US3071919A - Cable for use in reinforcing elastomeric product - Google Patents
Cable for use in reinforcing elastomeric product Download PDFInfo
- Publication number
- US3071919A US3071919A US637087A US63708757A US3071919A US 3071919 A US3071919 A US 3071919A US 637087 A US637087 A US 637087A US 63708757 A US63708757 A US 63708757A US 3071919 A US3071919 A US 3071919A
- Authority
- US
- United States
- Prior art keywords
- yarn
- core
- cotton
- cable
- spun
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003014 reinforcing effect Effects 0.000 title claims description 9
- 239000002657 fibrous material Substances 0.000 claims description 7
- 239000004753 textile Substances 0.000 claims description 5
- 229920000742 Cotton Polymers 0.000 description 33
- 239000005020 polyethylene terephthalate Substances 0.000 description 27
- 229920004933 Terylene® Polymers 0.000 description 23
- 238000010276 construction Methods 0.000 description 15
- 229920001971 elastomer Polymers 0.000 description 12
- 239000004744 fabric Substances 0.000 description 12
- 239000005060 rubber Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 239000004677 Nylon Substances 0.000 description 10
- 229920001778 nylon Polymers 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 239000013536 elastomeric material Substances 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 229920000297 Rayon Polymers 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002964 rayon Substances 0.000 description 5
- 229920003052 natural elastomer Polymers 0.000 description 4
- 229920001194 natural rubber Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 244000043261 Hevea brasiliensis Species 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- 101100008047 Caenorhabditis elegans cut-3 gene Proteins 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 239000000899 Gutta-Percha Substances 0.000 description 1
- 240000002636 Manilkara bidentata Species 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 240000000342 Palaquium gutta Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 235000016302 balata Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920000588 gutta-percha Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920006174 synthetic rubber latex Polymers 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D23/00—Producing tubular articles
- B29D23/001—Pipes; Pipe joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/0042—Reinforcements made of synthetic materials
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/447—Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/48—Tyre cords
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2007/00—Use of natural rubber as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2009/00—Use of rubber derived from conjugated dienes, as moulding material
- B29K2009/06—SB polymers, i.e. butadiene-styrene polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2021/00—Use of unspecified rubbers as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2277/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2311/00—Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
- B29K2311/10—Natural fibres, e.g. wool or cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/02—Cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
Definitions
- the reinforcement should have as high a tenacity as possible and with this object in view cotton, which was the reinforcement originally used, has been replaced to some extent by the continuous filament synthetic materials, particularly nylon, and proposals have also been made to use the polyester material sold under the registered trademark Terylene. These materials have the disadvantage, however, that they do not adhere so well as cotton to rubber which is one of the elastomeric materials usually employed.
- composite products such as tyres, belts and hose comprise an elastomeric material reinforced by doubled or cabled yarns comprising a continuous filamentary material having a sheath of a staple fibrous material spun thereon, the proportion of continuous filamentary material being up to 50% by weight of the yarn.
- Suitable continuous filamentary materials are rayon, nylon or Ter'ylene (a polyethylene terephthalate) having atenacity of 3 or 4 grns./ denier or more and suitable fibrous materials are cotton and rayon staple.
- the elastomeric material usually employed is a natural rubber or synthetic rubber, e.g. a butadiene-styrene co-polymer, a butadiene-acrylonitrile co-polymer or polychloroprene, or a plasticised polyvinyl chloride composition. Balata or gutta-percha may also be used in the construction of belting.
- the core-spun yarns are of the type in which the continuous filamentary component is surrounded by a sheath of spun staple fibrous material and are subsequently doubled or cabled together to give optimum strength.
- the core of the yarn may comprise a plurality of continuous filaments, if desired.
- An additional advantage is that by core-spinning the filament core, for example, Terylene is more efficiently covered by the staple fibre than by doubling and hence gives better adhesion to the elastomeric material.
