposit on the fibers of about 1 to 10%. Sfirch amounts provide a substantial degree of shrinkproofing with no significant reduction in hand of the wool. Greater amounts of polymer may be deposited on the fibers if desired but tend to change the natural hand of the wool. Also, thicker deposits are likely to contain substantial amounts of non-grafted polymer.
  • the relative amounts of Component A and Component B applied to the wool may be varied as desired for individual circumstances. Generally, it is preferred to apply the components in equimolar proportions, that is, the amounts are so selected that there are the same number of functional groups provided by Component A as provided by the functional groups of Component B.
  • reaction promoters or catalysts may be added to either of the solutions of Component A or B in order to enhance reaction between the active agents.
  • tertiary amines such as pyridine, dimethylaniline, quinoline, and the like
  • organo-tin compounds such as tributyl tin chloride, stannous tartrate, or tin salts of fat acids as stannous laurate; ferric chloride; etc.
  • no catalyst or reaction promoter is used as the reaction between Components A and B applied in accordance with the procedures described herein, occurs virtually instantaneously and hence there is no need for further increasing the rate of reaction.
  • one of the solutions of the reactants contains water as the solvent
  • a surface-active agent to aid in dispersing the reactant and to assist in penetration of the solution into the textile.
  • a surface-active agent such agents as sodium alkyl (C -C sulphates, the sodium alkane (C C sulphonates, the sodium alkyl (C -C benzene sulphonates, esters of sulphosuccinic acid such as sodium dioctylsulphosuccinate, and soaps, typically sodium salts of fat acids.
  • Emulsifying agents of the non-ionic type are suitable, for example, the reaction products of ethylene oxide with fatty acids, with polyhydric alcohols, with partial esters of fatty acids and polyhydric alcohols or with alkyl phenols, etc.
  • Typical of such agents are a polyoxyethylene stearate containing about 20 oxyethylene groups per mole, a polyoxyethylene ether of sorbitan monolaurate containing about 16 oxyethylene groups per mole, a distearate of polyoxyethylene ether of sorbitol containing about 40 oxyethylene groups per mole, iso-octyi phenyl ether of polyethylene glycol, etc.
  • a supplementary solvent may be added to the primary solvent (water) in quantity sufficient to disperse the active reactant.
  • acetone, or other inert, volatile solvent particularly one that is at least partially miscible with water.
  • the treatment of the wool with the solutions of the complementary agents is carried out at room temperature as at such temperature the polymerization takes place very rapidly, that is, in a matter of a minute or less. If, however, a higher rate of polymerization is desired-as in continuous operation on long lengths of cl0ththe second solution may be kept hot, for example, at a temperature up to around 150 C.
  • the solutions of Components A and B the complementary condensation polymerforming intermediates- are serially applied to the wool in the form of mutually-immiscible solutions to provide a liquid-liquid interface between the solutions as they are serially laid onto the fibers.
  • a system which utilizes a solid-liquid interface.
  • Such a system is established in the following way: The wool is first impregnated with a solution of one of the complementary agents-for example, Component A-dispersed in an inert, volatile solvent. The wool is then subjected to drying as by subjecting it is to a current of hot air.
  • the wool fibers which are now covered with a deposit of the first component in a solid state are then impregnated with the complementary agent -ComponentB, in this case, dispersed in an inert, preferably volatile solvent.
  • the fibers are layered with a superposed system of solid Component A and a solution of Component B.- Under these conditions polymerization takes place rapidly forming the polymer in situ on the fibers and grafted thereto. In this hot air until the wool is dry to the touch (about. 10-20% moisture in the impregnated wool) and then immersing the wool in a solution of a diisocyanate dissolved in an inert, volatile solvent.
  • the wool is then removed from this second bath, squeezed through rollers -to remove excess water, rinsed, and dried in air.
  • this system is operative, it is not a preferred technique because the polymerization at the solid-liquid interface is slower and less uniform in degree of polymerization and the dew.
  • the diamine one may employ any of the aromatic, aliphatic, or heterocyclic compounds containing twoprimary or secondary amine groups, preferably separated by at least two carbon'atoms. stituted if desired with various non-interfering .(nonfunctional) substituents such as ether radicals, thioetherradicals, tertiary amino groups, sulphone groups, fluorine atoms, etc.
  • diisocyanate one may employ any of the aliphatic, aromatic, or heterocyclic compounds containing two isocyanate (NCO) groups, preferably separated byat least two carbon atoms.
  • the diisocyanates may be substituted if desired with non-interfering (non-functional) 'substituents such as ether groups,thioether groups,
  • diamines may be sub atoethyl) ether, bis(2-isocyanatoethyl) ether of ethylene glycol, -Phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, tolylene-2,4-diisocyanate, tolylene-Z,6-diisocyanate, 3,3'-bitolylene-4,4-diisocyanate, i.e.,
  • biphenylene diisocyanate 3,3-dimethoxy-biphenylene- 4,4'-diisocyanate, naphthalene diisocyanates, polymethyl polyphenyl isocyanates, etc.
  • the sulphur analogues of these compounds may be used and such are included within the spirit of the invention.
  • the compounds containing two -NCO groups one may use their analogues containing either two +NCS groups or one -NCO group and one -NCS group.
  • Another point to be made is that it is within the spirit of the invention to utilize the derivatives which yield the same products with compounds containing active hydrogen as do the isocyanates.
  • aliphatic diisocyanates for example, those of the type whereinv n has a Value from 2 to 12.
  • Other preferred compounds are the toluene diisocyanates, xylylene diisocyanates, and diphenylmethane-4,4'-diisocyanate which may also be termed methylene-bis(p-phenylisocyanate).
  • prepolymer containing internal urea units and terminal amino groups can be prepared, for example, in known manner by reacting a molar excess. of diamine with. a diisocyanate. The prepolymer would then be used as Component A while for Component B one would use a diisocyanate. A typical example of procedure in this area; would, be to use as.
  • Component A a prepolymer of the type-- and to use as Component B a diisocyanate (OCN- "-NCO) thus to produce a polymer containing repeating units of the type 0 NH-RNH-i l-NH-R'NHii-NH-ILNH-ii-NE-R' NH-( i- (In these formulas, R, R, and R" represent bivalent organic radicals.)
  • polyurea is the use (as Component A) of xylylene diamines or aliphatic alpha, omega diamines, particularly those of the type wherein n has a value from 6 to 10 and the conjoint use (as Component B) of toluene diisocyanate or an alkylene bis(p-pheny1 isocyanate).
