US3062612A - Method of protecting metals against electrochemical corrosion of the acidic type - Google Patents
Method of protecting metals against electrochemical corrosion of the acidic type Download PDFInfo
- Publication number
- US3062612A US3062612A US807754A US80775459A US3062612A US 3062612 A US3062612 A US 3062612A US 807754 A US807754 A US 807754A US 80775459 A US80775459 A US 80775459A US 3062612 A US3062612 A US 3062612A
- Authority
- US
- United States
- Prior art keywords
- sulfur
- corrosive
- acidic
- corrosion
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002378 acidificating effect Effects 0.000 title claims description 52
- 229910052751 metal Inorganic materials 0.000 title claims description 33
- 239000002184 metal Substances 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 29
- 238000006056 electrooxidation reaction Methods 0.000 title description 8
- 150000002739 metals Chemical class 0.000 title description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 112
- 229910052717 sulfur Inorganic materials 0.000 claims description 108
- 239000011593 sulfur Substances 0.000 claims description 108
- 239000003518 caustics Substances 0.000 claims description 40
- 238000005260 corrosion Methods 0.000 claims description 36
- 230000007797 corrosion Effects 0.000 claims description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 239000012736 aqueous medium Substances 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 5
- 150000002462 imidazolines Chemical class 0.000 claims description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 3
- 150000004665 fatty acids Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 61
- 239000007788 liquid Substances 0.000 description 46
- 239000002609 medium Substances 0.000 description 37
- 238000012360 testing method Methods 0.000 description 37
- 230000000694 effects Effects 0.000 description 34
- 229910000831 Steel Inorganic materials 0.000 description 27
- 239000010959 steel Substances 0.000 description 27
- 208000016261 weight loss Diseases 0.000 description 27
- 230000004580 weight loss Effects 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 24
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 19
- -1 aliphatic fatty acids Chemical class 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000003929 acidic solution Substances 0.000 description 12
- 230000009471 action Effects 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 10
- 235000011167 hydrochloric acid Nutrition 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 235000019441 ethanol Nutrition 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 8
- 125000004434 sulfur atom Chemical group 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- JZEGLWOSVSAMSN-UHFFFAOYSA-N 1-(18-ethoxyoctadecyl)-4,5-dihydroimidazole Chemical compound CCOCCCCCCCCCCCCCCCCCCN1CCN=C1 JZEGLWOSVSAMSN-UHFFFAOYSA-N 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- OJGMBLNIHDZDGS-UHFFFAOYSA-N N-Ethylaniline Chemical compound CCNC1=CC=CC=C1 OJGMBLNIHDZDGS-UHFFFAOYSA-N 0.000 description 4
- 239000003502 gasoline Substances 0.000 description 4
- 239000004312 hexamethylene tetramine Substances 0.000 description 4
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- ARAKJJDEQPDESK-CVBJKYQLSA-N (Z)-octadec-9-enoic acid propane-1,2-diamine Chemical compound CC(N)CN.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O ARAKJJDEQPDESK-CVBJKYQLSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 2
- BDFAOUQQXJIZDG-UHFFFAOYSA-N 2-methylpropane-1-thiol Chemical compound CC(C)CS BDFAOUQQXJIZDG-UHFFFAOYSA-N 0.000 description 2
- MFEIKQPHQINPRI-UHFFFAOYSA-N 3-Ethylpyridine Chemical compound CCC1=CC=CN=C1 MFEIKQPHQINPRI-UHFFFAOYSA-N 0.000 description 2
- PFCHFHIRKBAQGU-UHFFFAOYSA-N 3-hexanone Chemical compound CCCC(=O)CC PFCHFHIRKBAQGU-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- ZERULLAPCVRMCO-UHFFFAOYSA-N Dipropyl sulfide Chemical compound CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 239000008232 de-aerated water Substances 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 150000002019 disulfides Chemical class 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- CDZOGLJOFWFVOZ-UHFFFAOYSA-N n-propylaniline Chemical compound CCCNC1=CC=CC=C1 CDZOGLJOFWFVOZ-UHFFFAOYSA-N 0.000 description 2
- 230000009972 noncorrosive effect Effects 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 150000003139 primary aliphatic amines Chemical class 0.000 description 2
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 150000005619 secondary aliphatic amines Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 150000003510 tertiary aliphatic amines Chemical class 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- AIDFJGKWTOULTC-UHFFFAOYSA-N 1-butylsulfonylbutane Chemical compound CCCCS(=O)(=O)CCCC AIDFJGKWTOULTC-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- WCXXISMIJBRDQK-UHFFFAOYSA-N 1-methylsulfanylbutane Chemical compound CCCCSC WCXXISMIJBRDQK-UHFFFAOYSA-N 0.000 description 1
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical group CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 1
- UFFBMTHBGFGIHF-UHFFFAOYSA-N 2,6-dimethylaniline Chemical group CC1=CC=CC(C)=C1N UFFBMTHBGFGIHF-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- MKARNSWMMBGSHX-UHFFFAOYSA-N 3,5-dimethylaniline Chemical group CC1=CC(C)=CC(N)=C1 MKARNSWMMBGSHX-UHFFFAOYSA-N 0.000 description 1
- QSNMFWFDOFQASV-UHFFFAOYSA-N 3-Butylpyridine Chemical compound CCCCC1=CC=CN=C1 QSNMFWFDOFQASV-UHFFFAOYSA-N 0.000 description 1
- MLAXEZHEGARMPE-UHFFFAOYSA-N 3-propylpyridine Chemical compound CCCC1=CC=CN=C1 MLAXEZHEGARMPE-UHFFFAOYSA-N 0.000 description 1
- FHQRDEDZJIFJAL-UHFFFAOYSA-N 4-phenylmorpholine Chemical compound C1COCCN1C1=CC=CC=C1 FHQRDEDZJIFJAL-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000331231 Amorphocerini gen. n. 1 DAD-2008 Species 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- CUDSBWGCGSUXDB-UHFFFAOYSA-N Dibutyl disulfide Chemical compound CCCCSSCCCC CUDSBWGCGSUXDB-UHFFFAOYSA-N 0.000 description 1
- HTIRHQRTDBPHNZ-UHFFFAOYSA-N Dibutyl sulfide Chemical compound CCCCSCCCC HTIRHQRTDBPHNZ-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N Eucalyptol Chemical compound C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- ILMGHNQJEJBUKW-UHFFFAOYSA-N N,N-dimethylaniline N-ethyl-N-methylaniline Chemical compound C(C)N(C1=CC=CC=C1)C.CN(C1=CC=CC=C1)C ILMGHNQJEJBUKW-UHFFFAOYSA-N 0.000 description 1
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 1
- FULZLIGZKMKICU-UHFFFAOYSA-N N-phenylthiourea Chemical compound NC(=S)NC1=CC=CC=C1 FULZLIGZKMKICU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N alpha-methyl toluene Natural products CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- HOPRXXXSABQWAV-UHFFFAOYSA-N anhydrous collidine Natural products CC1=CC=NC(C)=C1C HOPRXXXSABQWAV-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical compound CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229930007050 cineol Natural products 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- UTBIMNXEDGNJFE-UHFFFAOYSA-N collidine Natural products CC1=CC=C(C)C(C)=N1 UTBIMNXEDGNJFE-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 1
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 1
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 1
- ALVPFGSHPUPROW-UHFFFAOYSA-N dipropyl disulfide Chemical compound CCCSSCCC ALVPFGSHPUPROW-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LQZALHTWCLNAIE-UHFFFAOYSA-N ethanol;morpholine Chemical compound CCO.C1COCCN1 LQZALHTWCLNAIE-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- ALCDAWARCQFJBA-UHFFFAOYSA-N ethylselanylethane Chemical compound CC[Se]CC ALCDAWARCQFJBA-UHFFFAOYSA-N 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- FZPXKEPZZOEPGX-UHFFFAOYSA-N n,n-dibutylaniline Chemical compound CCCCN(CCCC)C1=CC=CC=C1 FZPXKEPZZOEPGX-UHFFFAOYSA-N 0.000 description 1
- DIAIBWNEUYXDNL-UHFFFAOYSA-N n,n-dihexylhexan-1-amine Chemical compound CCCCCCN(CCCCCC)CCCCCC DIAIBWNEUYXDNL-UHFFFAOYSA-N 0.000 description 1
- OOHAUGDGCWURIT-UHFFFAOYSA-N n,n-dipentylpentan-1-amine Chemical compound CCCCCN(CCCCC)CCCCC OOHAUGDGCWURIT-UHFFFAOYSA-N 0.000 description 1
- VSHTWPWTCXQLQN-UHFFFAOYSA-N n-butylaniline Chemical compound CCCCNC1=CC=CC=C1 VSHTWPWTCXQLQN-UHFFFAOYSA-N 0.000 description 1
- MJCJUDJQDGGKOX-UHFFFAOYSA-N n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCCCCCCCCCCCC MJCJUDJQDGGKOX-UHFFFAOYSA-N 0.000 description 1
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical compound CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-M n-octyl sulfate Chemical compound CCCCCCCCOS([O-])(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-M 0.000 description 1
- JACMPVXHEARCBO-UHFFFAOYSA-N n-pentylpentan-1-amine Chemical compound CCCCCNCCCCC JACMPVXHEARCBO-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- MTZWHHIREPJPTG-UHFFFAOYSA-N phorone Chemical compound CC(C)=CC(=O)C=C(C)C MTZWHHIREPJPTG-UHFFFAOYSA-N 0.000 description 1
- 229930193351 phorone Natural products 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 229940114930 potassium stearate Drugs 0.000 description 1
- ANBFRLKBEIFNQU-UHFFFAOYSA-M potassium;octadecanoate Chemical compound [K+].CCCCCCCCCCCCCCCCCC([O-])=O ANBFRLKBEIFNQU-UHFFFAOYSA-M 0.000 description 1
- 150000003142 primary aromatic amines Chemical class 0.000 description 1
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N propiophenone Chemical compound CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 150000003336 secondary aromatic amines Chemical class 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 1
- 229940082004 sodium laurate Drugs 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-N sulfuric acid monooctyl ester Natural products CCCCCCCCOS(O)(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 150000003513 tertiary aromatic amines Chemical class 0.000 description 1
- IOOGPFMMGKCAGU-UHFFFAOYSA-N tetrasulfur Chemical compound S=S=S=S IOOGPFMMGKCAGU-UHFFFAOYSA-N 0.000 description 1
- 150000003556 thioamides Chemical class 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- XKGLSKVNOSHTAD-UHFFFAOYSA-N valerophenone Chemical compound CCCCC(=O)C1=CC=CC=C1 XKGLSKVNOSHTAD-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/04—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
Definitions
- Long chain aliphatic fatty acids having from S to 24 carbon atoms per molecule and their salts, such as oleic acid, sodium laurate, potassium stearate and the like.
