US3059483A - Vibrator with hydraulically controlled eccentricity - Google Patents

Vibrator with hydraulically controlled eccentricity Download PDF

Info

Publication number
US3059483A
US3059483A US32630A US3263060A US3059483A US 3059483 A US3059483 A US 3059483A US 32630 A US32630 A US 32630A US 3263060 A US3263060 A US 3263060A US 3059483 A US3059483 A US 3059483A
Authority
US
United States
Prior art keywords
shaft
piston
vibrator
plunger
centrifugal force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US32630A
Inventor
Clynch Frank
George J Hanggi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
Continental Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Oil Co filed Critical Continental Oil Co
Priority to US32630A priority Critical patent/US3059483A/en
Application granted granted Critical
Publication of US3059483A publication Critical patent/US3059483A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/162Making use of masses with adjustable amount of eccentricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating
    • Y10T74/18344Unbalanced weights

Definitions

  • This invention features a mechanical vibrator which has a variable centrifugal force which comprises a shaft having a piston confining chamber mounted transverse thereto, one end of said shaft having a hydraulic reservoir confined therein, a communicating means connected between the hydraulic reservoir and the upper end of said piston confining cylinder, a plunger slideably mounted Patented 0st.
  • FIG. 1 is a three dimensional, sectional view of the vibrator
  • FIG. 3 is a cross-sectional view of the vibrator.
  • a shaft 10 is rotationally supported by a plurality of bearings 11.
  • Bearings 11 are rigidly mounted in a housing of any suitable type (not shown).
  • a piston 12 is confined within a cylinder 13.
  • Cylinder 13 is rigidly attached transversely to shaft 10, and is closed at the top by any suitable means, such as head 16 which is shown threadedly attached to cylinder 13.
  • An 0 ring 17 is provided to prevent hydraulic fluid from escaping around head 16.
  • a second means such as O ring 18 is used to provide a hydraulic pressure seal for piston 12. It is to be understood that other suitable means known to those skilled in the art may be used for preventing hydraulic liquid from escaping from around the head of piston 12.
  • Axially mounted between bottom 14- and piston 12 is a biasing spring 15.
  • a vent hole 30 provides an escape for air or hydraulic fluid from the lower portion of cylinder 13 below piston 12.
  • a hydraulic fluid reservoir 21 is provided in shaft portion 10a.
  • a plunger 21 is rigidly inserted within hydraulic fluid reservoir 20 and is likewise provided with a suitable pressure confining means such as O ring 22.
  • a communicating means such as a channel 23 is provided between hydraulic fluid reservoir 20 and the area above piston 12.
  • Plunger 21 is axially moved in hydraulic fluid reservoir 20 by a control rod 25.
  • a suitable housing 26 for control rod 25 is provided to form a protective sheath and a friction hold for the control rod.
  • the end of control rod 25 is provided with a suitable means such as a knob 27 for actuating the control rod.
  • Control rod 25 is rotatably attached to plunger 21 by means of a plurality of bearings 31 which may be of the ball bearing type, as shown, or other suitable types such as sleeve bearings.
  • the bearings must however be adapted to permit longitudinal movement of control rod 25 as well as providing reduced rotational friction. Any suitable means may be employed such as 0 clip 24 to retain the bearings within the plunger 21.
  • shaft 10 is rotated at any desired speed.
  • the shaft may be best rotated by a variable speed drive and a constant speed motor or by a variable speed motor (not shown).
  • Rotation of shaft 10 will cause rotation of the entire mass comprising cylinder 13, piston 12, spring 15, and any hydraulic fluid between the upper portion of piston 12 and head 16.
  • the centrifugal force of the rotating mass will be determined primarily by the location of piston 12 and the hydraulic fluid in the cylinder .13. If the centrifugal force is desired to be reduced, knob 27 is pressed causing control rod 25 to force plunger 21 towards cylinder 13. Hydraulic fluid will then be forced from the reservoir 20, through communicating means 23, and intocylinder 13. Since hydraulic fluid is essentially incompressible, piston 12 will be forced downward; and since piston 12 comprises the majority of the mass, the centrifugal force will be re louver correspondingly.
  • the vibrator also lends itself quite readily to a counter rotating vibratory system as shown in FIG. 2.
  • This type of vibratory system is widely used where it is desired that the resultant force be confined to an upward and downward direction.
  • shaft 40 and rotating mass 41 are rotated in synchronism in a direction opposite from the direction of shaft 42 and rotating mass 43. Rotation is accomplished by any well known method such as gear
  • the resultant energy from the shaft will then coact to form a resultant force in an upward and downward direction as shown by arrow 44.
  • the theory of counter-rotating vibrators has been very well known for a number of years and is extremely adaptable for the vibratory method of such systems as seismic exploration, earth compacting, etc.
  • the control rod 25 see FIG. 3) for each vibrator can be individually adjusted for each change in speed; however, for ease in operation it is recommended that they be joined together in any well known manner.
  • an invention which greatly improves the hydraulically controlled variable centrifugal force feature of mechanical vibrators.
  • This invention also permits the vibrator to operate at much higher speeds than has heretofore been possible with greatly improved reliability.
  • a hydraulically controllable, centrifugal force, mechanical vibrator of the type which includes a rotatable shaft, a piston, a cylindrical portion mounted transversely on said shaft and confining said piston, said piston being hydraulically positioned within said cylindrical portion, the improvement comprising: a hydraulic reservoir in said shaft; plunger means axially slideable in said reservoir; plunger control means axially movably and rotatably connected to said plunger means; means for rotating said plunger means with said shaft thereby providing rotary movement of said plunger means independently of said plunger control means; means forming a hydraulic fluid passageway between said reservoir and said cylindrical portion; and, a body of hydraulic fluid in said passageway, said reservoir and said cylindrical portion whereby said piston is moved in response to reciprocal movement of said plunger and plunger control means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