  • Typical examples are the conjoint use of (A) hexamethylene diamine or metaxylylene diamine and (B) toluene-2,4-diisocyanate or methylene bis (p-phenylisocyanate)
  • A hexamethylene diamine or metaxylylene diamine
  • B toluene-2,4-diisocyanate or methylene bis (p-phenylisocyanate
  • Component A urea, guanidine, biuret, thiourea, dithiobiuret, or the like and using as Component B a diacid chloride, for example, oxalyl chloride, maleyl chloride, fumaryl chloride, malonyl chloride, succinyl chloride, glutaryl chloride, adipyl chloride, pimelyl chloride, suberyl chloride, azelayl chloride, sebacyl chloride, cyclohexane-l,4-biscarbonyl chloride, phthalyl chloride, isophthalyl chloride, terephthalyl chloride, 4,4'-biphenyl-dicarbonyl chloride, p-hydromuconyl chloride, i.e.,
  • ClCOCH CH CI-I-CH COCL diglycollic acid chloride, i.e., O(CH COCl) higher homologues of this compound as O(CH CH COCl) dithiodiglycollic acid chloride, diphenylolpropanediacetic acid chloride, i.e., (CH O(C H OCH COCl)- and the 9 like.
  • a variant to this procedure is to use as Component B a disulphonyl chloride as benzene-1,3-disulphonyl chloride, biphenyl-4,4'-disulphonyl chloride, toluene disulphonyl chlorides or aliphatic compounds such as those of the formula ClSO (Cl-I SO Cl wherein n has a value from 2 to '12.
  • Standard shrinkage test The tests for shrinkage referred to below were conducted in the following way: The wool samples were milled at 1700 rpm. for 2 minutes at 40-42 C. in an Accelerotor with 0.5% sodium oleate solution, using a liquor-to-wool ratio of 50 to 1. After this washing operation the samples were measured to determine their area and the shrinkage was calculated from the original area. With this washing method, samples of control (untreated) wool gave an area shrinkage of 45%.
  • the Accelerotor is described in the American Dyestufi Reporter, vol. 45, p. 685, Sept. 10, 1956.
  • EXAMPLE 1 A solution was prepared containing 4% of hexamethylene diamine in water.
  • a sample of wool cloth was immersed in solution A for 30 seconds, run through squeeze rolls to remove excess liquid, immersed for 30 seconds in solution B, run through squeeze rolls to remove excess liquid, rinsed in water, and dried in air at room temperature.
  • the treated wool had a polyurea resin uptake of 1.7% and on washing in the Accelerotor, exhibited an area shrinkage of 9.8%.
  • EXAMPLE 2 methylene- The process of Example 1 was repeated using as solution A 4% hexamethylene diamine in water and as solution B a 3% solution of methylene-bis(p-phenylisocyanate) in carbon tetrachloride. The time of immersion of the cloth in each solution was 60 seconds.
  • the treated wool had a polyurea resin uptake of 2.4% and on washing exhibited an area shrinkage of 8.8%.
  • the present invention finds its greatest field of utility in the shrinkproofing of wool and is peculiarly adapted for such use because of a combination of important factorsincluding the advantages that a high degree of shrink resistance is imparted with a minor amount of polymer, that the shrinkproofing treatment does not significantly impair the hand of the wool, that the treatment does not impair other desirable fiber characteristics such as tensile strength, elasticity, porosity, etc.,
  • the polymer is grafted to the wool molecules so that the shrinkproofing eifect is exceedingly durable and is retained even after long wear and repeated laundering-it is evident that the invention may be extended to other areas.
  • the principles of the invention may be extended to forming polymers in situ on other substrates besides wool,particularly substrates of a fibrous structure.
  • Typical examples of such materials are animal hides, leather; animal hair; cotton; hemp; jute; ramie; flax; wood; paper; synthetic cellulosic fibers such as viscose,cellulose acetate, cellulose acetate-butyrate; casein fibers; polyvinyl alcohol-protein fibers; alginic fibers; glass fibers;-asbestos; and organic non-cellulosic fibers such as poly (ethylene glycol terephthalate), polyacrylonitrile, polyethylene, polyvinyl chloride, polyvinylidene. chloride, etc.
  • Such applications of the teachings of the invention may be for the purposes of obtaining functional or decorative eifects such as sizing, finishing, increasing gloss or transparency, increasing water-repellancy, increasing adhesionor bonding-characteristics of the substrates with rubber, polyester resins, etc. It is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft polymers would be produced. However, it is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft polymers would be produced. However, it is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft polymers would be produced. However, it is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft polymers would be produced. However, it is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft polymers would be produced. However, it is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft poly
  • graft polymers would be formed with proteinous substrates such as animal hair, animal hides, and the like.
  • a process for shrinkproofing wool without significant impairment of its hand which comprises serially impregnating Wool with two solutions, one solution containing a diamine dispersed in water, the other solution No. 22,651, filed containing a diisocyanate dispersed in an inert, volatile,
  • n has a value from 6 to 10.
  • a process for shrinkproofing wool without significant impairment of its hand which comprises serially impregnating wool with two solutions, one containing a diamine in a first solvent, the other containing a diisocyamate in a second solvent, the first and second solvents being substantially mutually immiscible, the said diamine and diisocyanate reacting to form in situ on the wool.
  • a modified wool fiber which exhibits improved shrinkage properties as compared with the unmodified wool fiber comprising wool fiber having a polyurea formed in situ thereon and chemically bonded to the wool.
  • a modified wool fiber which exhibits improved shrinkage properties as compared with the unmodified wool fiber comprising wool fiber having a polyurea formed in situ thereon and chemically bonded to the wool, the said polyurea containing recurring structural units of the formulawherein R and R are bivalent organic radicals.
  • R is -(CH;) wherein n has a value from 6 to 10.
  • a process for treating a fibrous material which comprises applying serially to said material in interfacial relationship, a pair of complementary direct-acting organic polyurea-forming intermediates.
  • a process for treating a fibrous material which comprises serially applying to said material a pair of complementary direct-acting organic polyurea-forming intermediates in separate phases of limited mutual solubility.
  • a process for treating a fibrous material which comprises serially distributing on the surface of the fibrous elements of said material a pair of complementary direct-acting organic polyurea-forming intermediates in superposed phases of limited mutual solubility, the said intermediates reacting under such conditions to form a polymer in situ on said fibrous elements.