- Sulfonic acids and their salts such as anthraquinone B-sulfonic acid, sulfonated mineral oils, alkylated naphthalene sodium sulfonates and the like.
- Primary, secondary and tertiary aliphatic amines where the different hydrocarbon radicals have from one to 20 carbon atoms, such as amylamine, hexylamine, cyclohexylamine, dodecylamine, tetradecylamine, octadecylamine, dimethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, dicyclohexylamine, didodecylamine, trimethylamine, triethylamine, tripropylamine, triamylamine, trihexylamine, ethylmethylamine, ethylenediamine, triethanolamine, hexamethylenetetramine, and their acid addition salts such as sulphates, hydrochlorides, acetates and the like.
- Primary, secondary and tertiary aromatic amines such as 0., m. and p. toluidines, o. xylidine, 2,6-xylidine, 3,5- xylidine, m. ethylaniline, m. propylaniline, m. butylaniline, oz -naphthylamine, pheneylenediamine, methylaniline, ethylaniline, propylaniline, dimethylaniline ethylmethylaniline, diethylaniline, dibutylaniline and the like.
- Heterocyclic nitrogenated compounds of aliphatic nature such as morpholine, phenylmorpholine, ethanol morpholine, imidazolines, aminoalcoylimidazolines, or of aromatic nature such as pyridine, picoline, collidine, lutidine, 3-ethylpyridine, 3-propylpyridine, 3-butylpyridine, quinoline, acridine and the like.
- Quaternary ammonium salts such as betaine, dodecyltrimethylammonium chloride and the like.
- Amides and thioamides such as thiourea, phenylthiourea, o. and p. tolylthiourea and the like.
- Hydrazines such as phenylhydrazine and the like.
- Phenols and thiophenols such as thiophenol, 0., m. and p. thiocresols, 2-thionaphtol and the like.
- Mercaptans where the hydrocarbon radical comprises propylmercaptan
- R and R are hydrocarbon radicals either identical or differing from each other, preferably of aliphatic type, and containing from 1 to 20 carbon atoms per radical, and for example methylsulfide, ethylsulfide, propylsulfide, 'butylsulfide, butylmethylsulfide, propyldisulfide, butyldisulfide and the like.
- Aldehydes such as formaldehyde, acetaldehyde, proprionaldehyde, butyraldehyde, crotonaldehyde, benzaldehyde, 0., m. and p. tolualdehydes and the like.
- Ketones such as diethylketone, dipropylketone, diisobutylketone, butylmethylketone, isobutylmethylketone, tertiobutylmethylketone, amylmethylketone, ethylpropylketone, acetonylacetone, pinacolo-ne, phorone, cyclohexanone, acetophenone, propiophenone, butyrophenone, valerophenone and the like.
- Esters such as n-octylsulfate, dodecylsulfate and the like.
- Ethers such as cineol and the like.
- Sulfones such as butylsulfone and the like.
- Test A A soft steel strip having a surface of 30 cm. and determined weight (the exact composition of the steel is immaterial as long as the same steel is used for all comparative tests) is polished electrolytically in a known manner and then immersed at 20 C. in a solution of benzene containing l% by weight of sulfur, then Withdrawn, washed three times with pure benzene, and then immersed for 5 minutes in pure benzene, washed again, dried and weighed.
- Test B A strip thus prepared is then immersed in an aqueous hydrochloric acid solution containing by weight of HCl. After 48 hours immersion the strip is removed, dried and weighed and shows a loss, due to corrosion, of 136.2 milligrams.
- Test C A strip of identical material, dimensions and weight is immersed, without having previously undergone the treatment of test A, in the same kind of aqueous hydrochloric solution as used for test B, i.e. with a concentration of 10% by weight of HCl. After 48 hours, the strip is removed, dried and weighed, and shows a weight loss of only 75.4 mg.
- the method according to the invention therefore comprises adding to an acidic corrosive liquid, predominantly an aqueous acidic solution, having a corrosive action of the acidic type, such as solutions of hydrochloric acid, sulfuric acid, perchloric acid, carbonic acid, sulphhydric acid, or organic acids such as acetic acid, butyric acid, benzenesulfonic acid and the like, a known anti-corrosive agent for acidic media such as that hereabove mentioned, in conventionally used amounts, which agent is preferably selected from the group consisting of the most usual commercial anti-corrosive agents which are generally constituted on the basis of primary, secondary, and tertiary aliphatic amines, quaternary ammonium salts derived from the latter amines, cyclic amines such as piperidine, morpholine and imidazolines and organic sulfides and disulfides having, respectively, the formulae RSR' and R-SSR', wherein R and R are hydrocarbon
- the anti-corrosive agent can hardly be recovered from its solution in the corrosive medium and is consequently lost when fresh corrosive medium is continuously circulated in contact with the metal, it is generally appropriate for economic reasons to limit the proportion of such anticorrosive agent to the minimum quantity which secures a sufficient protection to reduce the corrosion intensity to an acceptable level. This minimum quantity may be reduced considerably according to the present invention, due to the action of sulfur in cooperation with said anticorrosive agent.
- the proportion of anti-corrosive agent in the corrosive medium be at least equal to that proportion for which the use of the anti-corrosive agent alone, i.e., without sulfur, is effective by carrying out a testable reduction of the corrosive intensity.
- This minimum proportion is conventionally known in the art for each known anticorrosive agent. In most cases it is of the order of 5 to parts per million by weight. Usual range of concentrations used is from 5 to 100 parts per million by weight.
- a technical improvement resulting in a lowering of the corrosive action may still be achieved by the use of higher concentrations of the anti-corrosive agent, for example up to 1000 parts per million by weight, but economic considerations do not permit, except perhaps in some very particular cases, to assume so high expenses in order to achieve a relatively slight improvement of the protection of the metal as compared to that obtained with the same or other anti-corrosive agents used at lower concentrations of from 5 to 100 parts per million by weight. It must be noted that such concentrations are of the catalytic type, i.e. have no eflect on the pH of the corrosive medium.
- such concentrations of from 5 to 100 p.p.m. of anticorrosive agents are preferably used and most particularly the lowest concentrations for which a still significant reduction of the corrosive action of the corrosive medium is achieved.
- the elementary sulfur introduced or formed in the acidic solution and brought into contact with the metallic surface to be protected should have an average particle size of less than 500 microns and preferably less than 100 microns. No lower limit of that size has been observed and the process according to the invention may be carried out by using particules of the smallest size available or even sulfur in the state of a true solution in the corrosive medium (which may be for instance the case when the corrosive medium contains significant proportions of sulfuric acid).
- the anti-corrosive effect of the mixture varies progressively as a function of the amount of sulfur fixed on the metal surface and of the concentration of anticorrosive agent in the liquid, it is easy to determine with satisfactory precision the limits of the aforesaid range of optimal anti-corrosive increase from case to case. Said range is always wide enough to permit satisfactorily the use of the invention process without being necessary to determine the optimal proportion of sulfur. Even if the proportion of sulfur is too high a significant improvement of the anti-corrosive activity of the agent is nevertheless obtained.
- concentration of tetradecylamine in that corrosive medium is 20 p.p.m. optimal results will be obtained with a concentration of sulfur in the range of to p.p.m. It is quite remarkable that a slightly lower as well as a slightly higher sulfur concentration below and above the aforesaid range will leave only an anti-corrosive activity several times inferior to that achieved by the presence of sulfur in the aforesaid concentration range.
- the anti-corrosive effect-enhancing property of sulfur in the described concentration range is particularly surprising in view of the corrosion-enhancing properties of the same sulfur described in detail hereinbefore in connection with Tests A-H, and I have at present no scientific explanation for what I have termed for want of a better explanation, a synergistic phenomenon.
- a metal-corrosive liquid consisting of A normal aqueous hydrochloric acid solution there are added 1 gram of tetradecylamine and 100 cos. of ethyl alcohol containing dissolved 0.5 gram of sulfur.
- the resulting mixture contains approximately 10 p.p.m. of the anti-corrosive agent and about p.p.m. of colloidal sulfur.
- Example 11 Example I is repeated, but 200 cos. of the sulfur-containing ethyl-alcoholic solution are added instead of the amount used in the preceding example.
- Example Ill Example I is repeated, but 500 cos. of the sulfur-containing ethyl-alcoholic solution are added to the mixture.
- Strips of soft steel of identical composition and dimensions are subjected to a known electrolytic polishing treatment followed by an equally conventional reducing treatment in a hydrogen atmosphere at 500 C.
- the strips are then immersed in different aqueous normal solutions of hydrochloric acid. Sulfur is introduced into these solutions in colloidal form by adding to the same corresponding amounts of a solution of the sulfur in ethyl alcohol, so as to obtain a sulfur concentration in the HCl-solutions of 5, l0 and 25 p.p.m. respectively. Each of the solutions contains, as inhibitor, l0 p.p.m. of tetradecylamine. Immersion of the strips lasts for 48 hours and is carried out at room temperature. The results showing weight losses expressed in milligrams per square decimeter of surface and per day, are tabulated in Table III below:
- Table III shows clearly that the use of only 25 p.p.m. of sulfur makes the anti-corrosive agent, tetradecylamine, in the same concentration of the latter, four times as effective as when used without sulfur.