- the proportion of continuous filamentary material in the core-spun yarns may be in any proportion up to 50% by weight, depending on the cost/strength ratio desired and on the purpose for which they are required. It has been found that adequate adhesion can be obtained to yarns, cords or fabrics made of core-spun yarns containing up to 50% of filamentary material.
- Composite products produced using such yarns possess exceptional resistance to flexing and also show little growth or elongation under either constantly applied or repeated loading once the initial stretch has occurred.
- FIG. 1 is a diagrammatic sketch showing the manner of assembling the elements of the cable
- FIG. 2 is a side view of a portion of the cable
- FIG. 3 is a cross-section of the cable on the line 3-3 of FIG. 2.
- the cable is made of a core '10 of filamentary material such as Terylene or Dacron, nylon or rayon, about which is core-spun a sheath 11 of spun stable fibrous material such as cotton or rayon staple to form a yarn 12.
- a core '10 of filamentary material such as Terylene or Dacron, nylon or rayon
- the core spun yarns can be incorporated in the composite products without the use of adhesives but, if desired the simpler well-known adhesives can be applied to the yarn before fabrication of the product.
- adhesives are diluted natural rubber latex which may if desired contain a resorcinohformaldehyde resin dispersed therein or a synthetic rubber latex comprising a copolymer of butadiene, vinyl pyridine and/ or styrene.
- the invention is illustrated by the following various types of composite products oonstructed in accordance therewith.
- a yarn which has given good results in hose fabric is one containing about 32% Terylene yarn and 68% of cotton, made from 250 denier Terylene yarn core-spun with cotton to give a resultant count of 7 the yarn being then doubled to a 7 /3 fold construction.
- the folded yarn had a breaking strength of 16.24 lbs. and a tenacity of 3.20 grams per denier.
- the fabric strength figures for prepared test strips 2 inches wide, unravelled from strips cut 3 inches wide were 650.8 lb. in the warp direction and 609.9 lb. in the weft direction.
- a fabric made of all cotton yarn from the same grade of cotton spun to 7 counts, made into a 3 fold thread with the same twist particulars and woven with approximately the same number of warp and weft threads gives only 335 lb. per 2 inches for the warp strength and only 315 lb. per 2 inches for the weft strength.
- This fabric was used in the construction of hose by the usual methods i.e. by application of a natural rubber composition and building on a mandrel so that the fabric was embedded in the wall of the hose followed by vulcanisation of the rubber.
- the resulting hose exhibited greatly improved adhesion 'of the rubber to the fabric and was consequently very robust.
- Example II Another yarn which has been found satisfactory for the construction of conveyor belting contains about 28% Terylene yarn and 72% of cotton and is made from 250 denier Terylene yarn core-spun with 8 cotton to give a resultant count of 6 the yarn being then doubled and cabled to a 6 8/ 3 construction.
- a first folding twist of 4.0 turns per inch (S) and a second folding or cabling twist of 2.0 turns per inch (Z) the strength of the cord was 134.6 lb. This is a tenacity of 3.24 grams per denier.
- This cord was woven with a very low weft content to give a belting fabric which was impregnated with a compounded unvulcanised rubber. Unvulcanised rubber covers were applied and the assembled belting vulcanised by heating in a belting press. The belt so obtained was characterised by extremely good adhesion of the rubber to the fabric.
- Example III A base yarn which has been found particularly suitable for the construction of wedge-shaped driving belts (or V-belts) consists of 30% Terylene yarn and 70% of cotton and was made from 250 denier Terylene yarn core-spun with 8 cotton to give a resultant count of 7 the yarn was doubled and cabled to give a 7 /5/3 construction.
- the cabled cord had a strength of 94 lbs.
- a narrow section wedge-shaped driving belt was made having four plies each containing thirteen endless cords of the above type with a skeleton weft, arranged in a lateral plane of the belt and embedded in a layer of cushion rubber.
