US3056703A - Ammonium nitrate combustion catalyst - Google Patents

Ammonium nitrate combustion catalyst Download PDF

Info

Publication number
US3056703A
US3056703A US795554A US79555459A US3056703A US 3056703 A US3056703 A US 3056703A US 795554 A US795554 A US 795554A US 79555459 A US79555459 A US 79555459A US 3056703 A US3056703 A US 3056703A
Authority
US
United States
Prior art keywords
ammonium nitrate
composition
weight percent
catalyst
combustion catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US795554A
Inventor
Charles J Korpics
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Priority to US795554A priority Critical patent/US3056703A/en
Application granted granted Critical
Publication of US3056703A publication Critical patent/US3056703A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Definitions

  • An object of the invention is an ammonium nitrate composition.
  • a particular object of the invention is an ammonium nitrate composition having low erosive characteristics.
  • a further object is an ammonium nitrate composition whose burning rate is relatively insensitive to variations in burning chamber pressure.
  • ammonium nitrate-type composition for gas generator and rocketry usage is obtained with ammonium nitrate as the predominant component between about 10 and 40 Weight percent of oxidizable organic material and between about 0.5 and weight percent of ethylenediaminetetraacetonitrile as the combustion catalyst. This catalyst burns to form products which have no appreciable nozzle erosive activity.
  • Sufiicient ethylenediaminetetraaceto-nitrile catalyst must be introduced into the composition to promote the burning of the composition.
  • the amount of catalyst used is also influenced by the rate of burning desired. The more catalyst present the faster the combustion of the composition. It is to be understood that the burning rate is also affected by the particular oxidizable organic material present.
  • the composition will contain between about 0.5 and 15 weight percent of the catalyst. (Hereinafter all percentages are to be understood as weight percent.) With the thermoplastic matrix formers or binders obtained from cellulose esters and oxygenated hydrocarbon plasticizers therefor between about 1 and 6% of catalyst produces satisfactory burning rates for typical military gas generation and rocketry usages; more usually 2-4% is present.
  • the improved composition of the invention contains ammonium nitrate as the major component.
  • the ammonium nitrate may be either ordinary commercial ammonium nitrate such as is used for fertilizers. This commercial grade material contains a small amount of impurities and the particles are usually coated with moisture resisting material such as paraffin wax. Military grade ammonium nitrate which is almost chemically pure is particularly suitable.
  • the ammonium nitrate is Patented Oct. 2, 1962 preferably in a finely divided particulate form which may be either produced by prilling or by grinding.
  • the ammonium nitrate is the major component of the gasgenerator composition and usually the composition will contain between about and of ammonium nitrate.
  • a matrix former or binder material is present.
  • ammonium nitrate decomposes free-oxygen is formed.
  • Advantage of the existence of this free-oxygen is taken and oxidizable organic materials are used as the binders.
  • These oxidizable organic materials may contain only carbon and hydrogen, for example, high molecular weight hydrocarbons such as asphalts or residuums, and rubbers either natural or synthetic.
  • the oxidizable organic material may contain other elements in addition to carbon and hydrogen for example, Thiokol rubber and neoprene.
  • the stoichiometry of the composition is improved, with respect to smoke production, by the use of oxygenated organic materials as the binders.
  • the binder or matrix former may be a single compound such as a rubber or asphalt or it may be a mixture of compounds. The mixtures are particularly suitable when special characteristics are to be imparted to the grain which cannot be obtained by the use of a single compound.
  • the multi-component binder or matrix former commonly consists of a polymeric base material and a plasticizer therefor.
  • Particularly suitable polymeric base materials are cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms such as cellulose acetate,
  • the binder contains between about 15 and 45% of the particular polymeric base material.
  • the plasticizer component of the binder is broadly de-. fined as an ox genated hydrocarbon.
  • the hydrocarbon base may be aliphatic or aromatic or may contain both forms.
  • the oxygen may be present in the plasticizerin ether linkage and/ or hydroxyl group and/ or carboxyl groups; also the oxygen may be present in inorganicsubstituents particularly nitro groups.
  • plasticizer which is suitable for work with the defined polymers may be used in the invention. Exemplaryclasses of plasticizers which are suitable are set out; below.
  • Di-lower alkyl-phthalates e.g. dimethyl phthalate, dibutyl phthalate dioctyl phthalate and dimethyl nitrophthalate.
  • Nitrobenzenes e.g. nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitroxylene, and nitrodiphenyl'.
  • Nitrodiphenyl ethers e.g. nitrodiphenyl ether and 2,4-
  • Tri-lower alkyl-citrates e.g. triethyl citrate, tributyl citrate and triamyl citrate.
  • Acyl tri-lower alkyl-citrates where the acyl group con-' tains 2-4 carbon atoms e.g. acetyl triethyl' citrate and acetyl tributyl citrate.