- Example IV Example IV is repeated, but instead of the amount of sulfur-containing alcoholic solution used therein, 40 cos. of the latter are added to the HCl-solution.
- Example V To a corrosive liquid consisting of a mixture of 10 parts by weight of commercially available standard gasoline and one part by weight of an aqueous normal hydrochloric acid solution containing dissolved 35 milligrams per liter of hydrogen sulfide, there are added 10 p.p.m. of Norust C 50, a commercially available anticorrosive agent on an amine basis manufactured by Prochinor (Neuilly-sur-Seine, France). Sulfur is introduced into the liquid by adding thereto 2 p.p.m. in the form of a solution of sulfur in gasoline. The resulting liquid is substantially free from noticeable corrosive effects on surfaces of steel or iron for much longer periods of time than when using known anti-corrosives.
- a particularly noticeable feature is the presence of sulfide ions in the corrosive liquid. It is thus shown that the presence of colloidal sulfur is required in the liquid to bring about the above-described extraordinary anticorrosive effect.
- Example VI To a corrosive liquid held under a pressure of 25 to 30 kilograms, per square centimeter and consisting of a solution of hydrogen sulfide in de-aerated water in a concentration of about 60 grams per liter of H 5, there are added 20 p.p.m. of tetradecylamine as anti-corrosive agent and 90 p.p.m. of sulfur in the form of a benzenic solution of S.
- An emulsion results which flocculates gradually on the surface of a metallic object introduced into the solution, and permits the fixation of sulfur on the metal surface.
- Tests were carried out bypreparing the above-described acidic solution in a steel autoclave, and then suspending in the solution several soft-steel strips electrolytically polished as described hereinbefore, and moving these strips so that they are subjected alternatingly to the action of the corrosive solution and to that of the vapor phase above the solution in the autoclave, pressure in the vapor phase varying between 25 and 30 kg./cm.
- Example VII To the same corrosive liquid as used in Example VI,
- Example VIII Example VII is repeated but the benzenic sulfur solution is added in such amounts that the sulfur content of the liquid is 80 p.p.m.
- Example IX A substantially non-corrosive acidic solution containing 90 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
- Example X An acidic solution containing 100 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
- Example XI An acidic solution containing 130 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
- Example XII Finally, an acidic solution containing 300 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
- Corrosion is again measured by the diminution of the thickness of a ,test soft-steel strip, calculated in millimeters per year.
- Example XIII Example VI is repeated with the same concentration of tetradecylamine and sulfur and a content of 38 grams per liter of hydrogen sulfide, but adding carbon dioxide gas to the solution in the autoclave at a rate of 8 grams per liter.
- test soft-steel strip is reduced in thickness by the rate of only 0.1 millimeter per year.
- Example XIV A soft steel strip of 50 x 30 x 0.5 mm. is annealed in pure hydrogen at 800 C. for 3 hours and let cooled down to room temperature in hydrogen atmosphere.
- This strip is weighed and immersed for 2 days into a corrosive medium consisting of a M/ 1O (10 moles per liter sulfuric acid solution). The weightloss of the strip amounts to 148 mg./dm. /day.
- Example XV Example X V is repeated with the same corrosive liquid to which are added 10 p.p. m. of ethoxystearylimidazoline (manufactured by Doittau, Produits Chimiques, Corbeil,
- Example XVI Example XIV is repeated with a corrosive liquid, consisting of a l M sulfuric acid solution. The weight loss of the strip amounts to 476 mg./ dmF/ day.
- Example XVII Example XV is repeated with a corrosive liquid as used in Example XVI to which there are added 30 p.p.m. of ethoxystearylimidazoline and various amounts of sulfur in the form of a 1% solution in carbon disulfide.
- Example XIV is repeated with a corrosive liquid consisting of a 10 M sulfuric acid olution. The weight loss of the strip amounts to 930 mg./dm. /day.
- Example XIX Example XV is repeated with a corrosive liquid as used in Example XVIII to which there are added 100 p.p.m. of ethoxystearylimidazoline and various amounts of sulfulr in the form of a 1% solution in carbon disulfide.
- Example XX Concentration Weight loss in I of S in p.p.m. mgJdmJ/day
- Example XX A soft steel strip as annealed and cooled down in Example XIV is immersed for 4 days into a corrosive medium consisting of a M/ 1-0 acetic acid solution. The weight loss of the strip amounts to 23.2 mg./dm. /day.
- Example XXI Example XX is repeated with the same corrosive liquid to which there are added 10 ppm. of N-tallow propylenediamine dioleate, manufactured by Armour and Co., and various amounts of sulfur in the form of a 0.2% solution in ethyl alcohol, to form in the corrosive liquid a colloidal suspension of the latter.
- Example XXII Example XX is repeated with a corrosive liquid consisting of a 1 M acetic acid solution. The weight loss of. the strip amounts to 32.4 mg./dm. /day.
- Example XXIII Example XXI is repeated with a corrosive liquid as used in Example XXII to which there are added 30 ppm. of N-tallow propylenediamine dioleate and various amounts of sulfur in the form of a 0.2% solution in ethyl alcohol.
- Example XXIV Example XX is repeated with a corrosive liquid consisting of a 10 M acetic acid solution. The weight loss of the strip amounts to 126 mg./ dm. day.
- Example'XX V Example XXI is repeated with a corrosive liquid as used in Example XXIV to which there are added 100 ppm. of N-tallow propylenediamine dioleate and various amounts of sulfur in the form of a 0.2% solution in ethyl alcohol.
- Example XX VI Concentration I Weight loss in of S in p.p.m. mgJdmJ/day
- Example XX VI A soft steel strip as annealed and cooled down in Example XIV is immersed for one day into a corrosive medium consisting of a M/ 10 perchloric acid solution.
- the weight loss of the strip amounts to mg./dm. /day.
- Example XXVII Example XXVI is repeated with the same corrosive liquid to which there are added 100 ppm. of hexamethylenetetramine and various amounts of sulfur in the form of a 0.6% solution in cyclohexanone, to form in the corrosive liquid a colloidal suspension of the latter.
- Example XXVI is repeated with a corrosive liquid consisting of a 1 M perchloric acid solution.
- the weight loss of the strip amounts to 282 mg./ dm. day.
- Example XXIX Example XXVII is repeated with a corrosive liquid as used in Example XXVIII to which there are added 200 p.p.m. of hexamethylenetetramine and various amounts of sulfur in the form of a 0.6% solution in cyclohexanone.
- the fixation of sulfur on the metallic surface could be eifected equally well by bringing the metal surface to be protected into contact, prior to exposing the surface, to contact with the acidic corrosive medium containing said anti-corrosive agent, with a solution of elementary sulfur in an organic solvent or by using instead of elementary sulfur organic or inorganic compounds such as alkali metal polysulphides capable of setting free elementary sulfur under such conditions of use that the electrical charge of the produced sulfur particles does not prevent the fixation, probably by adsorption, of the sulfur atoms on the metal surface.
- a method of protecting iron and steel surfaces against electrochemical corrosion in an acidic aqueous medium having a corrosion of the acidic type on said metal surfaces and against the penetration of hydrogen developed in such media comprising the steps of adding to the acidic aqueous medium a known anti-corrosive agent selected from the group consisting of long chain aliphatic fatty acids having at least 8 carbon atoms per molecule, aliphatic amines, quaternary ammonium salts of the aforesaid amines, and having at least 8 carbon atoms per molecule, imidazolines and organic sulfides having the formula RSR wherein R and R are hydrocarbon radicals containing from 1 to 20 carbon atoms per radical, in corrosion-inhibiting amounts, and adding also to the acidic aqueous medium finely divided elementary sulfur.
- a known anti-corrosive agent selected from the group consisting of long chain aliphatic fatty acids having at least 8 carbon atoms per molecule, aliphatic amines, quaternary
- a method of protecting iron and steel surfaces against electrochemical corrosion in an acidic aqueous medium having a corrosive action of the acidic type on said metal surfaces and against the penetration of hydrogen developed in such media comprising the steps of adding to said acidic medium a substance known as anti-corrosive agent in acidic media, in corrosion-inhibiting amounts, and adding also to the acidic medium finely distributed elementary sulfur.
- a method of protecting iron and steel surfaces against electrochemical corrosion in an acidic aqueous medium having a corrosive action of the acidic type on said metal surfaces, and against the penetration of hydrogen developed in such media comprises adding to the acidic aqueous medium a corrosioninhibiting amount of an aliphatic amine and finely distributed elemental sulfur in a concentration of less than 1000 parts by weight of sulfur per million parts by weight of said acidic aqueous medium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
3,062,612 Patented Nov. 6, 1962 [ice 3,062,612 METHOD OF PROTECTING METALS AGAINST ELECTROCHEMICAL CORROSICN OF THE AClDIC TYPE Bernard Le Boucher, Domaine de Montbuisson :1 Louveciennes, France, assignor to lnstitut Frangais du Petrole des Carhnrants ct Lubriiiants, Paris, France No Drawing. Filed Apr. 21, 1959, Ser. No. 807,754 Claims priority, application France Apr. 25, 1959 14 Claims. (Cl. 21-25) This invention relates to a method for protecting metals against electrochemical corrosion of the acidic type; i.e. corrosion due to an acidic medium and resulting in liberation of hydrogen. It is noticeable that the corrosion due to an acidic and simultaneously strongly oxidizing medium is not of the acidic type since no hydrogen is evolved during the corrosion process. This is the case especially when nitric acid is the acidic medium or the main acidic component thereof. On the contrary perchloric acid as Well as sulfuric and hydrochloric acids acts as a corrosive agent of the acidic type since the corrosion process in perchloric acid medium results in hydrogen liberation.