- the layer of cushion rubber was sandwiched between a layer of base rubber and an upper layer of filler rubber, the whole being shaped to the desired V profile.
- the assembly was covered with a number of jacket plies of rubber-covered fabric and the final belt vulcanised in a mould. Belts of this construction were tested on a high speed testing machine and ran for more than 1,000 hours without failure.
- Example IV For the fabrication of a fan belt, a basic yarn was constructed by core-spinning cotton rovings around a Terylene yarn core to produce, after doubling eight fold and cabling three fold a cord of 7 /8/3 construction. The cord had a strength of 140 lbs. and contained approximately 30% Terylene yarn and 70% cotton.
- the fan belt was constructed by application of a rubber composition to a single ply of nine endless cords of this type as in Example III and when tested on a high speed testing machine gave a life of 340 hours.
- a belt of similar construction but using an all-cotton cord which had a strength of lbs. when tested for comparison under similar conditions on the same machine failed after hours.
- Fan belts made with the 7 8/ 3 Terylene 30%-cotton 70% described above were practically unaltered in length when measured under load after being stored for at least 3 months, showing that these cords are virtually unaffected by moisture and so are particularly suitable for use in countries where the atmosphere may have high humidity.
- Example V A yarn which has given good results in pneumatic tyres is one containing about 30% Terylene yarn and 70% cotton and made from Terylene yarn core-spun with cotton to give a resultant count of 16.7 the yarn being then doubled and cabled to give a tyre cord of 167 3/ 3 construction.
- a cable for use in reinforcing elastomeric products such as tires, belts and hose wherein said cable comprises at least two cords doubled together of which each cord comprises at least two yarns doubled together, each yarn comprising an inner core of at least one continuous textile filament having a tenacity of at least 3 grams per denier with a covering outer sheath of staple fibrous material core-spun together with and covering said core, the proportion of continuous filaments being up to 50 percent by weight of the yarn.
- a cable for use in reinforcing elastomeric products such as tires, belts and hose wherein said cable comprises three cords doubled together of which each cord comprises at least two yarns doubled together, each yarn comprising an inner core of at least one continuous textile filament having a tenacity of at least 3 grams per denier with a covering outer sheath of staple fibrous material core-spun together with and covering said core, the proportion of continuous filaments being up to 50 percent by weight of the yarn.
- a cable for use in reinforcing elastomeric products such as itres, belts and hose wherein said cable comprises from 3 to 8 cords doubled together each of which comprises at least 2 yarns doubled together, each yarn comprising an inner core of at least one continuous filament of polyethylene terephthalate having a tenacity of at least 3 grams per denier with a covering outer sheath of cotton fibres core-spun together with and covering said core, the proportion of polyethylene terephthalate filaments being up to 50 percent by weight of the yarn.
- a cable for use in reinforcing elastomeric products such as tires, belts and hose wherein said cable comprises from 3 to 8 cords doubled together each of which com- References Cited in the file of this patent UNITED STATES PATENTS 2,468,304 Musselman Apr. 26, 1949 6 Robbins Aug. 2, 1949 Weiss Oct. 4, 1949 Weiss Oct. 17, 1950 Snyder Apr. 1, 1952 Illingworth Mar. 27, 1956 Lyons et al July 17, 1956 Weinberger et a1 Sept. 1, 1958