Oct. 23, 1962 F. CLYNCH ETAL 3,059,483
VIBRATOR WITH HYDRAULICALLY CONTROLLED ECCENTRICITY Filed May 31, 1960 INVENTORS GEORGE J HANGG/ FRANK CLYNCH 3,059,483 VIBRATOR WITH HYDRAUHCALLY CQNTROLLED ECCENTRICHY Frank Clynch and George J. Hanggi, Ponca City, Okla, assignors to Continental Oil Company, Ponca City, Okla, a corporation of Delaware Filed May 31, 1960, Ser. No. 32,630 1 Claim. (Cl. 74-61) The present invention deals with an improvement in a variable frequency and variable force mechanical vibrator of the type which has a mass or spring biased piston positioned with respect to the rotational axis of the vibrator by hydraulic pressure.
A mechanical vibrator which can be accurately controlled not only in the frequency generated but also in the centrifugal force applied to the object being vibrated has wide usage in the field of earth compaction, vibration generation for structure testing, and seismic wave generation. The vibrator generally has its frequency controlled by a variable speed drive inserted between a constant speed motor and the drive shaft of the vibrator and has its centrifugal force varied by a mass which can be moved closer or farther away from the axis of the vibrator shaft.
One important method for controlling the variation in centrifugal force of a vibrator is to apply hydraulic pressure to a spring biased piston confined in a cylindrical chamber. The cylindrical chamber is mounted transverse to the vibrator shaft. When hydraulic pressure is applied between the end of the cylinder and the head of the spring biased piston mounted therein, the piston will be forced closer to the vibrator axis. Since centrifugal force is a function of the mass times the distance of the mass from the center of the axis and also proportional to the square of the rotation of the shaft, it is obvious that if the rotation of the shaft is to be varied the centrifugal force will likewise vary. It is, however, often times extremely necessary that the centrifugal force remains constant regardless of the rotational speed of the shaft. For example, in order to maintain a constant centrifugal force as the shaft speed is increased, more hydraulic pressure must be applied to the piston to force it nearer to the axis of the vibrator drive shaft. However, hydraulically controlled vibrators in the past have been beset with the problem of applying the hydraulic control fluid to a rotating mass. Since both the shaft and cylinder housing are rotating, a rotatable hydraulic joint was necessary which not only was required to withstand an extremely high hydraulic pressure but also was required to maintain the pressure for an extended period of time during which time the shaft was rotated at an extremely high speed. Rotational hydraulic joints have never proved entirely satisfactory. This is especially true where the joint must rotate at an extremely high speed.
Therefore, it is an object of this invention to provide a hydraulically controlled centrifugal force vibrator which can rotate at unlimited speeds without being limited by a rotational hydraulic joint.
It is a further object of this invention to provide a high speed mechanical vibrator which has an infinitely variable centrifugal force between minimum and maximum limits.
This invention features a mechanical vibrator which has a variable centrifugal force which comprises a shaft having a piston confining chamber mounted transverse thereto, one end of said shaft having a hydraulic reservoir confined therein, a communicating means connected between the hydraulic reservoir and the upper end of said piston confining cylinder, a plunger slideably mounted Patented 0st. 23, 1962 in said hydraulic reservoir, an operating shaft rotatably mounted axially in one end of said plunger such that when the shaft of the vibrator is rotated the plunger will rotate about a fitted operating rod mounted therein such that in or out operation of the operating rod will cause the piston to correspondingly force hydraulic fluid into or out of said piston confining cylinder, thereby moving said spring biased piston closer to or farther away from the axis of said vibrator shaft; the spring biasing means as provided between the opposite face of said piston urges the piston at all times against the hydraulic fluid.