  • Glycerol-lower alkanoates e.g. monoacetin, triacetirn methyl propanediol diacetate, hydroxyethyl acetate and;
  • any- Lower alkylene-glycol oXOlates e.g. diethylene glycol oxolate and polyethylene glycol (200) oxolate.
  • Lower alkylene-glycol maleates e.g. ethylene glycol maleate and Bis-(diethylene glycol monoethyl ether) maleate.
  • Lower alkylene-glycol diglycolates e.g. ethylene glycol diglycolate and diethylene glycol diglycolate.
  • Miscellaneous diglycollates e.g. dibutyl diglycollate, dimethylalkyl diglycollate and methylcarbitol diglycollate.
  • Lower-alkyl-phthalyl-lower alkyl-glycollate e.g. methyl phthalyl ethyl glycollate, ethyl phthalyl ethyl glycollate and butyl phthalyl butyl glycollate.
  • Di-lower alkyloxy-tetraglycol e.g. dimethoxy tetra glycol and dibutoxy tetra glycol.
  • Nitrophenylether of lower alkylene glycols e.g. dinitrophenyl ether of triethylene glycol and nitrophenyl ether of polypropylene glycol.
  • Nitrophenoxy alkanols wherein the alkanol portion is derived from a glycol having a molecular weight of not more than about 200. These may be pure compounds or admixed with major component bis(nitrophenoxy) alkane.
  • a single plasticizer may be used or more usually two or more plasticizers may be used in conjunction.
  • the particular requirements with respect to use will determine not only the polymer but also the particular plasticizer or combination of plasticizers which are used.
  • the gas-generator propellant composition may contain other materials.
  • materials may be present to improve low temperature ignitability, for instance oximes may be present or, asphalt may be present.
  • Surfactants may be present in order to improve the coating of the nitrate with the 'binder and to improve the shape characteristics of the composition.
  • Various burning rate promoters which are not catalyst per se, may also be present.
  • the aromatic hydrocarbon amines are known to be gas evolution stabilization additives. Examples of these aromatic amines are toluene diamine, diphenyl amine, naphthalene diamine, and toluene triamine. In general the aromatic hydrocarbon amines are used in amounts between about 0.5 and percent. While these aromatic hydrocarbon amines are eifective, for severe duties they are frequently not sufficiently effective alone. It has been found that extremely good stabilization is obtained when N-phenylmorpholine additive is used with an aromatic hydrocarbon amine. Because of the plasticizing power of the N-phenylmorpholine it is generally desirable to use the aromatic hydrocarbon amines as the primary stabilizing additive and the N-phenylmorpholine in an amount needed to obtain the specific stability. In general when aromatic hydrocarbon amines are present between about 0.1 and 1 percent of N-phenylmorpholine will be used.
  • composition will contain between about 20 and 35 weight percent of binder when the polymeric base material is a cellulose ester of an alkanoic acid containing 2 to 4 carbon atoms and an oxygenated hydrocarbon plasticizer therefor.
  • a particularly useful composition consists of cellulose acetate, about 8-l2%; acetyltriethylcitrate, about 812%; on about 2:1 mixture of dinitrophenoxyethanol and bis(di-nitrophenoxy) ethane, about 812%; carbon, about 24%; toluene diamine, about 1% and catalyst, about 24%.
  • compositions to be tested for burning rate, pressure exponent and other characteristics required by military specifications were prepared by first forming a homogeneous viscous liquid binder at a temperature of about 130 C.
  • lacquer grade commercial cellulose acetate analyzing about 55% of acetic acid was the polymer base.
  • Two plasticizers were used. The one plasticizer contained about 2 parts of dinitrophenoxy ethanol and 1 part of bis(dinitrophenoxy)ethane. This plasticizer mixture was obtained naturally by the reaction of dinitrochlorobenzene and ethylene glycol in the presence of aqueous sodium hydroxide solution.
  • the other plasticizer was acetyl triethyl citrate.
  • the binder was then cooled to about C.
  • the composition consisted of cellulose acetate 10%, the dinitrophenoxy mixture 10.2%, acetyl triethyl citrate 9.8%, carbon black 3%, toluene diamine 1%, ammonium nitrate 63%, and catalyst 3%. This composition had a burning rate of 0.06 inches per second and a pressure exponent of 0.63.
  • a composition consisting essentially of between about 0.5 and 15 weight percent of ethylenediaminetetraacetonitrile combustion catalyst, ammonium nitrate as the predominant component and between about 10 and 40 weight percent of oxidizable organic binder material wherein said binder material consists of a polymeric base selected from the class consisting of cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms, polyvinyl chloride, polyvinyl acetate, and styreneacrylonitrile, and an oxygenated hydrocarbon adapted to plasticize said polymer.
  • a composition consisting essentially of ammonium nitrate as the predominant component, between about 1 and 6 weight percent of ethylenediaminetetraacetonitrile, between about 20 and 35 weight percent of a binder consisting of a cellulose ester of an alkanoic acid containing 2 to 4 carbon atoms and an oxygenated hydrocarbon adapted to plasticize said polymer.
  • a composition consisting of (a) ammonium nitrate, (b) cellulose acetate, about 8-12%, (c) acetyl triethyl citrate, about 812%, (d) about 8-12% of an about 2:1 mixture of dinitrophenoxyethanol and bis- (dinitrophenoxy)ethane, (6) carbon, about 24%, (f) toluene diamine, about 1% and (g) ethylenediaminetetraacetonitrile, about 24%.