It is an object of my invention to provide a method for the protection of metals against electrochemical corrosion of acidic type which inhibits this corrosion several times better than the known anti-corrosive agents.
It is a well-known fact that the electrochemical corrosion of metals such as iron, steel, and the like, is particularly strong in acidic media. Till now, the known anti-corrosive agents have frequently been unsatisfactory when used against this particular type of corrosion.
Different types of anti-corrosive agents have been used among which there shall bementioned, as examples:
Long chain aliphatic fatty acids having from S to 24 carbon atoms per molecule and their salts, such as oleic acid, sodium laurate, potassium stearate and the like.
Sulfonic acids and their salts, such as anthraquinone B-sulfonic acid, sulfonated mineral oils, alkylated naphthalene sodium sulfonates and the like.
Primary, secondary and tertiary aliphatic amines, where the different hydrocarbon radicals have from one to 20 carbon atoms, such as amylamine, hexylamine, cyclohexylamine, dodecylamine, tetradecylamine, octadecylamine, dimethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, dicyclohexylamine, didodecylamine, trimethylamine, triethylamine, tripropylamine, triamylamine, trihexylamine, ethylmethylamine, ethylenediamine, triethanolamine, hexamethylenetetramine, and their acid addition salts such as sulphates, hydrochlorides, acetates and the like.
Primary, secondary and tertiary aromatic amines such as 0., m. and p. toluidines, o. xylidine, 2,6-xylidine, 3,5- xylidine, m. ethylaniline, m. propylaniline, m. butylaniline, oz -naphthylamine, pheneylenediamine, methylaniline, ethylaniline, propylaniline, dimethylaniline ethylmethylaniline, diethylaniline, dibutylaniline and the like.
Heterocyclic nitrogenated compounds of aliphatic nature such as morpholine, phenylmorpholine, ethanol morpholine, imidazolines, aminoalcoylimidazolines, or of aromatic nature such as pyridine, picoline, collidine, lutidine, 3-ethylpyridine, 3-propylpyridine, 3-butylpyridine, quinoline, acridine and the like.
Quaternary ammonium salts such as betaine, dodecyltrimethylammonium chloride and the like.
Amides and thioamides such as thiourea, phenylthiourea, o. and p. tolylthiourea and the like.
Hydrazines such as phenylhydrazine and the like.
Phenols and thiophenols such as thiophenol, 0., m. and p. thiocresols, 2-thionaphtol and the like.
Mercaptans, where the hydrocarbon radical comprises propylmercaptan,
from 2 to carbon atoms, such as ethylmercaptan, butylrnercaptan, isobutylmercaptan, tertiobutylmercaptan, amylmercaptan and the like.
Sulfides and disulfides having, respectively, the general formulae:
wherein R and R are hydrocarbon radicals either identical or differing from each other, preferably of aliphatic type, and containing from 1 to 20 carbon atoms per radical, and for example methylsulfide, ethylsulfide, propylsulfide, 'butylsulfide, butylmethylsulfide, propyldisulfide, butyldisulfide and the like.
Aldehydes such as formaldehyde, acetaldehyde, proprionaldehyde, butyraldehyde, crotonaldehyde, benzaldehyde, 0., m. and p. tolualdehydes and the like.
Ketones such as diethylketone, dipropylketone, diisobutylketone, butylmethylketone, isobutylmethylketone, tertiobutylmethylketone, amylmethylketone, ethylpropylketone, acetonylacetone, pinacolo-ne, phorone, cyclohexanone, acetophenone, propiophenone, butyrophenone, valerophenone and the like.
Esters such as n-octylsulfate, dodecylsulfate and the like.
Ethers such as cineol and the like.
Sulfones such as butylsulfone and the like.
Selenides such as ethylselenide and the like.
Such anti-corrosive agents are described for instance, in The Corrosion Handbook, by H. H. Uhlig, John Wiley & Sons, New York (1948).
While these inhibitors permit to reduce to a certain degree the intensity of electrochemical corrosion of the acidic type taking place at the surface of metals such as iron or steel, this corrosion remains nevertheless too high to permit a truly effective protection of the metal against corrosion under really severe conditions of use I of the same.
Among the conditions which are particularly liable to provoke a strong corrosion of the acidic type at the metal surfaces, there is known to be the presence of elementary sulfur in suspension in an acidic medium. I have carefully studied this corrosion-augmenting elfect of finely, for instance, colloidally suspended sulfur on metal surfaces in acidic medium, and have found that even extremely small amounts of sulfur have a high corrosionintensifying activity.
Experiments carried out by me consisted in immersing a strip of iron having a surface of 30 square centimeters for 24 hours into 500 cos. of an aqueous fi -normal hydrochloric acid solution at room temperature, and to measure the loss of weight of the strip due to corrosion, then to repeat the experiment, each time with a fresh strip of the same iron, with the aforesaid HCl-solution to which varying very small amounts of sulfur had been added in the form of a colloidal suspension obtained by adding to the diluted acid each time 20 cos, of a sulphur solution in ethyyl alcohol as the solvent. The results of these experiments are given below in Table I.
These experiments show the increase in the corrosive activity of hydrochloric acid solution of the above-stated HCl-concentration when containing the above very small amounts of sulfur. The chemical causes of this increase in corrosive activity are not well known. However, the above experiments lead me to assume that the increased corrosive activity is not due to the presence of sulfur in suspension in the acidified water, but to sulfur atoms fixed in some manner, perhaps by adsorption or otherwise, on the metallic surface. The action of these sulfur atoms is believed to be purely catalytic for they are not used up during the corrosion process as the following experimental tests have shown.
Test A A soft steel strip having a surface of 30 cm. and determined weight (the exact composition of the steel is immaterial as long as the same steel is used for all comparative tests) is polished electrolytically in a known manner and then immersed at 20 C. in a solution of benzene containing l% by weight of sulfur, then Withdrawn, washed three times with pure benzene, and then immersed for 5 minutes in pure benzene, washed again, dried and weighed.
Only sulfur atoms chemically adsorbed or fixed by another chemical phenomenon can remain on the metal surface. Weighing was carried out with a balance having a sensitivity limit of 0.1 milligram. No noticeable increase of the weight of the steel strip was found, the amount of sulfur atoms fixed on the metal, if any, was thus below 0.1 milligram.
Test B A strip thus prepared is then immersed in an aqueous hydrochloric acid solution containing by weight of HCl. After 48 hours immersion the strip is removed, dried and weighed and shows a loss, due to corrosion, of 136.2 milligrams.
Test C A strip of identical material, dimensions and weight is immersed, without having previously undergone the treatment of test A, in the same kind of aqueous hydrochloric solution as used for test B, i.e. with a concentration of 10% by weight of HCl. After 48 hours, the strip is removed, dried and weighed, and shows a weight loss of only 75.4 mg.
These tests B and C show that the lighter weight loss due to corrosion in the former test surpassing by 60 milligrams the weight loss in test C is caused by the assumed presence, on the steel surface, of sulfur atoms in a total amount of less than 0.1 milligram. The sulfur must thus act catalytically.
Further experiments carried out by me using acidic solutions of varying pH, have revealed that the increase of corrosive activity of the acidic type imputable to the presence of sulfur above the normally determined corrosive activity is the stronger, the higher the acidity of the corroding liquid.
Further tests D to H were, therefore, carried out by me each consisting in preparing a corrosive liquid from de-aerated water saturated with hydrogen ulfide and adjusted to various pH values by the addition of first hydrochloric acid and then partial neutralization with sodium hydroxide, while retaining the concentration of chlorine ions in the resulting solutions constant in all solutions; and then immersing for 2 hours 30 minutes on the one hand, steel strips of the same type, dimensions and weight as used in tests A-C that were previously polished electrolytically, and, on the other hand, strips of the same kind, treated additionally as described in test A supra. The corrosive liquid was caused to circulate at a velocity of centimeters per second past the strips.
The results of tests D to H are given in Table II:
TABLE II pH of Steel strip aqueous Steel strip treated by Percent Test N o. acidic not treated Test A increase solution by Test A (less than 0.1 due to S mg. of S) These results show that, while at pH values about 5 the increase in corrosion due to the presence of very small amounts of catalytically active sulfur that must be assumed on the steel surface, is in the order of 2025%, the increase in corrosion at pH values between 3 and about 1.8, the increase due to what must be assumed to be substantially the same amounts of sulfur, is from about 50 to This increased corrosive activity is not only limited to losses in weight of the metal but also brings about blisters and cracks in the metal surface due to the penetration into the metal of hydrogen, generated during the corrosion process, of the acidic type.
Contrary to what would have to be expected from the above experiments, I have discovered that in spite of the strong corrosion-enhancing activity of sulfur in acidic solution, the same sulfur will surprisingly enough, strongly enhance the anti-corrosive activity of substances conventionally known as anti-corrosive agents in acidic media, and will also protect or help to protect the metal against the penetration of hydrogen evolved during the corrosion process of the acidic type.
The method according to the invention therefore comprises adding to an acidic corrosive liquid, predominantly an aqueous acidic solution, having a corrosive action of the acidic type, such as solutions of hydrochloric acid, sulfuric acid, perchloric acid, carbonic acid, sulphhydric acid, or organic acids such as acetic acid, butyric acid, benzenesulfonic acid and the like, a known anti-corrosive agent for acidic media such as that hereabove mentioned, in conventionally used amounts, which agent is preferably selected from the group consisting of the most usual commercial anti-corrosive agents which are generally constituted on the basis of primary, secondary, and tertiary aliphatic amines, quaternary ammonium salts derived from the latter amines, cyclic amines such as piperidine, morpholine and imidazolines and organic sulfides and disulfides having, respectively, the formulae RSR' and R-SSR', wherein R and R are hydrocarbon radicals either identical or different from each other, preferably of aliphatic nature, and containing from 1 to 20 carbon atoms per radical; and further adding to the solution, preferably in the form of a solution in ethyl alcohol, gasoline, benzene, carbon disulfide, finely dispersed sulfur to form in the liquid a preferable colloidal suspension of the latter, in such amounts that a significant increase of the anti-corrosive activity of the known anti-corrosive agent is achieved. The conventional proportions of anticorrosive agent in the corrosive acidic medium extend usually within a wide range according to economic considerations.