  • a process for treating wool which comprises distributing on the surface of the wool fibers a pair of complementary direct-acting organic polyurea-forming intermediates in superposed liquid phases of limited mutual solubility, said intermediates reacting rapidly under said conditions to form a polymer in situ on said fibrous elements and grafted thereto.
  • a process for treating a fibrous material which comprises serially impregnating a fibrous material with two solutions, one solution containing one member of a pair of complementary, direct-acting, organic, polyureaforming intermediates in a first solvent, the other solution containing the complementary member of said pair of complementary, direct-acting, organic, polyureaforming intermediates in a second solvent, said first and second solvents being substantially mutually immiscible, the said pair of intermediates reacting rapidly under said conditions to form in situ on the fibers a resinous polyurea.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

United rates the United tates of America as represented by the Secretary of Agriculture No Drawing. Filed Apr. 3, 1961, Ser. No. 100,476 20 Claims. (Cl. 8-128) (Granted under Title 35, US. Code (1952), see. 266) A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
A principal object of this invention is the provision of new methods for shrinkproofing wool. Another object of the invention is the provision of the novel products so produced. Further objects and advantages of the invention will be obvious from the following description wherein parts and percentages are by weight unless otherwise specified.
In the prior art it is suggested that the shrinkage properties of wool can be improved by applying to the wool fibers a high molecular weight polyamide such as polyhexamethylene adipamide or similar polyamide of the nylon type. This is accomplished in the following manner: The selected polyamide is first converted into soluble form, for example, by forming an N-methylol derivative thereof. The N-methylol derivative is applied to the wool and thetreated wool is then immersed in hydrochloric acid whereby the N-methylol polyamide is converted to the unsubstituted polyamide. A primary disadvantage of this known process is that it is cumbersome and inefficient because it requires procurement of a pre-formed polyamide, conversion of this to a soluble form, and final re conversion to an insoluble form. Particular trouble is encountered in the last step where extended contact with acid is required to insolubilize the coating of N-methylol polyamide. Unless this acid treatment is complete, the polyamide will remain soluble and be removed from the textile when it is washed.
In accordance with this invention, a pre-formed polymer is not used but a polyurea is formed in situ on the woolfibers. This is accomplished by serially applying to the wool the complementary agents requ red to form the polyurea, .these agents-in the preferred modification of the invention-being dissolved in mutually-immiscible solvents. Thus in a typical embodiment of the invention the wool is first impregnated with an aqueous solution of a diamine and then impregnated with a solution of a diisocyanate in a water-immiscible solvent such as carbon tetrachloride. Generally, the solutions are applied in the order given above; however, the reverse order gives good results and it is within the ambit of the invention to apply the solutions in either sequence. By serial application of these solutions to the fabric, each fibrous element is coated with two-phase system, for example, an inner layer of diamine in water and an outer layer of diisocyanate in water-immiscible solvent. Under these conditions the diamine and diisocyanate react almost instantaneously at the interface between the phases, producing in situ on the fibers a high molecular weight, resinous polyurea which coats the fibers and renders them shrinkproof. The polymer formed is insoluble so that the shrinkproofing effect is durablejit is retained even after repeated washings with soap and water or detergent and water formulations. A feature of the invention is that the high molecular weight resinous polyureas are formed at ordinary (room) temperature, which is in sharp contrast to the much higher temperatures required in the conventional melt condensaice 2 tions used in preparing such polymers. For example, in the usual preparation of these polymers by melt procedures, temperatures of over 200 C. are customarily employed.
As noted above, the treatment in accordance with the invention renders the treated wool essentially shrinkproof so that garments produced from the treated wool may be laundered in conventional soap and water or detergent and water formulations with negligible shrinking or felting. Further, the treated wool or garments prepared therefrom are in the easy-care category in that after washing and tumble drying, they are quite free from wrinkles so that they require only a minor amount of pressing. An important point to be stressed is that the shrinkproofing effect is secured without damage to the hand of the fabric. That is, the treated fabric retains its normal hand so that it is useful for all the conventional applications in fabricating garments as is untreated wool. Other items to be mentioned are that the treatment does not cause any degradation of the wool so that there is no significant loss of tensile strength, abrasion resistance, resiliency, elasticity, etc. Moreover, since the polymer is formed in situ on the fibers--in contrast to systems wherein polymers are spread en masse over the face of a fabricthere is substantially no loss of porosity of the fabric. A further item is that the treated wool may be dyed with conventional wool dyes to obtain brilliant, level dyeings.
A particular feature of the invention and one that emphasizes its simplicity is that no heat-curing step is required. Following application of the two solutions, the textile merely needs to be rinsed or washed. Then, after drying, it is ready for use or sale.
The invention is applicable to Wool in any physical form, for example, bulk fibers, slivers, rovings, yarns, felts, woven textiles, knitted textiles, or even completed garments or garment parts. 7
A remarkable feature of the invention is that the polymers formed on the wool fibers are not merely physical coatings; they are chemically bonded to the wool; that is, the added polymer is grafted onto the Wool. The mechanism by whichthe graft polymerization occurs is believed to involve a reaction of functional groups on the diisocyanate with the free amino or hydroxy groups present in the wool molecule, these reactions giving rise to such linkages as urea or urethane which chemically unite the wool with the polymer. Thus the graft polyureas can be postulated by the following idealized formulas:
In the above formulas, W represents the polypeptide chain of the wool, containing prior to the reaction, free amino (NH or free hydroxy (-OH) groups. R and R are bivalent organic radicals (representing in this case the residues of the diamine and diisocyanate, respectively) and n represents the number of polyurea repeating units.
The above formulas are obviously simplified and idealized as the polyurea chains may be attached at both their ends to a single wool molecule or they may cross-link together different wool molecules through urea or urethane linkages. The important point from a practical and realistic view is that chemical bonding of the polyurea to the wool has been demonstrated and the theo retical nature of the mechanism of bonding is not of real concern to the invention.
It will be evident from the description herein that the invention is of great latitude and versatility and can be employed for forming on and grafting to wool fibers a wide variety of condensation polymers, particularly and preferably those condensation polymers wherein the recurring structures contain at least one urea group, that is, a group of the structure-- 2 NHCl--NH- wherein Z is sulphur or oxygen.