Further objects, features, and advantages of the invention will become apparent from the following description and claim when read in view of the accompanying drawings, in which;
FIG. 1 is a three dimensional, sectional view of the vibrator;
FIG. 2 is a three dimensional view of opposite rotating weights; and
FIG. 3 is a cross-sectional view of the vibrator.
Similar numbers will be used throughout all figures where common structural elements are shown.
Referring to the drawings and particularly to FIGS. 1 and 3, a shaft 10 is rotationally supported by a plurality of bearings 11. Bearings 11 are rigidly mounted in a housing of any suitable type (not shown). A piston 12 is confined within a cylinder 13. Cylinder 13 is rigidly attached transversely to shaft 10, and is closed at the top by any suitable means, such as head 16 which is shown threadedly attached to cylinder 13. An 0 ring 17 is provided to prevent hydraulic fluid from escaping around head 16. A second means such as O ring 18 is used to provide a hydraulic pressure seal for piston 12. It is to be understood that other suitable means known to those skilled in the art may be used for preventing hydraulic liquid from escaping from around the head of piston 12. Axially mounted between bottom 14- and piston 12 is a biasing spring 15. A vent hole 30 provides an escape for air or hydraulic fluid from the lower portion of cylinder 13 below piston 12.
A hydraulic fluid reservoir 21) is provided in shaft portion 10a. A plunger 21 is rigidly inserted within hydraulic fluid reservoir 20 and is likewise provided with a suitable pressure confining means such as O ring 22. A communicating means such as a channel 23 is provided between hydraulic fluid reservoir 20 and the area above piston 12. Plunger 21 is axially moved in hydraulic fluid reservoir 20 by a control rod 25. A suitable housing 26 for control rod 25 is provided to form a protective sheath and a friction hold for the control rod. The end of control rod 25 is provided with a suitable means such as a knob 27 for actuating the control rod. Control rod 25 is rotatably attached to plunger 21 by means of a plurality of bearings 31 which may be of the ball bearing type, as shown, or other suitable types such as sleeve bearings. The bearings must however be adapted to permit longitudinal movement of control rod 25 as well as providing reduced rotational friction. Any suitable means may be employed such as 0 clip 24 to retain the bearings within the plunger 21.
In operation, shaft 10 is rotated at any desired speed. The shaft may be best rotated by a variable speed drive and a constant speed motor or by a variable speed motor (not shown). Rotation of shaft 10 will cause rotation of the entire mass comprising cylinder 13, piston 12, spring 15, and any hydraulic fluid between the upper portion of piston 12 and head 16. The centrifugal force of the rotating mass will be determined primarily by the location of piston 12 and the hydraulic fluid in the cylinder .13. If the centrifugal force is desired to be reduced, knob 27 is pressed causing control rod 25 to force plunger 21 towards cylinder 13. Hydraulic fluid will then be forced from the reservoir 20, through communicating means 23, and intocylinder 13. Since hydraulic fluid is essentially incompressible, piston 12 will be forced downward; and since piston 12 comprises the majority of the mass, the centrifugal force will be re duced correspondingly.