In most cases and up to a maximum concentration far outside the usual economic range, the higher is the concentration of anti-corrosive agent in the corrosive medium, the lower is the corrosion intensity. However, since the anti-corrosive agent can hardly be recovered from its solution in the corrosive medium and is consequently lost when fresh corrosive medium is continuously circulated in contact with the metal, it is generally appropriate for economic reasons to limit the proportion of such anticorrosive agent to the minimum quantity which secures a sufficient protection to reduce the corrosion intensity to an acceptable level. This minimum quantity may be reduced considerably according to the present invention, due to the action of sulfur in cooperation with said anticorrosive agent. However it is necessary that in any case the proportion of anti-corrosive agent in the corrosive medium be at least equal to that proportion for which the use of the anti-corrosive agent alone, i.e., without sulfur, is effective by carrying out a testable reduction of the corrosive intensity. This minimum proportion is conventionally known in the art for each known anticorrosive agent. In most cases it is of the order of 5 to parts per million by weight. Usual range of concentrations used is from 5 to 100 parts per million by weight. In the case of anti-corrosive agents of relatively low activity a technical improvement resulting in a lowering of the corrosive action may still be achieved by the use of higher concentrations of the anti-corrosive agent, for example up to 1000 parts per million by weight, but economic considerations do not permit, except perhaps in some very particular cases, to assume so high expenses in order to achieve a relatively slight improvement of the protection of the metal as compared to that obtained with the same or other anti-corrosive agents used at lower concentrations of from 5 to 100 parts per million by weight. It must be noted that such concentrations are of the catalytic type, i.e. have no eflect on the pH of the corrosive medium.
For carrying out the present invention such concentrations of from 5 to 100 p.p.m. of anticorrosive agents are preferably used and most particularly the lowest concentrations for which a still significant reduction of the corrosive action of the corrosive medium is achieved.
To the corrosive medium containing said proportion of anti-corrosive agent is added, according to the invention, finely divided elementary sulfur. The amounts of sulfur to be used may be as low as wanted and very low propor tions are proved to be sufficient to enhance to a large extent the anti-corrosive activity of the inhibitor. Since the cost of sulfur is not too high, larger amounts than that just sufiicient may be used. However too high proportions are not recommended since it has been observed that beyond a certain optimal proportion dependent mainly in each case on the nature of the corrosive liquid medium, the corrosive action of the latter increases again and for very high concentrations becomes even greater than in the absence of both anti-corrosive agent and sulfur. The amounts of sulfur thus required can be determined from case to case empirically and without great difiiculty, as demonstrated hereinafter in the examples using various types of acidic media.
According to another important feature of my invention the elementary sulfur introduced or formed in the acidic solution and brought into contact with the metallic surface to be protected should have an average particle size of less than 500 microns and preferably less than 100 microns. No lower limit of that size has been observed and the process according to the invention may be carried out by using particules of the smallest size available or even sulfur in the state of a true solution in the corrosive medium (which may be for instance the case when the corrosive medium contains significant proportions of sulfuric acid).
Depending on these two factors, a preferred range of sulfur concentration in the corrosive liquid containing the known anti-corrosive agent can be found, which range corresponds to a significant increase of the anti-corrosive activity of the agent.
Since the anti-corrosive effect of the mixture varies progressively as a function of the amount of sulfur fixed on the metal surface and of the concentration of anticorrosive agent in the liquid, it is easy to determine with satisfactory precision the limits of the aforesaid range of optimal anti-corrosive increase from case to case. Said range is always wide enough to permit satisfactorily the use of the invention process without being necessary to determine the optimal proportion of sulfur. Even if the proportion of sulfur is too high a significant improvement of the anti-corrosive activity of the agent is nevertheless obtained.
In most cases one can use as starting proportion 30 parts per million for example, and observe thereafter if the anti-corrosive activity of the agent increases or diminishes when a higher proportion is employed.
In the case of an increasing activity a higher proportion may advantageously be used, if the supplemental resulting cost is deemed acceptable. On the contrary if a reduction or the maintenance of the anti-corrosive activity of the agent is to be observed, a lower proportion such as for instance 10 parts per million must be tested at least for economic reasons and if again at this latter concentration the corrosive activity of the liquid medium is still unchanged or is lower, concentrations of, for example, 3 parts per million or less should be used.
Accordingly the usual range of sulfur concentrations in the acidic-corrosive medium extends from 0.5 to 100 parts per million by weight. However it suffices to have a certain amount of sulfur adsorbed on the metal surface and this amount always corresponds to a concentration which is far lower than 0.5 part per million. Consequently I do not wish to limit myself to the use of proportions of sulfur higher than 0.5 part per million. On the contrary my experiments prove that for any given proportion of the anti-corrosive agent, very low concentrations of sulfur have still an enhancing efiect.
In the case of an aqueous solution of hydrogen sulfide containing tetradecylamine at a concentration of 10 p.p.m., a sulfur concentration of 20-25 p.p.m. in the corrosive liquid will bring about optimal reduction of the corrosion effect, namely, to about one fourth of the corrosion still suffered by the metal when tetradecylamine alone is present in the corrosive liquid. This is a strong indication that there is in fact a synergistic action between the tetradecylamine and the sulfur in the liquid.
If the concentration of tetradecylamine in that corrosive medium is 20 p.p.m. optimal results will be obtained with a concentration of sulfur in the range of to p.p.m. It is quite remarkable that a slightly lower as well as a slightly higher sulfur concentration below and above the aforesaid range will leave only an anti-corrosive activity several times inferior to that achieved by the presence of sulfur in the aforesaid concentration range.
Therefore, within the characteristic range depending on the prevailing concentration of sulfur and anti-corrosive agent in the corrosive liquid, the presence of sulfur, instead of favoring the corrosion, as was to be expected, permits to augment several times the anti-corrosive activity of agents of the above-mentioned group, and this to such a degree that the combined use of sulfur and the known anti-corrosive agent permits to practically eliminate the corrosion of the metal over long periods of time.
The anti-corrosive effect-enhancing property of sulfur in the described concentration range is particularly surprising in view of the corrosion-enhancing properties of the same sulfur described in detail hereinbefore in connection with Tests A-H, and I have at present no scientific explanation for what I have termed for want of a better explanation, a synergistic phenomenon.
I wish to state again that an anti-corrosive protection accorded to metal surfaces in acidic corrosive media by the combined use of a known anti-corrosive agent of the class described and sulfur which is in effect very considerably higher than that achieved with the known agent alone, can only be attained if the amount of sulfur used is carefully adapted to the nature of the acidic medium having a corrosive action of the acidic type on the metal surface to be protected and is in a determined suitable ratio to the amount of known anti-corrosive agent present; otherwise the remarkable increase of the anti-corrosive effect of the combination cannot be realized.
To 100 liters of a metal-corrosive liquid consisting of A normal aqueous hydrochloric acid solution there are added 1 gram of tetradecylamine and 100 cos. of ethyl alcohol containing dissolved 0.5 gram of sulfur. The resulting mixture contains approximately 10 p.p.m. of the anti-corrosive agent and about p.p.m. of colloidal sulfur.
Example 11 Example I is repeated, but 200 cos. of the sulfur-containing ethyl-alcoholic solution are added instead of the amount used in the preceding example.
Example Ill Example I is repeated, but 500 cos. of the sulfur-containing ethyl-alcoholic solution are added to the mixture.
Strips of soft steel of identical composition and dimensions are subjected to a known electrolytic polishing treatment followed by an equally conventional reducing treatment in a hydrogen atmosphere at 500 C.
The strips are then immersed in different aqueous normal solutions of hydrochloric acid. Sulfur is introduced into these solutions in colloidal form by adding to the same corresponding amounts of a solution of the sulfur in ethyl alcohol, so as to obtain a sulfur concentration in the HCl-solutions of 5, l0 and 25 p.p.m. respectively. Each of the solutions contains, as inhibitor, l0 p.p.m. of tetradecylamine. Immersion of the strips lasts for 48 hours and is carried out at room temperature. The results showing weight losses expressed in milligrams per square decimeter of surface and per day, are tabulated in Table III below:
Table III shows clearly that the use of only 25 p.p.m. of sulfur makes the anti-corrosive agent, tetradecylamine, in the same concentration of the latter, four times as effective as when used without sulfur.
Example IV Example I is repeated, but instead of the amount of sulfur-containing alcoholic solution used therein, 40 cos. of the latter are added to the HCl-solution.
Tests with the acidic solutions prepared according to Examples I and IV were carried out after saturating the solutions with oxygen. The subsequent Table IV shows the results of corrosion tests lasting for 48 hours, with the same kind of testing strips as used in the previous tests, losses of. weight being stated in mg./dm. per day.
TABLE IV Corrosive liquid containing l/lO-normal H Cl in F120 10 p.p.m. of tetradeoylamino No 10 p.p.m. and colloidal inhibitor of tetrasulfur in and no decylamine concentrations ofsulfur 5 p.p.m. 20 p.p.m.
Weight loss in mgJdm.
per day 325 300 63 56 This table shows that in the case of oxygen-saturated acidic corrosive liquids, the anti-corrosive effect of tetradecylamine in the given concentration is almost negligible, While the presence of small amounts of sulfur increases that effect by approximately five times.