Description

Uite Yams 3 056,703 AMMONIUM NITRATE COMBUSTION CATALYST Charles .l. Korpics, Chicago, Ill., assignor to Standard Oil Company, Chicago, 111., a corporation of Indiana No Drawing. Filed Feb. 25, 1959, Ser. No. 7%,554 3 Claims. (Cl. 14919) This invention relates to ammonium nitrate-type compositions and particularly a catalyst for promoting the combustion of ammonium nitrate containing compositions.
In gas generation and rocketry usages it is necessary that the gas afiording composition develop gas at a uniform rate; in the art this is spoken of as burning at a uniform rate. In ammonium nitrate compositions which consist essentially of ammonium nitrate particles and an oxidizable organic material which permits the Shaping of the composition into a definite configuration or grain it is necessary to promote the combustion of the composition by the use of a combustion catalyst. The best known catalysts are the inorganic chromium compounds, particularly ammonium dichromate. In the military field the Prussian blues have attained eminence. These and other metallic catalysts have the drawback of forming oxides with very high melting points. It is thought that these solid oxide products in the combustion gases are the cause of nozzle erosion. Nozzle erosion results in erratic change in gas pressure Within the gas generator or rocket motor.
An object of the invention is an ammonium nitrate composition. A particular object of the invention is an ammonium nitrate composition having low erosive characteristics. A further object is an ammonium nitrate composition whose burning rate is relatively insensitive to variations in burning chamber pressure. Other objects will become apparent in the course of the detailed description.
It has been found that an eminently suitable ammonium nitrate-type composition for gas generator and rocketry usage is obtained with ammonium nitrate as the predominant component between about 10 and 40 Weight percent of oxidizable organic material and between about 0.5 and weight percent of ethylenediaminetetraacetonitrile as the combustion catalyst. This catalyst burns to form products which have no appreciable nozzle erosive activity.
Sufiicient ethylenediaminetetraaceto-nitrile catalyst must be introduced into the composition to promote the burning of the composition. The amount of catalyst used is also influenced by the rate of burning desired. The more catalyst present the faster the combustion of the composition. It is to be understood that the burning rate is also affected by the particular oxidizable organic material present. In general, the composition will contain between about 0.5 and 15 weight percent of the catalyst. (Hereinafter all percentages are to be understood as weight percent.) With the thermoplastic matrix formers or binders obtained from cellulose esters and oxygenated hydrocarbon plasticizers therefor between about 1 and 6% of catalyst produces satisfactory burning rates for typical military gas generation and rocketry usages; more usually 2-4% is present.
The improved composition of the invention contains ammonium nitrate as the major component. The ammonium nitrate may be either ordinary commercial ammonium nitrate such as is used for fertilizers. This commercial grade material contains a small amount of impurities and the particles are usually coated with moisture resisting material such as paraffin wax. Military grade ammonium nitrate which is almost chemically pure is particularly suitable. The ammonium nitrate is Patented Oct. 2, 1962 preferably in a finely divided particulate form which may be either produced by prilling or by grinding. The ammonium nitrate is the major component of the gasgenerator composition and usually the composition will contain between about and of ammonium nitrate.