If the centrifugal force is to be increased, knob 27 will be pulled, causing control rod 25 to retract plunger 21 with a corresponding decrease in pressure of the hydraulic fluid in the fluid reservoir 20 Channel 23 will communicate the reduction in pressure to the hydraulic fluid stored in cylinder 13. The reduction in pressure will cause biasing spring 15 (along with the centrifugal force on piston 12) to force piston 12 away from the axis of shaft causing the hydraulic fluid confined within cylinder 13 to travel down communicating means 23 to hydraulic reservoir 20. Piston 12 will continue to travel until the pressure between the hydraulic fluid on the one side of piston 12 equals the spring bias on the other side of piston 12. Rotation of shaft 10a will not however increase the problem of hydraulic fluid leakage that has heretofore beset this form of centrifugal force control. Plunger 21 is not stationary but is rotating at the speed of shaft 10a, thus O ring 22 is not subjected to Wear other than the axial movement of plunger 21. Since control rod 25 is stationary with respect to shaft 10a, a suitable means of coupling control rod 25 to plunger 21 is provided through bearings 31. Bearings 31 must be adapted to permit rotation as well as axial movement of plunger 21; ball bearings commonly referred to as thrust bearings are satisfactory for this purpose. It is to be understood however that sleeve bearings may be substituted if a means is provided to retain shaft 25 Within the sleeve bearings when axial thrust is applied thereto.
The vibrator also lends itself quite readily to a counter rotating vibratory system as shown in FIG. 2. This type of vibratory system is widely used where it is desired that the resultant force be confined to an upward and downward direction. To accomplish this purpose shaft 40 and rotating mass 41 are rotated in synchronism in a direction opposite from the direction of shaft 42 and rotating mass 43. Rotation is accomplished by any well known method such as gear The resultant energy from the shaft will then coact to form a resultant force in an upward and downward direction as shown by arrow 44. The theory of counter-rotating vibrators has been very well known for a number of years and is extremely adaptable for the vibratory method of such systems as seismic exploration, earth compacting, etc. In order to provide a uniform centrifugal force to such configuration the control rod 25 (see FIG. 3) for each vibrator can be individually adjusted for each change in speed; however, for ease in operation it is recommended that they be joined together in any well known manner.
Thus, an invention has been disclosed which greatly improves the hydraulically controlled variable centrifugal force feature of mechanical vibrators. This invention also permits the vibrator to operate at much higher speeds than has heretofore been possible with greatly improved reliability.
Although this invention has been described with respect to particular embodiments thereof, it is not to be so limited, as changes and modifications may be made therein which are within the spirit and scope of the-invention as defined by the appended claim.
We claim:
A hydraulically controllable, centrifugal force, mechanical vibrator of the type which includes a rotatable shaft, a piston, a cylindrical portion mounted transversely on said shaft and confining said piston, said piston being hydraulically positioned within said cylindrical portion, the improvement comprising: a hydraulic reservoir in said shaft; plunger means axially slideable in said reservoir; plunger control means axially movably and rotatably connected to said plunger means; means for rotating said plunger means with said shaft thereby providing rotary movement of said plunger means independently of said plunger control means; means forming a hydraulic fluid passageway between said reservoir and said cylindrical portion; and, a body of hydraulic fluid in said passageway, said reservoir and said cylindrical portion whereby said piston is moved in response to reciprocal movement of said plunger and plunger control means.
References Cited in the file of this patent UNITED STATES PATENTS 949,872 Abate Feb. 22, 1910 1,939,788 Olson Dec. 19, 1933 2,852,162 Nauta Sept. 16, 1958 FOREIGN PATENTS 23,928 Great Britain Nov. 5, 1904 769,547 Great Britain Mar. 6, 1957
US32630A 1960-05-31 1960-05-31 Vibrator with hydraulically controlled eccentricity Expired - Lifetime US3059483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US32630A US3059483A (en) 1960-05-31 1960-05-31 Vibrator with hydraulically controlled eccentricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US32630A US3059483A (en) 1960-05-31 1960-05-31 Vibrator with hydraulically controlled eccentricity