Example V To a corrosive liquid consisting of a mixture of 10 parts by weight of commercially available standard gasoline and one part by weight of an aqueous normal hydrochloric acid solution containing dissolved 35 milligrams per liter of hydrogen sulfide, there are added 10 p.p.m. of Norust C 50, a commercially available anticorrosive agent on an amine basis manufactured by Prochinor (Neuilly-sur-Seine, France). Sulfur is introduced into the liquid by adding thereto 2 p.p.m. in the form of a solution of sulfur in gasoline. The resulting liquid is substantially free from noticeable corrosive effects on surfaces of steel or iron for much longer periods of time than when using known anti-corrosives.
Comparative tests were carried out with this liquid as well as with liquid samples containing no sulfur and anti-corrosive agent and other samples containing only the latter agent. These tests were effected in the same manner as the preceding ones, but by immersion of the testing strips in the liquid for 12 hours at a liquid temperature of 40 C. The measured corrosion intensities expressed in mg./dm. per day are given in Table V below:
These tests reveal a truly remarkable increase in the anti-corrosive effect of the Norust C 50 agent, although the latter alone has already the effect of decreasing the corrosion to about one fifth. The presence of the small amount of sulfur brings about a more than 30 times stronger anti-corrosive effect of the same agent than is attained without sulfur.
A particularly noticeable feature is the presence of sulfide ions in the corrosive liquid. It is thus shown that the presence of colloidal sulfur is required in the liquid to bring about the above-described extraordinary anticorrosive effect.
Example VI To a corrosive liquid held under a pressure of 25 to 30 kilograms, per square centimeter and consisting of a solution of hydrogen sulfide in de-aerated water in a concentration of about 60 grams per liter of H 5, there are added 20 p.p.m. of tetradecylamine as anti-corrosive agent and 90 p.p.m. of sulfur in the form of a benzenic solution of S.
An emulsion results which flocculates gradually on the surface of a metallic object introduced into the solution, and permits the fixation of sulfur on the metal surface.
Tests were carried out bypreparing the above-described acidic solution in a steel autoclave, and then suspending in the solution several soft-steel strips electrolytically polished as described hereinbefore, and moving these strips so that they are subjected alternatingly to the action of the corrosive solution and to that of the vapor phase above the solution in the autoclave, pressure in the vapor phase varying between 25 and 30 kg./cm.
Each test was carried out for a month. During this test period, no further anti-corrosive agent or sulfur was added. Comparative tests with the same acidic solution containing neither tetradecylamine nor sulfur had to be interrupted after three hours, and tests with the same corrosive solution containing tetradecylamine but no sulfur had to be interrupted after 24 hours, in both cases because there 'was danger of rupture of autoclave wall due to corrosion.
The test results are given below in Table VI; measured in the diminution of the thickness of the soft steel strips calculated in millimeters per year:
This table againshows that always whensulfur is present in a ratio of tetradecylamine:S of about 1:4 to 1:5, corrosion of steel strips can be limited to a degree far below that attainable with the known anti-corrosive agent alone. An effective long-time protection against cracking of a steel autoclave by penetration of hydrogen through the corroded surface ofthe autoclave can be achieved even under severely adverse conditions of temperature and pressure, which protection cannot be attained with any known agent.
Example VII To the same corrosive liquid as used in Example VI,
there are admixed 20 p.p.m. of tetradecylamine, and 40 p.p.m. of sulfur in the form of a benzenic solution of S.
Example VIII Example VII is repeated but the benzenic sulfur solution is added in such amounts that the sulfur content of the liquid is 80 p.p.m.
Example IX A substantially non-corrosive acidic solution containing 90 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
Example X An acidic solution containing 100 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
Example XI An acidic solution containing 130 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
Example XII Finally, an acidic solution containing 300 p.p.m. of sulfur is prepared similar to the manner described in Examples VII and VIII.
The amount of anti-corrosive agent in the aforesaid solutions of Examples VII to XII is always the same, but the weight ratio of this agent to colloidal sulfur in these solutions varies from 1:2to 1:15.
Corrosion tests were carried out by immersing the same above-described kind of metal strips into these solutions under the conditions described in the tests made with the solution of Example VI and at a temperature of C., and the results which have been compiled in Table VII below, clearly indicate the optimal range of the anti-corrosive agent: sulfur ratio which is between 1:4 and 1:5 for corrosive solutions containing 20 p.p.m. of tetradecylamine.
Corrosion is again measured by the diminution of the thickness of a ,test soft-steel strip, calculated in millimeters per year.
TABLE VII Concentra- Diminution of Solution of Example No. tion of S in strip thickness p.p.m. in mm./year The table shows that there exists in fact a rather well delimited range of the aforesaid "ratio, above and below which, i.e. with less or more sulfur for one and the same content of anti-corrosive agent in the corrosive solution, the protection effect of the sulfur is lower, while in the above-mentioned optimal range this protective effect is five to ten times better than when exclusively using the anti-corrosive agent and no sulfur.
It is also noteworthy that in the presence of about seven times more sulfur than tetradecylamine there is practically no protection-increasing effect of the sulfur noticeable, i.e. the activity of the anti-corrosive agent is such as if no sulfur at all were present, and with higher sulfur contents the detrimental corrosion-enhancing eifect of finely distributed elementary sulfur in acidic corrosive liquids comes fully into play.
Example XIII Example VI is repeated with the same concentration of tetradecylamine and sulfur and a content of 38 grams per liter of hydrogen sulfide, but adding carbon dioxide gas to the solution in the autoclave at a rate of 8 grams per liter.
The same test as tabulated under No. L in Table VI is then repeated at 80 C. and under a pressure of 50 kg./cm. The test soft-steel strip is reduced in thickness by the rate of only 0.1 millimeter per year.
Example XIV A soft steel strip of 50 x 30 x 0.5 mm. is annealed in pure hydrogen at 800 C. for 3 hours and let cooled down to room temperature in hydrogen atmosphere.
This strip is weighed and immersed for 2 days into a corrosive medium consisting of a M/ 1O (10 moles per liter sulfuric acid solution). The weightloss of the strip amounts to 148 mg./dm. /day.
Example XV Example X V is repeated with the same corrosive liquid to which are added 10 p.p. m. of ethoxystearylimidazoline (manufactured by Doittau, Produits Chimiques, Corbeil,
TABLE VIII Concentration Weight loss in of S in p.p.m. mg./dm. /day Example XVI Example XIV is repeated with a corrosive liquid, consisting of a l M sulfuric acid solution. The weight loss of the strip amounts to 476 mg./ dmF/ day.
Example XVII Example XV is repeated with a corrosive liquid as used in Example XVI to which there are added 30 p.p.m. of ethoxystearylimidazoline and various amounts of sulfur in the form of a 1% solution in carbon disulfide.
The weight losses of the strips are given in Table IX.
TABLE IX Weight loss in mgJdmJ/day Concentration of S in p.p.m.
ow Com) oocowo Example XVIII Example XIV is repeated with a corrosive liquid consisting of a 10 M sulfuric acid olution. The weight loss of the strip amounts to 930 mg./dm. /day.
Example XIX Example XV is repeated with a corrosive liquid as used in Example XVIII to which there are added 100 p.p.m. of ethoxystearylimidazoline and various amounts of sulfulr in the form of a 1% solution in carbon disulfide.
The weight losses of the strips are given in Table X.
TABLE X 7 Concentration Weight loss in I of S in p.p.m. mgJdmJ/day Example XX A soft steel strip as annealed and cooled down in Example XIV is immersed for 4 days into a corrosive medium consisting of a M/ 1-0 acetic acid solution. The weight loss of the strip amounts to 23.2 mg./dm. /day.
Example XXI Example XX is repeated with the same corrosive liquid to which there are added 10 ppm. of N-tallow propylenediamine dioleate, manufactured by Armour and Co., and various amounts of sulfur in the form of a 0.2% solution in ethyl alcohol, to form in the corrosive liquid a colloidal suspension of the latter.
The weight losses of the strips, corresponding to different amounts of sulfur in the liquid are given in Table XI.
TABLE XI Concentration Weight loss in of S in ppm. mg./dm. /day Example XXII Example XX is repeated with a corrosive liquid consisting of a 1 M acetic acid solution. The weight loss of. the strip amounts to 32.4 mg./dm. /day.
Example XXIII Example XXI is repeated with a corrosive liquid as used in Example XXII to which there are added 30 ppm. of N-tallow propylenediamine dioleate and various amounts of sulfur in the form of a 0.2% solution in ethyl alcohol.
The weight losses of the strips are given in Table XII.
TABLE XII Concentration Weight loss in of S in p.p.m. mg./dm. /day Example XXIV Example XX is repeated with a corrosive liquid consisting of a 10 M acetic acid solution. The weight loss of the strip amounts to 126 mg./ dm. day.
Example'XX V Example XXI is repeated with a corrosive liquid as used in Example XXIV to which there are added 100 ppm. of N-tallow propylenediamine dioleate and various amounts of sulfur in the form of a 0.2% solution in ethyl alcohol.
The weight losses of the strips are given in Table XILI.
TABLE XIII Concentration I Weight loss in of S in p.p.m. mgJdmJ/day Example XX VI A soft steel strip as annealed and cooled down in Example XIV is immersed for one day into a corrosive medium consisting of a M/ 10 perchloric acid solution.
The weight loss of the strip amounts to mg./dm. /day.
Example XXVII Example XXVI is repeated with the same corrosive liquid to which there are added 100 ppm. of hexamethylenetetramine and various amounts of sulfur in the form of a 0.6% solution in cyclohexanone, to form in the corrosive liquid a colloidal suspension of the latter.
13 The weight losses of the strips, corresponding to different amounts of sulfur in the liquid, are given in Table XIV.
Example XXVI is repeated with a corrosive liquid consisting of a 1 M perchloric acid solution.
The weight loss of the strip amounts to 282 mg./ dm. day.
Example XXIX Example XXVII is repeated with a corrosive liquid as used in Example XXVIII to which there are added 200 p.p.m. of hexamethylenetetramine and various amounts of sulfur in the form of a 0.6% solution in cyclohexanone.
The weight losses of the strips are given in Table XV.