GENERAL CONSIDERATIONS In the practice of the invention, selection is first made of the appropriate complementary lagentsherein termed Component A and Component B-required to form the desired polymer on the wool fibers. The interrelationship between the nature of the agents to be used as Components A and B and the type of polymer produced is explained in detail below in connection with the various modifications of the invention. However, it is apropos to mention at this point that in general, Component A may be a di-amine or a mixture of different diamines and Component B may be a diisocyanate or a mixture of different diisocyanates. Since Components A and B may be selected to form any desired type of polyurea, these components may be aptly termed as complementary organic polyurea-forming intermediates. They may further be apropriately designated as fast-reacting or direct-acting because they form the resinous polyureas rapidly and directly on contact without requiring any after-treatments, such as treatment with curing agents, oven cures, etc.
Having selected the desired Components A and B, these are formed into separate solutions for application to the Wool to be treated. An essential consideration in the preferred modification of the invention is that the solvents used in the respective solutions of Components A and B be substantially mutually immiscible so that a liquidliquid interface will be set up between the two solutions on the wool fibers. Thus, for example, Component A is dissolved in water and Component B is dissolved in benzene, carbon tetrachloride, toluene, xylene, ethylene dichloride, chloroform, hexane, octane, petroleum ether or other voltaile petroleum distillate, or any other inert water-immiscible solvent. The two solutions are then applied to the wool serially, that is, the wool is treated first with one solution then with the other. The order of applying the solutions is not critical, Generally, the solution of Component A is applied first and the solution of Component B is applied next; however, the reverse order gives good results and it is within the ambit of the invention to. apply the solutions in either sequence.
The solutions may be applied to the wool in any desired way as long as they are applied serially. A preferred method involves immersing the Wool in one solution, removing excess liquid as by use of squeeze rolls, immersing the wool with the second solution, again removing excess liquid, rinsing the treated fabric in water and then drying it. Conventional apparatus consisting of tanks, padding rolls, squeeze rolls and the like are generally. used in applying the respective solutions. The amount of each solution applied to the textile may be varied by altering the residence time in the solutions, the pressure exerted by the squeeze rolls and by varying the concentration of the active materials in the respective solutions. To decrease carry-over of the solvent from the first treating solution to the second solution, the wool after its immersion in the first solution may be subjected to drying conditions such as a current of warm air to concentrate the solution carried by the wool.
As noted above, a critical factor in the preferred form.
of the invention is that the complementary-agentk-Component A and Component B-a.re serially applied to the textile dispersed in solvents which are substantially mutually immiscible. The nature of the solvents is of no consequence as long as they are essentially inert and possess the above-stated property of substantial immiscibility. Usually volatile solvents are preferred as they may be removed from the treated textile by evaporation. However, non-volatile solvents can be used, in which case they may be removed from the product by extraction with suitable volatile solvents therefor or washed out with soap and water or detergent and water formulations. In many cases the ingredients of Component A are soluble in water and may thus be applied to the textile in aqueous solution. In such case the solvent for Component B may be any inert, essentially water-immiscible organic solvent. Typical illustrative examples thereof are benzene, toluene, xylene, carbon tetrachloride, ethylene dichloride, chloroform, hexane, octane, petroleum ether or other volatile petroleum fraction. It is, however, not essential that Component A be employed in aqueous solution. Thus, one may utilize a system of two essentially immiscible or ganic solvents, Component A being dispersed in one solvent and Component B in the other. As an example, Component A may be dispersed in Q-bromoethyl acetate and Component B dispersed in benzene. Another example involves using formamide, dimethylformamide, or diethylformamide as the solvent for Component A and using n-hexyl ether as the solvent for Component B. A further example involves a system of adiponitrile as the solvent for Component A and ethyl ether as the solvent for Component B. Examples of other pairs of solvents which are substantially immiscible with one another and which may be used for preparing the solutions of the respective reactants are Z-bromoethyl acetate and n-hexyl ether, ethylene glycol diacetate and n-hexyl ether, adiponitrile and n-butyl ether, adiponitrile and carbon tetrachloride, benzonitrile and formamide, n-butyl ether and formamide, di-N-propyl aniline and formamide, isoamyl sulphide and formamide, benzene and formamide, butyl acetate and formamide, benzene and nitromethane, nbutyl ether and nitromethane, carbon tetrachloride and formamide, dimethyl aniline and formamide, ethyl benzoate and formamide.
Moreover, the solvents used for Component A may contain hydroxy groups. Because amine groups are so much more reactive than hydroxy groups, there will be little if any interference by reaction of the hydroxy groups of the solvent with the active agents of Component B, particularly if the solutions of the reactants are at ordinary temperatures. In such event, then, solvent pairs of the following types may be employed: Diethylene glycol monomethyl ether and n-hexyl ether, diethylene glycol monoethyl ether and n-hexyl ether, 2-ethylhexanol and adiponitrile, isoamyl alcohol and adiponitrile, glycerol and acetone, capryl alcohol and formamide, ethylene glycol and benzonitrile, diacetone alcohol and di-N-propylaniline, 2-ethylhexanol and formamide, triethylene glycol and benzyl ether.
The concentration of active materials (Companent A and Component B) in the respective solutions is not critical and may be varied widely. Generally, it is preferred that each of the pair of solutions contains about from 1 to 20% of the respective active component. In applying the process of the invention, enough of the respective solutions are applied to the wool to give a polymer deposit on the fibers of about 1 to 10%. Sfirch amounts provide a substantial degree of shrinkproofing with no significant reduction in hand of the wool. Greater amounts of polymer may be deposited on the fibers if desired but tend to change the natural hand of the wool. Also, thicker deposits are likely to contain substantial amounts of non-grafted polymer. The relative amounts of Component A and Component B applied to the wool may be varied as desired for individual circumstances. Generally, it is preferred to apply the components in equimolar proportions, that is, the amounts are so selected that there are the same number of functional groups provided by Component A as provided by the functional groups of Component B.
If desired, reaction promoters or catalysts may be added to either of the solutions of Component A or B in order to enhance reaction between the active agents. Coming into consideration for such purpose are tertiary amines such as pyridine, dimethylaniline, quinoline, and the like; organo-tin compounds such as tributyl tin chloride, stannous tartrate, or tin salts of fat acids as stannous laurate; ferric chloride; etc. Ordinarily, however, no catalyst or reaction promoter is used as the reaction between Components A and B applied in accordance with the procedures described herein, occurs virtually instantaneously and hence there is no need for further increasing the rate of reaction.