Publications (1)

Publication Number Publication Date
US3059483A true US3059483A (en) 1962-10-23

Family

ID=21865961

Family Applications (1)

Application Number Title Priority Date Filing Date
US32630A Expired - Lifetime US3059483A (en) 1960-05-31 1960-05-31 Vibrator with hydraulically controlled eccentricity

Country Status (1)

Country Link
US (1) US3059483A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3407670A (en) * 1965-03-22 1968-10-29 Venanzetti Michele Vibrating eccentric mass device comprising one or more pairs of vibrators independently rotating in opposite direction to one another
DE1924653B1 (en) * 1969-05-14 1970-10-08 Metallwerk Karl Leibfried Gmbh Pneumatically operated vibration transmitter
US3814532A (en) * 1972-02-04 1974-06-04 Raygo Inc Compacting machine having variable vibration
US3867073A (en) * 1972-09-20 1975-02-18 Raygo Inc Control for fluid motor
US4108009A (en) * 1975-07-29 1978-08-22 Kabushiki Kaisha Komatsu Seisakusho Variable-force vibrator
DE2828290A1 (en) * 1977-07-23 1979-02-08 Lionel Arthur Reynolds VIBRATOR
FR2502987A1 (en) * 1981-04-02 1982-10-08 Gen Kinematics Corp DEVICE FOR VARYING THE VIBRATION FORCE PRODUCED BY A ROTATING MASS
WO1982004082A1 (en) * 1981-05-14 1982-11-25 Tractor Co Caterpillar Vibrating apparatus for vibratory compactors
US4759659A (en) * 1987-07-01 1988-07-26 Fernand Copie Variable vibrator system
US4859070A (en) * 1986-04-23 1989-08-22 General Kinematics Corporation Omniaxis apparatus for processing particulates and the like
US4978488A (en) * 1988-08-01 1990-12-18 Besser Company Concrete block molding machine having continuously driven vibrating shaft mechanism which can be programmably vibrated and method of programmably vibrating such machines
FR2675967A1 (en) * 1991-04-29 1992-10-30 Devoir Jean Claude Inertia device recovering a force, in the same sector of a circle
FR2714855A1 (en) * 1994-01-13 1995-07-13 Pellenc Sa Large force vibrator with adjustable unbalanced rotating masses for fruit harvesting machines
US20030223817A1 (en) * 2002-03-07 2003-12-04 Richard Stelbrink Compaction roller
US9310499B2 (en) 2013-08-12 2016-04-12 Exxonmobil Upstream Research Company Low frequency seismic acquisition using a counter rotating eccentric mass vibrator
US10227737B1 (en) * 2017-11-03 2019-03-12 Caterpillar Inc. Compaction machine
US11092172B2 (en) 2019-07-12 2021-08-17 Dennis Keith Reust Seismic vibrator servo valve with proportional linear pressure feedback
US11346966B2 (en) 2020-06-23 2022-05-31 Dennis Keith Reust System and method to transfer inertial mass
EP4273591A1 (en) 2022-05-03 2023-11-08 Dennis Keith Reust System and method to transfer inertial mass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190423928A (en) * 1904-11-05 1905-09-14 William Henry Bailey Improvements relating to Variable Throw Eccentircs or Crank Pins.
US949872A (en) * 1909-03-20 1910-02-22 Walter L Abate Air-cylinder.
US1939788A (en) * 1930-05-27 1933-12-19 Ruth M Olson Improved mechanical cylinder
GB769547A (en) * 1955-05-13 1957-03-06 Gerhard Lehmann Pottkamper Improvements in or relating to mechanical vibrators
US2852162A (en) * 1952-12-10 1958-09-16 Nauta Johannes Ewardus Device for producing a vibrating movement to control the rate of material delivery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190423928A (en) * 1904-11-05 1905-09-14 William Henry Bailey Improvements relating to Variable Throw Eccentircs or Crank Pins.
US949872A (en) * 1909-03-20 1910-02-22 Walter L Abate Air-cylinder.
US1939788A (en) * 1930-05-27 1933-12-19 Ruth M Olson Improved mechanical cylinder
US2852162A (en) * 1952-12-10 1958-09-16 Nauta Johannes Ewardus Device for producing a vibrating movement to control the rate of material delivery
GB769547A (en) * 1955-05-13 1957-03-06 Gerhard Lehmann Pottkamper Improvements in or relating to mechanical vibrators