TABLE XV Concentration Weight loss in of S in p.p.m. mgJdmF/day While the sulfur in the preceding examples has been introduced into the acidic solution in the form of a suspension or colloidal emulsion and in such a manner that the flocculation of the sulfur particles on the metallic surface is facilitated by avoiding that the electric charges of the particles prevent the sulfur atoms from becoming fixed, probably by adsorption, on the metal surface it should be mentioned that any other suitable method of fixing the sulfur atoms on the metal surface would be equally satisfactory. Thus, for example, the fixation of sulfur on the metallic surface could be eifected equally well by bringing the metal surface to be protected into contact, prior to exposing the surface, to contact with the acidic corrosive medium containing said anti-corrosive agent, with a solution of elementary sulfur in an organic solvent or by using instead of elementary sulfur organic or inorganic compounds such as alkali metal polysulphides capable of setting free elementary sulfur under such conditions of use that the electrical charge of the produced sulfur particles does not prevent the fixation, probably by adsorption, of the sulfur atoms on the metal surface.
It will be understood that this invention is susceptible to further modification and, accordingly, it is desired to comprehend such modifications within this invention as may fall within the scope of the appended claims.
I claim:
1. A method of protecting iron and steel surfaces against electrochemical corrosion in an acidic aqueous medium having a corrosion of the acidic type on said metal surfaces and against the penetration of hydrogen developed in such media, comprising the steps of adding to the acidic aqueous medium a known anti-corrosive agent selected from the group consisting of long chain aliphatic fatty acids having at least 8 carbon atoms per molecule, aliphatic amines, quaternary ammonium salts of the aforesaid amines, and having at least 8 carbon atoms per molecule, imidazolines and organic sulfides having the formula RSR wherein R and R are hydrocarbon radicals containing from 1 to 20 carbon atoms per radical, in corrosion-inhibiting amounts, and adding also to the acidic aqueous medium finely divided elementary sulfur.
2. A method as described in claim 1, characterized in that sulfur is added to the medium at a rate of less than 1000 parts per million by weight.
3. A method as described in claim 1, characterized in that sulfur is dissolved into the medium.
4. A method as described in claim 1, wherein the average particle size of the elementary sulfur in the medium is below 500 microns.
5. A method as described in claim 1, wherein the average particle size of the elementary sulfur in the medium is below microns.
6. A method as described in claim 1, characterized in that a liquid solution of sulfur in an organic solvent is introduced into the acidic medium so as to produce elementary sulfur in a highly dispersed state in the acidic medium.
7. A method as described in claim 1, further comprising the step of bringing the metallic surface to be protected into contact with a liquid solution of sulfur in an organic solvent prior to exposing the surface to contact with said acidic medium containing said anticorrosive agent.
8. In the method of preparing a substantially noncorrosive medium from an acidic aqueous medium having a corrosive action of the acidic type on soft-steel and iron surfaces, the steps, in combination, of adding to said medium tetradecylamine in corrosion-inhibiting amounts and also adding a solution of sulfur in a solvent selected from the group consisting of ethyl alcohol, benzene and gasoline in such amounts as to produce in the medium a concentration of elementary finely dispersed sulfur of less than parts per million by weight; thereby enhancing the anti-corrosive effect of tetradecylamine considerably.
9. A method of protecting iron and steel surfaces against electrochemical corrosion in an acidic aqueous medium having a corrosive action of the acidic type on said metal surfaces and against the penetration of hydrogen developed in such media, comprising the steps of adding to said acidic medium a substance known as anti-corrosive agent in acidic media, in corrosion-inhibiting amounts, and adding also to the acidic medium finely distributed elementary sulfur.
10. A method of protecting iron and steel surfaces against electrochemical corrosion in an acidic aqueous medium having a corrosive action of the acidic type on said metal surfaces, and against the penetration of hydrogen developed in such media, which method comprises adding to the acidic aqueous medium a corrosioninhibiting amount of an aliphatic amine and finely distributed elemental sulfur in a concentration of less than 1000 parts by weight of sulfur per million parts by weight of said acidic aqueous medium.
11. The method of claim 1, wherein the known anticorrosive agent is tetradecylamine.
12. The method of claim 1, wherein the known anticorrosive agent is ethoxystearylimidazoline.
13. The method of claim 1, wherein the known anticorrosive agent is tallow propylenediaminedioleate.
14. The method of claim 1, wherein the known anticorrosive agent is hexamethylenetetramine.
Viles et al Nov. 16, 1948 Camp May 17, 1949
Claims (1)
1. A METHOD OF PROTECTING IRON AND STEEL SURFACES AGAINST ELECTRONOCHEMICAL CORROSIONIN AN ACIDIC AQUEOUS MEDIUM HAVING A CORROSION OF THE ACIDIC TYPE ON SAID METAL SURFACES AND AGAINST THE PENATRATION OF HYDROGEN DEVELOPED IN SUCH MEDIA, COMPRISING THE STEPS OF ADDING TO THE ACIDIC AQUEOUS MEDIUM A KNOWN ANTI-CORROSIVE AGENT SELECTED FROM THE GROUP CONSISTING OF LONG CHAIN ALIPHATIC FATTY ACIDS HAVING AT LEAST 8 CARBON ATOMS PER MOLECULE, ALIPHATIC AMINES, QUATERNARY AMMONIUM SALTS OF THE AFORESAID AMINES, AND HAVING AT LEAST 8 CARBON ATOMS PER MOLECULE, IMIDAZOLINES AND ORGANIC SULFIDIES HAVING THE FORMULA R-S-R'' WHEREIN R AND R'' ARE HYDROCARBONS RADICALS CONTAINING FROM 1 TO 20 CARBON ATOMS PER RADICAL, IN CORROISON-INHIBITING AMOUNTS, AND ADDING ALSO TO THE ACIDIC AQUEOUS MEDIUM FINELY DIVIDED ELEMENTARY SULFUR.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR3062612X | 1959-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3062612A true US3062612A (en) | 1962-11-06 |
Family
ID=9691487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US807754A Expired - Lifetime US3062612A (en) | 1959-04-25 | 1959-04-21 | Method of protecting metals against electrochemical corrosion of the acidic type |
Country Status (1)
Country | Link |
---|---|
US (1) | US3062612A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3216949A (en) * | 1962-07-05 | 1965-11-09 | Universal Oil Prod Co | Water-soluble corrosion inhibitors |
US3222291A (en) * | 1962-09-11 | 1965-12-07 | Pfaudler Permutit Inc | Corrosion inhibition compositions |
US3252914A (en) * | 1962-04-13 | 1966-05-24 | Union Oil Co | Inhibiting corrosion of copper-and zinccontaining metals in contact with aerated solutions of polyphosphate salts |
US3255108A (en) * | 1961-08-30 | 1966-06-07 | Lubrizol Corp | Water-in-oil emulsions containing succinic esters |
US3260673A (en) * | 1964-01-27 | 1966-07-12 | Monsanto Co | Corrosion inhibited phosphoric acid composition |
US3294501A (en) * | 1964-11-13 | 1966-12-27 | Standard Oil Co | Corrosion inhibitors for gasolines |
US3296149A (en) * | 1964-09-25 | 1967-01-03 | Hooker Chemical Corp | Corrosion-inhibiting composition of mixture of molasses, potassium iodide and metal salt of a fatty acid |
US3300333A (en) * | 1963-05-27 | 1967-01-24 | Minnesota Mining & Mfg | Method of and means for applying corrosion inhibiting coating |
US3349043A (en) * | 1966-01-19 | 1967-10-24 | Manning Dev Corp | Methods and compositions for controlling oxidation of metal surfaces |
US3364128A (en) * | 1964-03-10 | 1968-01-16 | Sperry Sun Well Surveying Co | Method of purifying mercury and apparatus for using purified mercury |
US3412032A (en) * | 1965-02-01 | 1968-11-19 | Revere Copper & Brass Inc | Etching bath composition |
US3472666A (en) * | 1966-10-19 | 1969-10-14 | Exxon Research Engineering Co | Corrosion inhibitor |
US3503883A (en) * | 1964-08-19 | 1970-03-31 | Goddard & Sons Ltd J | Metal surface protecting preparations |
US3668137A (en) * | 1969-04-01 | 1972-06-06 | Amchem Prod | Composition and method for inhibiting acid attack of metals |
US3854959A (en) * | 1972-03-08 | 1974-12-17 | Ici Ltd | Inhibition of corrosion |
US3900348A (en) * | 1972-12-13 | 1975-08-19 | Entzmann Karl | Method for protecting copper surfaces against corrosion |
DE2846977A1 (en) * | 1977-10-31 | 1979-05-10 | Exxon Research Engineering Co | SALTWATER SAFE CORROSION INHIBITORS |
US4346015A (en) * | 1979-02-21 | 1982-08-24 | Union Carbide Corporation | Method of improving antiwear properties of high temperature hydrocarbon compositions |
EP0060455A1 (en) * | 1981-03-14 | 1982-09-22 | BASF Aktiengesellschaft | Inhibitors against corrosion by carbon dioxide and hydrogen sulfide in water-in-oil emulsions |
US4684507A (en) * | 1981-11-10 | 1987-08-04 | Petrolite Corporation | Process of corrosion inhibition using compounds containing sulfur and amino groups |