Where one of the solutions of the reactants contains water as the solvent, it is often desirable to incorporate a minor proportion of a surface-active agent to aid in dispersing the reactant and to assist in penetration of the solution into the textile. For this purpose one may use such agents as sodium alkyl (C -C sulphates, the sodium alkane (C C sulphonates, the sodium alkyl (C -C benzene sulphonates, esters of sulphosuccinic acid such as sodium dioctylsulphosuccinate, and soaps, typically sodium salts of fat acids. Emulsifying agents of the non-ionic type are suitable, for example, the reaction products of ethylene oxide with fatty acids, with polyhydric alcohols, with partial esters of fatty acids and polyhydric alcohols or with alkyl phenols, etc. Typical of such agents are a polyoxyethylene stearate containing about 20 oxyethylene groups per mole, a polyoxyethylene ether of sorbitan monolaurate containing about 16 oxyethylene groups per mole, a distearate of polyoxyethylene ether of sorbitol containing about 40 oxyethylene groups per mole, iso-octyi phenyl ether of polyethylene glycol, etc. Generally, only a small proportion of surface-active agent is used, on the order of 0.05 to 0.5%, based on the weight of the solution. In addition to, or in place of the surface-active agent, a supplementary solvent may be added to the primary solvent (water) in quantity sufficient to disperse the active reactant. For such purpose one may employ acetone, or other inert, volatile solvent, particularly one that is at least partially miscible with water. It is evident that the solutions of Components A and B need not necessarily be true solutions; they may be colloidal solutions, emulsions, or suspensions, all these being considered as solutions for the purpose of the present invention.
Ordinarily, the treatment of the wool with the solutions of the complementary agents is carried out at room temperature as at such temperature the polymerization takes place very rapidly, that is, in a matter of a minute or less. If, however, a higher rate of polymerization is desired-as in continuous operation on long lengths of cl0ththe second solution may be kept hot, for example, at a temperature up to around 150 C.
As has been explained above, in the preferred modification of the invention the solutions of Components A and B the complementary condensation polymerforming intermediates-are serially applied to the wool in the form of mutually-immiscible solutions to provide a liquid-liquid interface between the solutions as they are serially laid onto the fibers. In a less preferred modification of the invention, a system is used which utilizes a solid-liquid interface. Such a system is established in the following way: The wool is first impregnated with a solution of one of the complementary agents-for example, Component A-dispersed in an inert, volatile solvent. The wool is then subjected to drying as by subjecting it is to a current of hot air. The wool fibers which are now covered with a deposit of the first component in a solid state, are then impregnated with the complementary agent -ComponentB, in this case, dispersed in an inert, preferably volatile solvent. In this way the fibers are layered with a superposed system of solid Component A and a solution of Component B.- Under these conditions polymerization takes place rapidly forming the polymer in situ on the fibers and grafted thereto. In this hot air until the wool is dry to the touch (about. 10-20% moisture in the impregnated wool) and then immersing the wool in a solution of a diisocyanate dissolved in an inert, volatile solvent. The wool is then removed from this second bath, squeezed through rollers -to remove excess water, rinsed, and dried in air. Although this system is operative, it is not a preferred technique because the polymerization at the solid-liquid interface is slower and less uniform in degree of polymerization and the dew.
gree of shrinkprooting afforded to the wool per unit weight of polymer formed on the fibers is less than with the system of mutually-immiscible solutions. COMPONENTS A AND B As noted briefly above, the selection of Components A and B depends on the type of polymer desired to be formed on the wool fiber and grafted thereto. Typical.
examples of compounds which can be employed as Component A in a practice of the invention are described below.
As the diamine one may employ any of the aromatic, aliphatic, or heterocyclic compounds containing twoprimary or secondary amine groups, preferably separated by at least two carbon'atoms. stituted if desired with various non-interfering .(nonfunctional) substituents such as ether radicals, thioetherradicals, tertiary amino groups, sulphone groups, fluorine atoms, etc. Typical compounds in this category are listed below merely by way of illustration and not by way of limitation: Ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine, N,N-dimethyl 1,3 propanediamine, 1,2 diamino-Lmethylpropane, 2,7-diamino-2,o-dimethyloctane, N,N'-dimethyl-1,6- hexanediamine, 1,4-diamino cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 2,2'-diaminodiethyl ether, 2,2-diaminodiethyl sulphide, bis (4-aminocyclohexyl) methane,
N,N" dimethyl 2,2,3,3,4,4 hexafluoropentane-1,5-diarnine', ortho-, meta-, or para-phenylene diamine, benzidine, xylylene diamine, m-toluylene diamine, ortho-tolidine, piperazine, and the like. 'If desired, mixtures of different diamines may be used. It is generally preferred to use aliphatic alpha, omega diamines, particularly of the type H N-(CH NH wherein n has a value of 2 to 12, preferably 6 to 10'.
Typical examples of compounds which can be. em: ployed as Component B in a practice of the invention are described below. i
As the diisocyanate one may employ any of the aliphatic, aromatic, or heterocyclic compounds containing two isocyanate (NCO) groups, preferably separated byat least two carbon atoms. The diisocyanates may be substituted if desired with non-interfering (non-functional) 'substituents such as ether groups,thioether groups,
sulphone groups, etc. Typical examples of compounds in this category are listed below merely by way of illustration and not limitation: Ethylene diisocyanate, pro
pylene diisocyanate, butylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamet hylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, cyclohexylene diisocyanate, bis(2-isocyan The diaminesmay be sub atoethyl) ether, bis(2-isocyanatoethyl) ether of ethylene glycol, -Phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, tolylene-2,4-diisocyanate, tolylene-Z,6-diisocyanate, 3,3'-bitolylene-4,4-diisocyanate, i.e.,
OCN-
diphenyl ether-4,4' diisocyanate, i.e.,
3,5,3',5-bixylylene-4,4'-diisocyanate, i.e.,
(R in C'Hs) diphenylmethane-4,4'-diisocyanate, i.e.,
biphenylene diisocyanate, 3,3-dimethoxy-biphenylene- 4,4'-diisocyanate, naphthalene diisocyanates, polymethyl polyphenyl isocyanates, etc. It is also evident that the sulphur analogues of these compounds may be used and such are included within the spirit of the invention. Thus for example, instead of using the compounds containing two -NCO groups one may use their analogues containing either two +NCS groups or one -NCO group and one -NCS group. Another point to be made is that it is within the spirit of the invention to utilize the derivatives which yield the same products with compounds containing active hydrogen as do the isocyanates. Particular reference is made to the biscarbamyl chlorides which may 'be used in place of the diisocyanates. Thus one may use any of the above-designated compounds which contain carbamyl chloride groups (N-d-o1) or their sulphur analogues in place; of the isocyanate groups.