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3407670A (en) * 1965-03-22 1968-10-29 Venanzetti Michele Vibrating eccentric mass device comprising one or more pairs of vibrators independently rotating in opposite direction to one another
DE1924653B1 (en) * 1969-05-14 1970-10-08 Metallwerk Karl Leibfried Gmbh Pneumatically operated vibration transmitter
US3814532A (en) * 1972-02-04 1974-06-04 Raygo Inc Compacting machine having variable vibration
US3867073A (en) * 1972-09-20 1975-02-18 Raygo Inc Control for fluid motor
US4108009A (en) * 1975-07-29 1978-08-22 Kabushiki Kaisha Komatsu Seisakusho Variable-force vibrator
DE2828290A1 (en) * 1977-07-23 1979-02-08 Lionel Arthur Reynolds VIBRATOR
FR2502987A1 (en) * 1981-04-02 1982-10-08 Gen Kinematics Corp DEVICE FOR VARYING THE VIBRATION FORCE PRODUCED BY A ROTATING MASS
WO1982004082A1 (en) * 1981-05-14 1982-11-25 Tractor Co Caterpillar Vibrating apparatus for vibratory compactors
US4362431A (en) * 1981-05-14 1982-12-07 Caterpillar Tractor Co. Vibrating apparatus for vibratory compactors
US4859070A (en) * 1986-04-23 1989-08-22 General Kinematics Corporation Omniaxis apparatus for processing particulates and the like
US4759659A (en) * 1987-07-01 1988-07-26 Fernand Copie Variable vibrator system
US4978488A (en) * 1988-08-01 1990-12-18 Besser Company Concrete block molding machine having continuously driven vibrating shaft mechanism which can be programmably vibrated and method of programmably vibrating such machines
FR2675967A1 (en) * 1991-04-29 1992-10-30 Devoir Jean Claude Inertia device recovering a force, in the same sector of a circle
FR2714855A1 (en) * 1994-01-13 1995-07-13 Pellenc Sa Large force vibrator with adjustable unbalanced rotating masses for fruit harvesting machines
US20030223817A1 (en) * 2002-03-07 2003-12-04 Richard Stelbrink Compaction roller
US9310499B2 (en) 2013-08-12 2016-04-12 Exxonmobil Upstream Research Company Low frequency seismic acquisition using a counter rotating eccentric mass vibrator
US10227737B1 (en) * 2017-11-03 2019-03-12 Caterpillar Inc. Compaction machine
US11092172B2 (en) 2019-07-12 2021-08-17 Dennis Keith Reust Seismic vibrator servo valve with proportional linear pressure feedback
US11346966B2 (en) 2020-06-23 2022-05-31 Dennis Keith Reust System and method to transfer inertial mass
EP4273591A1 (en) 2022-05-03 2023-11-08 Dennis Keith Reust System and method to transfer inertial mass

Similar Documents

Publication Publication Date Title
US3059483A (en) Vibrator with hydraulically controlled eccentricity
US4481835A (en) Device for continuous adjustment of the vibration amplitude of eccentric elements
US4108009A (en) Variable-force vibrator
US4370894A (en) Eccentric element
DE1784029C3 (en) Vibration generator for a soil compacting device
US2930244A (en) Vibration force generator
US3898815A (en) Pressure and volume compensating system for reciprocating oil field drilling tools
US2972249A (en) Kneader compactor
US3954309A (en) Hydrodynamic bearings for vibratory mechanisms
US3997176A (en) Expansible mandrel
US3672262A (en) Valve operator apparatus
DE1475578B1 (en) Ball joint connection for a piston working in a pressure fluid cylinder
US3647199A (en) Variable-damping liquid spring
US2485514A (en) Speed responsive valve
US3446062A (en) Device for testing rock in place
US2390646A (en) Well drilling apparatus
US3478611A (en) Variable speed drive assembly
US2777544A (en) Frequency sensitive mechanical damping system
US3595134A (en) Reciprocatory motors
US3857655A (en) Wear sleeves for sealed bearings
CN106285579B (en) A kind of pressure locking-type perforation orienting device for horizontal well
US2532656A (en) Hydraulic damper
US3292370A (en) Power transmission apparatus
US3314488A (en) Hydraulically operated tool
DE548396C (en) Machine with rotating or oscillating pistons