In order to permit the shaping of the ammonium nitrate composition into definite configurations a matrix former or binder material is present. When ammonium nitrate decomposes free-oxygen is formed. Advantage of the existence of this free-oxygen is taken and oxidizable organic materials are used as the binders. These oxidizable organic materials may contain only carbon and hydrogen, for example, high molecular weight hydrocarbons such as asphalts or residuums, and rubbers either natural or synthetic. Or, the oxidizable organic material may contain other elements in addition to carbon and hydrogen for example, Thiokol rubber and neoprene. The stoichiometry of the composition is improved, with respect to smoke production, by the use of oxygenated organic materials as the binders. The binder or matrix former may be a single compound such as a rubber or asphalt or it may be a mixture of compounds. The mixtures are particularly suitable when special characteristics are to be imparted to the grain which cannot be obtained by the use of a single compound.
The multi-component binder or matrix former commonly consists of a polymeric base material and a plasticizer therefor. Particularly suitable polymeric base materials are cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms such as cellulose acetate,
cellulose acetate butyrate and cellulose propionate; the polyvinyl resins such as polyvinylchloride and polyvinyl acetate are also good bases; styrene acrylonitrile is an example of a copolymer which forms a good base material. In general the binder contains between about 15 and 45% of the particular polymeric base material.
The plasticizer component of the binder is broadly de-. fined as an ox genated hydrocarbon. The hydrocarbon base may be aliphatic or aromatic or may contain both forms. The oxygen may be present in the plasticizerin ether linkage and/ or hydroxyl group and/ or carboxyl groups; also the oxygen may be present in inorganicsubstituents particularly nitro groups. plasticizer which is suitable for work with the defined polymers may be used in the invention. Exemplaryclasses of plasticizers which are suitable are set out; below.
It is to be understood that these classes are illustrative only and do not limit the types of oxygenated hydrocarbons which may be used to plasticize the polymer.
Di-lower alkyl-phthalates, e.g. dimethyl phthalate, dibutyl phthalate dioctyl phthalate and dimethyl nitrophthalate. I
Nitrobenzenes, e.g. nitrobenzene, dinitrobenzene, nitrotoluene, dinitrotoluene, nitroxylene, and nitrodiphenyl'.
Nitrodiphenyl ethers, e.g. nitrodiphenyl ether and 2,4-
dinitrodiphenyl ether.
Tri-lower alkyl-citrates, e.g. triethyl citrate, tributyl citrate and triamyl citrate.
Acyl tri-lower alkyl-citrates where the acyl group con-' tains 2-4 carbon atoms, e.g. acetyl triethyl' citrate and acetyl tributyl citrate.
Glycerol-lower alkanoates, e.g. monoacetin, triacetirn methyl propanediol diacetate, hydroxyethyl acetate and;
In general any- Lower alkylene-glycol oXOlates, e.g. diethylene glycol oxolate and polyethylene glycol (200) oxolate.
Lower alkylene-glycol maleates, e.g. ethylene glycol maleate and Bis-(diethylene glycol monoethyl ether) maleate.
Lower alkylene-glycol diglycolates, e.g. ethylene glycol diglycolate and diethylene glycol diglycolate.
Miscellaneous diglycollates, e.g. dibutyl diglycollate, dimethylalkyl diglycollate and methylcarbitol diglycollate.
Lower-alkyl-phthalyl-lower alkyl-glycollate, e.g. methyl phthalyl ethyl glycollate, ethyl phthalyl ethyl glycollate and butyl phthalyl butyl glycollate.
Di-lower alkyloxy-tetraglycol, e.g. dimethoxy tetra glycol and dibutoxy tetra glycol.
Nitrophenylether of lower alkylene glycols, e.g. dinitrophenyl ether of triethylene glycol and nitrophenyl ether of polypropylene glycol.
Nitrophenoxy alkanols wherein the alkanol portion is derived from a glycol having a molecular weight of not more than about 200. These may be pure compounds or admixed with major component bis(nitrophenoxy) alkane.
A single plasticizer may be used or more usually two or more plasticizers may be used in conjunction. The particular requirements with respect to use will determine not only the polymer but also the particular plasticizer or combination of plasticizers which are used.
In addition to the basic components, i.e. ammonium nitrate binder and catalyst, the gas-generator propellant composition may contain other materials. For example, materials may be present to improve low temperature ignitability, for instance oximes may be present or, asphalt may be present. Surfactants may be present in order to improve the coating of the nitrate with the 'binder and to improve the shape characteristics of the composition. Various burning rate promoters, which are not catalyst per se, may also be present.