US4751051A (en) * | 1981-09-14 | 1988-06-14 | Petrolite Corporation | α-aminoalkylsulfur compositions |
US4980074A (en) * | 1986-10-22 | 1990-12-25 | The Dow Chemical Company | Corrosion inhibitors for aqueous brines |
EP0607640A1 (en) * | 1990-12-21 | 1994-07-27 | Exxon Chemical Patents Inc. | Naphtenic acid corrosion inhibitors |
US5693152A (en) * | 1995-08-14 | 1997-12-02 | University Of Wyoming | Molecular specific detector for separation science using surface enhanced raman spectroscopy |
US6558956B1 (en) | 1997-06-24 | 2003-05-06 | The University Of Wyoming | Method and apparatus for detection of a controlled substance |
US6770488B1 (en) | 1999-03-19 | 2004-08-03 | The University Of Wyoming | Practical method and apparatus for analyte detection with colloidal particles |
FR2868787A1 (en) * | 2004-04-13 | 2005-10-14 | Arkema Sa | USE OF ORGANIC POLYSULFIDES AGAINST CORROSION BY ACID BRUTS |
US20110076218A1 (en) * | 2009-09-25 | 2011-03-31 | Cytec Technology Corp. | Process and Reagents for the Inhibition or Reduction of Scale Formation During Phosphoric Acid Production |
US8900539B2 (en) | 2011-03-22 | 2014-12-02 | Cytec Technology Corp. | Preventing or reducing scale in wet-process phosphoric acid production |
US9902617B2 (en) | 2014-02-11 | 2018-02-27 | Cytec Industries Inc. | Primary amine-containing polymers useful as scale inhibitors |
US10906828B2 (en) | 2015-02-11 | 2021-02-02 | Cytec Industries Inc. | Modified amines useful as scale inhibitors in wet process phosphoric acid production |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2453882A (en) * | 1946-01-24 | 1948-11-16 | Standard Oil Dev Co | Inhibiting corrosion in wells |
US2470428A (en) * | 1945-11-02 | 1949-05-17 | Standard Oil Dev Co | Suppression of corrosive action of carbonic acid |
-
1959
- 1959-04-21 US US807754A patent/US3062612A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2470428A (en) * | 1945-11-02 | 1949-05-17 | Standard Oil Dev Co | Suppression of corrosive action of carbonic acid |
US2453882A (en) * | 1946-01-24 | 1948-11-16 | Standard Oil Dev Co | Inhibiting corrosion in wells |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3255108A (en) * | 1961-08-30 | 1966-06-07 | Lubrizol Corp | Water-in-oil emulsions containing succinic esters |
US3252914A (en) * | 1962-04-13 | 1966-05-24 | Union Oil Co | Inhibiting corrosion of copper-and zinccontaining metals in contact with aerated solutions of polyphosphate salts |
US3216949A (en) * | 1962-07-05 | 1965-11-09 | Universal Oil Prod Co | Water-soluble corrosion inhibitors |
US3222291A (en) * | 1962-09-11 | 1965-12-07 | Pfaudler Permutit Inc | Corrosion inhibition compositions |
US3300333A (en) * | 1963-05-27 | 1967-01-24 | Minnesota Mining & Mfg | Method of and means for applying corrosion inhibiting coating |
US3260673A (en) * | 1964-01-27 | 1966-07-12 | Monsanto Co | Corrosion inhibited phosphoric acid composition |
US3364128A (en) * | 1964-03-10 | 1968-01-16 | Sperry Sun Well Surveying Co | Method of purifying mercury and apparatus for using purified mercury |
US3503883A (en) * | 1964-08-19 | 1970-03-31 | Goddard & Sons Ltd J | Metal surface protecting preparations |
US3296149A (en) * | 1964-09-25 | 1967-01-03 | Hooker Chemical Corp | Corrosion-inhibiting composition of mixture of molasses, potassium iodide and metal salt of a fatty acid |
US3294501A (en) * | 1964-11-13 | 1966-12-27 | Standard Oil Co | Corrosion inhibitors for gasolines |
US3412032A (en) * | 1965-02-01 | 1968-11-19 | Revere Copper & Brass Inc | Etching bath composition |
US3349043A (en) * | 1966-01-19 | 1967-10-24 | Manning Dev Corp | Methods and compositions for controlling oxidation of metal surfaces |
US3472666A (en) * | 1966-10-19 | 1969-10-14 | Exxon Research Engineering Co | Corrosion inhibitor |
US3668137A (en) * | 1969-04-01 | 1972-06-06 | Amchem Prod | Composition and method for inhibiting acid attack of metals |
US3854959A (en) * | 1972-03-08 | 1974-12-17 | Ici Ltd | Inhibition of corrosion |
US3900348A (en) * | 1972-12-13 | 1975-08-19 | Entzmann Karl | Method for protecting copper surfaces against corrosion |
DE2846977A1 (en) * | 1977-10-31 | 1979-05-10 | Exxon Research Engineering Co | SALTWATER SAFE CORROSION INHIBITORS |
US4346015A (en) * | 1979-02-21 | 1982-08-24 | Union Carbide Corporation | Method of improving antiwear properties of high temperature hydrocarbon compositions |
EP0060455A1 (en) * | 1981-03-14 | 1982-09-22 | BASF Aktiengesellschaft | Inhibitors against corrosion by carbon dioxide and hydrogen sulfide in water-in-oil emulsions |
US4751051A (en) * | 1981-09-14 | 1988-06-14 | Petrolite Corporation | α-aminoalkylsulfur compositions |
US4684507A (en) * | 1981-11-10 | 1987-08-04 | Petrolite Corporation | Process of corrosion inhibition using compounds containing sulfur and amino groups |
US4980074A (en) * | 1986-10-22 | 1990-12-25 | The Dow Chemical Company | Corrosion inhibitors for aqueous brines |
EP0607640A1 (en) * | 1990-12-21 | 1994-07-27 | Exxon Chemical Patents Inc. | Naphtenic acid corrosion inhibitors |
US5693152A (en) * | 1995-08-14 | 1997-12-02 | University Of Wyoming | Molecular specific detector for separation science using surface enhanced raman spectroscopy |
US6558956B1 (en) | 1997-06-24 | 2003-05-06 | The University Of Wyoming | Method and apparatus for detection of a controlled substance |
US6770488B1 (en) | 1999-03-19 | 2004-08-03 | The University Of Wyoming | Practical method and apparatus for analyte detection with colloidal particles |
WO2005103208A1 (en) * | 2004-04-13 | 2005-11-03 | Arkema France | Use of organic polysulfides against corrosion by acid crudes |
FR2868787A1 (en) * | 2004-04-13 | 2005-10-14 | Arkema Sa | USE OF ORGANIC POLYSULFIDES AGAINST CORROSION BY ACID BRUTS |
EA010668B1 (en) * | 2004-04-13 | 2008-10-30 | Аркема Франс | Use of organic polysulfides against corrosion by acid crudes |
AU2005235761B2 (en) * | 2004-04-13 | 2009-12-17 | Arkema France | Use of organic polysulfides against corrosion by acid crudes |
US20110076218A1 (en) * | 2009-09-25 | 2011-03-31 | Cytec Technology Corp. | Process and Reagents for the Inhibition or Reduction of Scale Formation During Phosphoric Acid Production |
US20110076219A1 (en) * | 2009-09-25 | 2011-03-31 | Cytec Technology Corp. | Preventing or reducing scale in wet-process phosphoric acid production |
US9028787B2 (en) | 2009-09-25 | 2015-05-12 | Cytec Technology Corp. | Preventing or reducing scale in wet-process phosphoric acid production |
US9242863B2 (en) * | 2009-09-25 | 2016-01-26 | Cytec Technology Corp. | Process and reagents for the inhibition or reduction of scale formation during phosphoric acid production |
US8900539B2 (en) | 2011-03-22 | 2014-12-02 | Cytec Technology Corp. | Preventing or reducing scale in wet-process phosphoric acid production |
US9902617B2 (en) | 2014-02-11 | 2018-02-27 | Cytec Industries Inc. | Primary amine-containing polymers useful as scale inhibitors |
US10214421B2 (en) | 2014-02-11 | 2019-02-26 | Cytec Industries Inc. | Primary amine-containing polymers useful as scale inhibitors |
US10906828B2 (en) | 2015-02-11 | 2021-02-02 | Cytec Industries Inc. | Modified amines useful as scale inhibitors in wet process phosphoric acid production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3062612A (en) | Method of protecting metals against electrochemical corrosion of the acidic type | |
US2496354A (en) | Method of inhibiting hydrogen sulfide corrosion of metals | |
US4997583A (en) | Method for protecting carbon steel from corrosion in heavy brines | |
US3079345A (en) | Propargyl compounds as corrosion inhibitors | |
US3060007A (en) | Hydrocarbon oils containing reaction products of imidazolines and alkylene iminodiacetic acids | |
US2963439A (en) | Corrosion inhibition | |
US3049496A (en) | Propargyl compounds as corrosion inhibitors | |
Singh et al. | Inhibition and polarization studies of some substituted urea compounds for corrosion of aluminium in nitric acid | |
US4154791A (en) | Inhibition of corrosive attack by sulfuric acid on carbon steel | |
Clark et al. | Effect of Thiourea and Some of its Derivatives on the Corrosion Behaviour of Nickel in 50% v/v (5· 6M) Hydrochloric Acid | |
US2319667A (en) | Inhibited hygroscopic salt solution | |
US1797401A (en) | And herbert w | |
US4061714A (en) | Process for separating an acid from a gaseous mixture | |
US1750651A (en) | Means of cleaning and protecting metal surfaces | |
DE3540376A1 (en) | METHOD FOR INHIBITING HYDROGEN-INDUCED CORROSION OF METAL MATERIALS | |
US2769690A (en) | Inhibiting corrosion of ferrous metals | |
US3226180A (en) | Process of conditioning metal surfaces and compositions therefor | |
US2778801A (en) | Stabilization of formaldehyde-hydrogen sulfide reaction products | |
US2993007A (en) | Nu-alkylheterocyclic nitroge-containing derivatives as corrosion-inhibitors | |
US2470428A (en) | Suppression of corrosive action of carbonic acid | |
US2878191A (en) | Non-corrodent aqueous media | |
US2243853A (en) | Method of inhibiting corrosion | |
US3147204A (en) | Anodic prevention of hydrogen embrittlement of metals | |
US2829039A (en) | Corrosion inhibited trichloracetates | |
US3282850A (en) | Corrosion inhibition with dipropargyl butylamine |