Among the preferred compounds are the aliphatic diisocyanates, for example, those of the type whereinv n has a Value from 2 to 12. Other preferred compounds are the toluene diisocyanates, xylylene diisocyanates, and diphenylmethane-4,4'-diisocyanate which may also be termed methylene-bis(p-phenylisocyanate).
Numerous variations of the basic procedure herein described will suggestthemselves to those skilled in the art in the application of the invention without departing from the fundamentals of the invent-ion. Some of these variatibns are explained below.
If desired, one may prepare a prepolymer containing internal urea units and terminal amino groups. Such prepolymers can be prepared, for example, in known manner by reacting a molar excess. of diamine with. a diisocyanate. The prepolymer would then be used as Component A while for Component B one would use a diisocyanate. A typical example of procedure in this area; would, be to use as. Component A a prepolymer of the type-- and to use as Component B a diisocyanate (OCN- "-NCO) thus to produce a polymer containing repeating units of the type 0 NH-RNH-i l-NH-R'NHii-NH-ILNH-ii-NE-R' NH-( i- (In these formulas, R, R, and R" represent bivalent organic radicals.)
In the alternative, one may prepare a prepolymer containing internal urea units and terminal isocyanate groups. Such a prepolymer used as Component B in conjunction with a diamine as Component A would yield a polyurea similar to that shown above.
It is evident from the above description that there is a very wide choice available in the selection of the complementary agents so that generically the polyureas deposited onto the wool and grafted thereto will contain repeating units of the type where R and R represent bivalent organic radicals; Z represents oxygen or sulphur; and the xs taken separately represent two hydrogen atoms or two monovalent organic radicals, or, taken together they represent a single divalent organic radical linking the two nitrogen atoms to which these are attached. In the preferred modifications of the invention, Z represents oxygen; R and R represent bivalent hydrocarbon radicals or bivalent hydrocarbon radicals interrupted by internal ether (-O-) linkages; and x is hydrogen. In, the especially preferred modifications of the invention, the reactants are so chosen that R and R represent bivalent hydrocarbon radicals containing at least two carbon atoms.
Coming under special consideration, particularly because of the exceptionally high shrink resistance obtained with very small percentages. of polyurea, are the use (as Component A) of xylylene diamines or aliphatic alpha, omega diamines, particularly those of the type wherein n has a value from 6 to 10 and the conjoint use (as Component B) of toluene diisocyanate or an alkylene bis(p-pheny1 isocyanate). Typical examples are the conjoint use of (A) hexamethylene diamine or metaxylylene diamine and (B) toluene-2,4-diisocyanate or methylene bis (p-phenylisocyanate) There has been set forth above a comprehensive disclosure of the preferred types of complementary agents, that is, diamines, diisocyanates, and their equivalents. Althrough it is preferred to use these agents for optimum results, they are by no means the only compounds which may be used. The invention in its broadest aspect includes the application of many other types of complementary agents which have the ability to form polyureas when applied to wool by the disclosed procedures. Various examples are thus set forth of other types of compounds which may be used. One plan involves using as Component A, urea, guanidine, biuret, thiourea, dithiobiuret, or the like and using as Component B a diacid chloride, for example, oxalyl chloride, maleyl chloride, fumaryl chloride, malonyl chloride, succinyl chloride, glutaryl chloride, adipyl chloride, pimelyl chloride, suberyl chloride, azelayl chloride, sebacyl chloride, cyclohexane-l,4-biscarbonyl chloride, phthalyl chloride, isophthalyl chloride, terephthalyl chloride, 4,4'-biphenyl-dicarbonyl chloride, p-hydromuconyl chloride, i.e.,
ClCOCH CH=CI-I-CH COCL diglycollic acid chloride, i.e., O(CH COCl) higher homologues of this compound as O(CH CH COCl) dithiodiglycollic acid chloride, diphenylolpropanediacetic acid chloride, i.e., (CH O(C H OCH COCl)- and the 9 like. A variant to this procedure is to use as Component B a disulphonyl chloride as benzene-1,3-disulphonyl chloride, biphenyl-4,4'-disulphonyl chloride, toluene disulphonyl chlorides or aliphatic compounds such as those of the formula ClSO (Cl-I SO Cl wherein n has a value from 2 to '12.
Examples The invention is further demonstrated by the following illustrative examples.
Standard shrinkage test.The tests for shrinkage referred to below were conducted in the following way: The wool samples were milled at 1700 rpm. for 2 minutes at 40-42 C. in an Accelerotor with 0.5% sodium oleate solution, using a liquor-to-wool ratio of 50 to 1. After this washing operation the samples were measured to determine their area and the shrinkage was calculated from the original area. With this washing method, samples of control (untreated) wool gave an area shrinkage of 45%. The Accelerotor is described in the American Dyestufi Reporter, vol. 45, p. 685, Sept. 10, 1956.
EXAMPLE 1 A. A solution was prepared containing 4% of hexamethylene diamine in water.
B. A solution was prepared containing 3% bis(p-phenylisocyanate) in benzene.
A sample of wool cloth was immersed in solution A for 30 seconds, run through squeeze rolls to remove excess liquid, immersed for 30 seconds in solution B, run through squeeze rolls to remove excess liquid, rinsed in water, and dried in air at room temperature. The treated wool had a polyurea resin uptake of 1.7% and on washing in the Accelerotor, exhibited an area shrinkage of 9.8%.
EXAMPLE 2 methylene- The process of Example 1 was repeated using as solution A 4% hexamethylene diamine in water and as solution B a 3% solution of methylene-bis(p-phenylisocyanate) in carbon tetrachloride. The time of immersion of the cloth in each solution was 60 seconds.
The treated wool had a polyurea resin uptake of 2.4% and on washing exhibited an area shrinkage of 8.8%.