The aromatic hydrocarbon amines are known to be gas evolution stabilization additives. Examples of these aromatic amines are toluene diamine, diphenyl amine, naphthalene diamine, and toluene triamine. In general the aromatic hydrocarbon amines are used in amounts between about 0.5 and percent. While these aromatic hydrocarbon amines are eifective, for severe duties they are frequently not sufficiently effective alone. It has been found that extremely good stabilization is obtained when N-phenylmorpholine additive is used with an aromatic hydrocarbon amine. Because of the plasticizing power of the N-phenylmorpholine it is generally desirable to use the aromatic hydrocarbon amines as the primary stabilizing additive and the N-phenylmorpholine in an amount needed to obtain the specific stability. In general when aromatic hydrocarbon amines are present between about 0.1 and 1 percent of N-phenylmorpholine will be used.
Broadly the composition will contain between about 20 and 35 weight percent of binder when the polymeric base material is a cellulose ester of an alkanoic acid containing 2 to 4 carbon atoms and an oxygenated hydrocarbon plasticizer therefor. A particularly useful composition consists of cellulose acetate, about 8-l2%; acetyltriethylcitrate, about 812%; on about 2:1 mixture of dinitrophenoxyethanol and bis(di-nitrophenoxy) ethane, about 812%; carbon, about 24%; toluene diamine, about 1% and catalyst, about 24%.
Tests The compositions to be tested for burning rate, pressure exponent and other characteristics required by military specifications were prepared by first forming a homogeneous viscous liquid binder at a temperature of about 130 C. lacquer grade commercial cellulose acetate analyzing about 55% of acetic acid was the polymer base. Two plasticizers were used. The one plasticizer contained about 2 parts of dinitrophenoxy ethanol and 1 part of bis(dinitrophenoxy)ethane. This plasticizer mixture was obtained naturally by the reaction of dinitrochlorobenzene and ethylene glycol in the presence of aqueous sodium hydroxide solution. The other plasticizer was acetyl triethyl citrate. The binder was then cooled to about C. and the ammonium nitrate in fine particles, carbon black and toluene diamine was blended into the binder until a pasty mass was formed. At this time ethylenediaminetetraacetonitrile was introduced into the mixture and worked into the mass of material. The homogeneous pasty mass was extruded as rods suitable for use in burning rate tests. Other portions were molded into gas-generator grains for use in large size gas-generation tests. The burning rate tests were conducted in a Crawford bomb pressured at 1000 psi. and 25 C. temperature.
The composition consisted of cellulose acetate 10%, the dinitrophenoxy mixture 10.2%, acetyl triethyl citrate 9.8%, carbon black 3%, toluene diamine 1%, ammonium nitrate 63%, and catalyst 3%. This composition had a burning rate of 0.06 inches per second and a pressure exponent of 0.63.
Thus having described the invention, what is claimed is:
1. A composition consisting essentially of between about 0.5 and 15 weight percent of ethylenediaminetetraacetonitrile combustion catalyst, ammonium nitrate as the predominant component and between about 10 and 40 weight percent of oxidizable organic binder material wherein said binder material consists of a polymeric base selected from the class consisting of cellulose esters of alkanoic acids containing from 2 to 4 carbon atoms, polyvinyl chloride, polyvinyl acetate, and styreneacrylonitrile, and an oxygenated hydrocarbon adapted to plasticize said polymer.
2. A composition consisting essentially of ammonium nitrate as the predominant component, between about 1 and 6 weight percent of ethylenediaminetetraacetonitrile, between about 20 and 35 weight percent of a binder consisting of a cellulose ester of an alkanoic acid containing 2 to 4 carbon atoms and an oxygenated hydrocarbon adapted to plasticize said polymer.
3. A composition consisting of (a) ammonium nitrate, (b) cellulose acetate, about 8-12%, (c) acetyl triethyl citrate, about 812%, (d) about 8-12% of an about 2:1 mixture of dinitrophenoxyethanol and bis- (dinitrophenoxy)ethane, (6) carbon, about 24%, (f) toluene diamine, about 1% and (g) ethylenediaminetetraacetonitrile, about 24%.
No references cited,