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reinforced Plastic Materials (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Ropes Or Cables (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3071919X | 1956-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3071919A true US3071919A (en) | 1963-01-08 |
Family
ID=10921096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US637087A Expired - Lifetime US3071919A (en) | 1956-02-24 | 1957-01-30 | Cable for use in reinforcing elastomeric product |
Country Status (3)
Country | Link |
---|---|
US (1) | US3071919A (en(2012)) |
BE (1) | BE555243A (en(2012)) |
FR (1) | FR1172672A (en(2012)) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3315455A (en) * | 1964-10-23 | 1967-04-25 | Phillips Petroleum Co | Synthetic rope structure |
US3383849A (en) * | 1966-08-10 | 1968-05-21 | Stirling James | Rope strand or yarn and method of making same to reduce its whip-back characteristic at rupture |
US3419059A (en) * | 1965-05-04 | 1968-12-31 | Goodyear Tire & Rubber | Reinforcement element |
US3429117A (en) * | 1965-09-21 | 1969-02-25 | Celanese Corp | Composite nylon continuous filament yarns |
US3552468A (en) * | 1967-09-12 | 1971-01-05 | Goodyear Tire & Rubber | Pneumatic tire with reduced susceptibility to defects |
US3664114A (en) * | 1969-07-31 | 1972-05-23 | Eastman Kodak Co | Spun polyester strands and method for making |
EP2845932A1 (de) * | 2013-06-10 | 2015-03-11 | Veritas Ag | Polymerschlauch mit einem textilen Festigkeitsträger |
US20220024253A1 (en) * | 2018-12-20 | 2022-01-27 | Pirelli Tyre S.P.A. | Tyre for vehicle wheels |
US20220290338A1 (en) * | 2021-03-02 | 2022-09-15 | Sanko Tekstil Isletmeleri San. Ve Tic. A.S. | Protective woven fabric |
US20230241921A1 (en) * | 2020-06-17 | 2023-08-03 | Pirelli Tyre S.P.A. | Tyre for vehicle wheels |
RU2822896C1 (ru) * | 2023-04-06 | 2024-07-16 | Общество с ограниченной ответственностью "Челябинский канатно-веревочный завод" | Паракорд |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2468304A (en) * | 1947-04-03 | 1949-04-26 | Alvin J Musselman | Tire fabric |
US2477652A (en) * | 1946-03-01 | 1949-08-02 | Robbins Chandler | Mixed yarn and fabric |
US2483861A (en) * | 1947-11-12 | 1949-10-04 | United Merchants & Mfg | Textile materials and method of making same |
US2526523A (en) * | 1946-03-07 | 1950-10-17 | United Merchants & Mfg | Yarn and fabric and method of making same |
US2591628A (en) * | 1950-07-06 | 1952-04-01 | New Bedford Cordage Company | Rope composed of natural and synthetic fibers |
US2739918A (en) * | 1954-01-26 | 1956-03-27 | Dunlop Tire & Rubber Corp | Method of bonding textile fibers to rubber |
US2755214A (en) * | 1952-07-18 | 1956-07-17 | Firestone Tire & Rubber Co | Tire cord and method of making same |
US2901884A (en) * | 1955-01-17 | 1959-09-01 | Jan V Weinberger | Multiple core yarn |
-
0
- BE BE555243D patent/BE555243A/xx unknown
-
1957
- 1957-01-30 US US637087A patent/US3071919A/en not_active Expired - Lifetime
- 1957-02-22 FR FR1172672D patent/FR1172672A/fr not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2477652A (en) * | 1946-03-01 | 1949-08-02 | Robbins Chandler | Mixed yarn and fabric |
US2526523A (en) * | 1946-03-07 | 1950-10-17 | United Merchants & Mfg | Yarn and fabric and method of making same |
US2468304A (en) * | 1947-04-03 | 1949-04-26 | Alvin J Musselman | Tire fabric |
US2483861A (en) * | 1947-11-12 | 1949-10-04 | United Merchants & Mfg | Textile materials and method of making same |
US2591628A (en) * | 1950-07-06 | 1952-04-01 | New Bedford Cordage Company | Rope composed of natural and synthetic fibers |