EXAMPLE 3 Apr. 15, 1960);,Serial No. 83,848, filed January 19, 1961, entitled Shrinkproofing of Wool With Polyurethanes; Serial No. 85,438, filed January 27, 1961,'entitled Shrinkproofing of Wool With Polyureas; Serial No. 88,232, filed February 9, 1961, entitled Shrinkproofing of Wool With Polyesters; and Serial No. 88,233, filed February 9, 1961, entitled Shrinkproofing of Wool With Polycarbonates. Of the applications referred to above, the following have been abandoned: Ser. No. 22,651, Ser. No. 83,848, Ser. No. 85,438, Ser. No. 88,232, Ser. No. 88,233, and Ser, No. 90,604.
Attention is called to the fact that the present application is one of a series of applications filed by us generally concerned with shrinkproofing wool wherein various types of condensation of polymers are formed on and grafted to the wool fibers. Polyureas are the subject of the present application; polyurethanes are the subject of Ser. No; 99,319, filed March 29, 1961; polyesters are the subject of Ser. No. 101,599, filed April 7, 1961; polycarbonates are the subject of Ser. No. 102,323, filed April 11, 1961; interpolymers are the subject of Ser. No. 109,229, filed May 10, 1961. Condensation polymers broadly and polyamides specifically are the subjects of the parent application referred to above, of which this application is a continuation-in-part...
Although the present invention finds its greatest field of utility in the shrinkproofing of wool and is peculiarly adapted for such use because of a combination of important factorsincluding the advantages that a high degree of shrink resistance is imparted with a minor amount of polymer, that the shrinkproofing treatment does not significantly impair the hand of the wool, that the treatment does not impair other desirable fiber characteristics such as tensile strength, elasticity, porosity, etc.,
that the polymer is grafted to the wool molecules so that the shrinkproofing eifect is exceedingly durable and is retained even after long wear and repeated laundering-it is evident that the invention may be extended to other areas. Thus the principles of the invention may be extended to forming polymers in situ on other substrates besides wool,particularly substrates of a fibrous structure. Typical examples of such materials are animal hides, leather; animal hair; cotton; hemp; jute; ramie; flax; wood; paper; synthetic cellulosic fibers such as viscose,cellulose acetate, cellulose acetate-butyrate; casein fibers; polyvinyl alcohol-protein fibers; alginic fibers; glass fibers;-asbestos; and organic non-cellulosic fibers such as poly (ethylene glycol terephthalate), polyacrylonitrile, polyethylene, polyvinyl chloride, polyvinylidene. chloride, etc. Such applications of the teachings of the invention may be for the purposes of obtaining functional or decorative eifects such as sizing, finishing, increasing gloss or transparency, increasing water-repellancy, increasing adhesionor bonding-characteristics of the substrates with rubber, polyester resins, etc. It is not claimed that in such extensions of our teachings shrinkproofing would be attained nor that graft polymers would be produced. However, it
Second Treating Solution-Ooncen- Resin Area Run First Treating Solution0oncentration of active tration of active ingredient and soluptake shrinkingredient and solvent used vent used on wool, age,
percent percent 1 3% methylene bis( -phenylisocyanete) in 0014.... 4% hexarnethylene diamine in Water. 2. 2 5, 9 2 4% metaxylylene diamine in Water 3% toluene diisoeyanate in benzene 5. 4 7, 9 3 4% metaxylylene diamine in water.-. 3% toluene diisocyanate in CO1, 5. 5 20.0 4 (Control) 47.0
This application is a continuation-in-part of our copending application Serial No. 98,718, filed March 27, 1961, entitled Shrinkproofing Wool With Polymers, wherein is disclosed the broad concept of grafting condensation polymersparticularly polyamides-to wool. Said application is a continuation-in-part of the following applications: Serial No. 90,604, filed February 20, 1961, entitled Shrinkproofing of Wool With Polyamides (which in turn is a continuation-in-part of Ser.
might be expected that graft polymers would be formed with proteinous substrates such as animal hair, animal hides, and the like.
Having thus described the invention, What is claimed is:
l. A process for shrinkproofing wool without significant impairment of its hand, which comprises serially impregnating Wool with two solutions, one solution containing a diamine dispersed in water, the other solution No. 22,651, filed containing a diisocyanate dispersed in an inert, volatile,
essentially water-immiscible solvent, the said diamine and diisocyanate reacting to form in situ on the wool fibers a resinous polyurea.
2. The process of claim 1 wherein the diamine has the formulawherein n has a value from 6 to 10.
3. The process of claim 1 wherein the diisocyanate has the formula-- wherein n has a value from 2 to 10.
4. The process of claim 1 wherein the diamine is hexamethylene diamine.
5. The process of claim 1 wherein the diamine is metaxylylene diamine.
6. The process of claim 1 wherein the diisocyanate is methylene bis(p-phenylisocyanate).
7. The process of claim 1 wherein the diisocyanate is toluene diisocyanate.
8. A process for shrinkproofing wool without significant impairment of its hand which comprises serially impregnating wool with two solutions, one containing a diamine in a first solvent, the other containing a diisocyamate in a second solvent, the first and second solvents being substantially mutually immiscible, the said diamine and diisocyanate reacting to form in situ on the wool.
fibers a resinous polyurea.
9. A modified wool fiber which exhibits improved shrinkage properties as compared with the unmodified wool fiber comprising wool fiber having a polyurea formed in situ thereon and chemically bonded to the wool.
10. A modified wool fiber which exhibits improved shrinkage properties as compared with the unmodified wool fiber comprising wool fiber having a polyurea formed in situ thereon and chemically bonded to the wool, the said polyurea containing recurring structural units of the formulawherein R and R are bivalent organic radicals.
11. The product of claim wherein R is -(CH;) wherein n has a value from 6 to 10.
12. The product of claim 10 wherein R is the metaxylylene radical.
13. The product of claim 10 wherein R is a)n wherein n has a value from 2 to 10.
16. A process for treating a fibrous material which comprises applying serially to said material in interfacial relationship, a pair of complementary direct-acting organic polyurea-forming intermediates.
17. A process for treating a fibrous material which comprises serially applying to said material a pair of complementary direct-acting organic polyurea-forming intermediates in separate phases of limited mutual solubility.
18. A process for treating a fibrous material which comprises serially distributing on the surface of the fibrous elements of said material a pair of complementary direct-acting organic polyurea-forming intermediates in superposed phases of limited mutual solubility, the said intermediates reacting under such conditions to form a polymer in situ on said fibrous elements.
19. A process for treating wool which comprises distributing on the surface of the wool fibers a pair of complementary direct-acting organic polyurea-forming intermediates in superposed liquid phases of limited mutual solubility, said intermediates reacting rapidly under said conditions to form a polymer in situ on said fibrous elements and grafted thereto.