Claims (1)

1. A COMPOSITION CONSISTING ESSENTIALLY OF BETWEEN ABOUT 0.5 AND 15 WEIGHT PERCENT OF ETHYLENEDIAMINETETRAACETONITRILE COMBUSTION CATALYST, AMMONIUM NITRATE AS THE PREDOMINANT COMPONENT AND BETWEEN ABOUT 10 AND 40 WEIGHT PERCENT OF OXIDIZBLE ORGANIC BINDER MATERIAL WHEREIN SAID BINDER MATERIAL CONSISTS OF A POLYMERIC BASE SELECTED FROM THE CLASS CONSISTING OF CELLULOSE ESTERS OF ALKANOIC ACIDS CONTAINING FROM 2 TO 4 CARBON ATOMS, POLYVINYL CHLORIDE, POLYVINYL ACETATE, AND STYRENEACRYLONITRILE, AND AN OXYGENATED HYDROCARBON ADAPTED TO PLASTICIZE SAID POLYMER.
US795554A 1959-02-25 1959-02-25 Ammonium nitrate combustion catalyst Expired - Lifetime US3056703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US795554A US3056703A (en) 1959-02-25 1959-02-25 Ammonium nitrate combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US795554A US3056703A (en) 1959-02-25 1959-02-25 Ammonium nitrate combustion catalyst

Publications (1)

Publication Number Publication Date
US3056703A true US3056703A (en) 1962-10-02

Family

ID=25165814

Family Applications (1)

Application Number Title Priority Date Filing Date
US795554A Expired - Lifetime US3056703A (en) 1959-02-25 1959-02-25 Ammonium nitrate combustion catalyst

Country Status (1)

Country Link
US (1) US3056703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420874A (en) * 1962-09-28 1969-01-07 Standard Oil Co Amine addition salts of nitro-carboxyalkali metal phenolates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420874A (en) * 1962-09-28 1969-01-07 Standard Oil Co Amine addition salts of nitro-carboxyalkali metal phenolates

Similar Documents

Publication Publication Date Title
CA1039062A (en) Smokeless stable burning propellant
US3897285A (en) Pyrotechnic formulation with free oxygen consumption
US3348985A (en) Gas-generating pyrotechnic composition consisting essentially of ammonium nitrate and aminotetrazole
US3734789A (en) Gas generating solid propellant containing 5-aminotetrazole nitrate
US4023994A (en) Solid propellant containing ferrocene plasticizer
US3044123A (en) Pressed solid propellant pellets
US3180772A (en) Ammonium nitrate propellant
US3056703A (en) Ammonium nitrate combustion catalyst
US3132058A (en) Ammonium nitrate composition containing an alkali metal phthalocyanine combustion catalyst
US4000025A (en) Incorporating ballistic modifiers in slurry cast double base containing compositions
US3189496A (en) Ammonium nitrate propellant containing amino alkandioate combustion catalyst
US3026191A (en) Solid ammonium nitrate propellant containing alkali metal aminobenzoate combustion catalysts
US3067076A (en) Stabilized ammonium nitrate propellant
US3154447A (en) Ammonium nitrate composition containing pyridazinedione combustion catalyst
US3154449A (en) saucxuc acid
US3067075A (en) Ammonium nitrate combustion catalyst
US3247035A (en) Ammonium nitrate propellants containing a nitro-aminocarboxy-alkali metal phenolate combustion catalyst
US3148096A (en) Ammonium nitrate gas generating composition with combustion catalyst
US3113058A (en) Ammonium nitrate propellant compositions containing nitrilotriacetate combustion catalyst
US3020180A (en) Stabilized ammonium nitrate propellant
US3420874A (en) Amine addition salts of nitro-carboxyalkali metal phenolates
US3189495A (en) Ammonium nitrate composition containing combustion catalyst system with an n-aminoalkyl-morpholine
US2995430A (en) Composite propellant reinforced with
US2942963A (en) Solid propellant combustion catalyst
US3188962A (en) Restricted propellant body