US2755214A (en) * | 1952-07-18 | 1956-07-17 | Firestone Tire & Rubber Co | Tire cord and method of making same |
US2739918A (en) * | 1954-01-26 | 1956-03-27 | Dunlop Tire & Rubber Corp | Method of bonding textile fibers to rubber |
US2901884A (en) * | 1955-01-17 | 1959-09-01 | Jan V Weinberger | Multiple core yarn |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3315455A (en) * | 1964-10-23 | 1967-04-25 | Phillips Petroleum Co | Synthetic rope structure |
US3419059A (en) * | 1965-05-04 | 1968-12-31 | Goodyear Tire & Rubber | Reinforcement element |
US3429117A (en) * | 1965-09-21 | 1969-02-25 | Celanese Corp | Composite nylon continuous filament yarns |
US3383849A (en) * | 1966-08-10 | 1968-05-21 | Stirling James | Rope strand or yarn and method of making same to reduce its whip-back characteristic at rupture |
US3552468A (en) * | 1967-09-12 | 1971-01-05 | Goodyear Tire & Rubber | Pneumatic tire with reduced susceptibility to defects |
US3664114A (en) * | 1969-07-31 | 1972-05-23 | Eastman Kodak Co | Spun polyester strands and method for making |
EP2845932A1 (de) * | 2013-06-10 | 2015-03-11 | Veritas Ag | Polymerschlauch mit einem textilen Festigkeitsträger |
US20220024253A1 (en) * | 2018-12-20 | 2022-01-27 | Pirelli Tyre S.P.A. | Tyre for vehicle wheels |
US20230241921A1 (en) * | 2020-06-17 | 2023-08-03 | Pirelli Tyre S.P.A. | Tyre for vehicle wheels |
US20220290338A1 (en) * | 2021-03-02 | 2022-09-15 | Sanko Tekstil Isletmeleri San. Ve Tic. A.S. | Protective woven fabric |
US12344964B2 (en) * | 2021-03-02 | 2025-07-01 | Sanko Tekstil Isletmeleri San. Ve Tic. A.S. | Protective woven fabric |
RU2822896C1 (ru) * | 2023-04-06 | 2024-07-16 | Общество с ограниченной ответственностью "Челябинский канатно-веревочный завод" | Паракорд |
RU233602U1 (ru) * | 2023-04-06 | 2025-04-28 | Общество с ограниченной ответственностью "Челябинский канатно-веревочный завод" | Паракорд |
Also Published As
Publication number | Publication date |
---|---|
BE555243A (en(2012)) | |
FR1172672A (fr) | 1959-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4073330A (en) | Tire cord fabrics for belts of belted pneumatic tires | |
US5221382A (en) | Pneumatic tire including gas absorbing cords | |
US2755214A (en) | Tire cord and method of making same | |
US3429354A (en) | Tire cord constructions and tires made therewith | |
US4363346A (en) | Pneumatic tire including gas absorbing cords | |
US20090090447A1 (en) | Tire cord reinforcement | |
US3419059A (en) | Reinforcement element | |
US3419060A (en) | Textile cord material and pneumatic tires manufactured therewith | |
US20140120791A1 (en) | Composite layer for reinforcement of objects such as tires or belts | |
US3071919A (en) | Cable for use in reinforcing elastomeric product | |
US20160297245A1 (en) | Cap ply reinforcement strip in pneumatic tire | |
EP0447807B1 (en) | Fiber reinforced rubber | |
US3431962A (en) | Reinforcement for pneumatic tires and the like | |
US3516465A (en) | Reinforced tire | |
US5268221A (en) | Fiber reinforced rubber articles | |
US3897289A (en) | Method of forming wire woven fabric for pneumatic tires | |
US3056429A (en) | Laminated fabrics | |
US2992150A (en) | Core-spun yarn reenforced composite products | |
US1875517A (en) | Samuel a | |
US20140150398A1 (en) | Reinforcing structure comprising spun staple yarns | |
US3080907A (en) | Tire repair unit | |
EP3619052B1 (en) | Reinforcement strip for a cap ply of a pneumatic tire | |
US3603071A (en) | Cords for annular reinforcing tire belts | |
WO2014102719A1 (en) | A hybrid cord structure | |
US3921691A (en) | Macrofilamentary yarns and rubber structures reinforced therewith |