20. A process for treating a fibrous material which comprises serially impregnating a fibrous material with two solutions, one solution containing one member of a pair of complementary, direct-acting, organic, polyureaforming intermediates in a first solvent, the other solution containing the complementary member of said pair of complementary, direct-acting, organic, polyureaforming intermediates in a second solvent, said first and second solvents being substantially mutually immiscible, the said pair of intermediates reacting rapidly under said conditions to form in situ on the fibers a resinous polyurea.
References Cited in the file of this patent UNITED STATES PATENTS 2,537,064 Kropa et a1. Ian. 9, 1951 2,852,494 Lehmann et al Sept. 16, 1958 2,880,054 Moore Mar. 31, 1959 2,974,003 Koenig Mar. 7, 1961

Claims (1)

16. A PROCESS FOR TREATING A FIBROUS MATERIAL WHICH COMPRISES APPLYING SERIALLY OF SAID MATERIAL IN INTERFACIAL RELATIONSHIP, A PAIR OF COMPLEMENTARY DIRECT-ACTING ORGANIC POLYUREA-FORMING INTERMEDIATES.
US10047661 1961-04-03 1961-04-03 Shrinkproofing wool with polyureas Expired - Lifetime US3084019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10047661 US3084019A (en) 1961-04-03 1961-04-03 Shrinkproofing wool with polyureas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10047661 US3084019A (en) 1961-04-03 1961-04-03 Shrinkproofing wool with polyureas

Publications (1)

Publication Number Publication Date
US3084019A true US3084019A (en) 1963-04-02

Family

ID=22279947

Family Applications (1)

Application Number Title Priority Date Filing Date
US10047661 Expired - Lifetime US3084019A (en) 1961-04-03 1961-04-03 Shrinkproofing wool with polyureas

Country Status (1)

Country Link
US (1) US3084019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357785A (en) * 1963-10-08 1967-12-12 Merck & Co Inc Shrinkproofing wool through serial impregnation with a diisocyanate having one or two terminal ester groups and a diamine
US3372978A (en) * 1964-05-28 1968-03-12 Agriculture Usa Fibrous material carrying a deposit of a cross-linked polymer
US3390949A (en) * 1963-10-18 1968-07-02 Universal Oil Prod Co Interfacial polymerization on wool using a polyacid polyhalide and a combination of polyamines
US3537808A (en) * 1961-02-17 1970-11-03 Rohm & Haas Method of depositing polymers on fibrous products
US4210415A (en) * 1977-04-07 1980-07-01 The United States Of America As Represented By The Secretary Of Agriculture Shrinkproofing of fabrics of wool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2537064A (en) * 1946-08-30 1951-01-09 American Cyanamid Co Treatment of organic textile materials and products thereof
US2852494A (en) * 1955-01-29 1958-09-16 Bayer Ag Process for the production of polyureas
US2880054A (en) * 1956-05-21 1959-03-31 Joseph E Moore Process for reacting wool with organic diisocyanates in the presence of a tertiary amine
US2974003A (en) * 1959-07-14 1961-03-07 Nathan H Koenig Treatment of wool with isocyanates in the presence of dimethylformamide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2537064A (en) * 1946-08-30 1951-01-09 American Cyanamid Co Treatment of organic textile materials and products thereof
US2852494A (en) * 1955-01-29 1958-09-16 Bayer Ag Process for the production of polyureas
US2880054A (en) * 1956-05-21 1959-03-31 Joseph E Moore Process for reacting wool with organic diisocyanates in the presence of a tertiary amine
US2974003A (en) * 1959-07-14 1961-03-07 Nathan H Koenig Treatment of wool with isocyanates in the presence of dimethylformamide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537808A (en) * 1961-02-17 1970-11-03 Rohm & Haas Method of depositing polymers on fibrous products
US3357785A (en) * 1963-10-08 1967-12-12 Merck & Co Inc Shrinkproofing wool through serial impregnation with a diisocyanate having one or two terminal ester groups and a diamine
US3390949A (en) * 1963-10-18 1968-07-02 Universal Oil Prod Co Interfacial polymerization on wool using a polyacid polyhalide and a combination of polyamines
US3372978A (en) * 1964-05-28 1968-03-12 Agriculture Usa Fibrous material carrying a deposit of a cross-linked polymer
US4210415A (en) * 1977-04-07 1980-07-01 The United States Of America As Represented By The Secretary Of Agriculture Shrinkproofing of fabrics of wool

Similar Documents

Publication Publication Date Title
US3632391A (en) Treatment of textile materials
US3078138A (en) Shrinkproofing wool with polyamides
US4144027A (en) Product and process
US5252375A (en) Permanent stain resistant treatment for polyamide fibers
DE4134284A1 (en) BLOCKED POLYISOCYANATES DISPERSABLE IN WATER, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
US3567499A (en) Textile materials and the process for finishing the same
US2468716A (en) Treatment of hydrogen-donor textile materials and products thereof
US3498740A (en) Imparting permanent dimensional stability and finish stability to fabrics containing keratinous fibers
US3084019A (en) Shrinkproofing wool with polyureas
US3695924A (en) Process for textile treatment and treated textile
US3093441A (en) Shrinkproofing wool with interpolymers
US3434875A (en) Textile fabric coated with a high molecular weight methylpolysiloxane elastomer polymer
US3528849A (en) Method for imparting oil and water repellency to textile materials
US3084018A (en) Shrinkproofing wool with polyurethanes
US3529990A (en) Process of finishing textile materials
US3542505A (en) Treatment of textiles with aziridine-modified polyurethanes
US2998295A (en) Process for the improvement of shaped thermoplastic materials containing carbonamidegroups
US3268360A (en) Composition comprising diisocyanate methylol-phosphorus polymer and organic textile flame-proofed therewith
US4210415A (en) Shrinkproofing of fabrics of wool
US3372978A (en) Fibrous material carrying a deposit of a cross-linked polymer
US3079216A (en) Shrinkproofing wool with polyesters
US3537808A (en) Method of depositing polymers on fibrous products
US3686026A (en) Process for finishing textile materials which contain wool
US3477803A (en) Shrinkproofing of wool top by using process of interfacial polymerization
US3828005A (en) Treatment of textiles with glycidolmodified polyurethanes